"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"remove-cell"
]
},
"source": [
"## Preamble"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"hideCode": false,
"hidePrompt": false,
"slideshow": {
"slide_type": "skip"
},
"tags": [
"remove-cell"
]
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import joypy\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.ticker import FuncFormatter\n",
"import seaborn as sns\n",
"import altair as alt\n",
"import networkx as nx\n",
"import cartopy.crs as ccrs\n",
"import cartopy.feature as cfeature\n",
"import wbdata as wb\n",
"import datetime\n",
"import warnings\n",
"import random\n",
"import imageio\n",
"# Suppress benign warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"\n",
"from IPython.display import Image, HTML, display\n",
"from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler,power_transform\n",
"from sklearn.decomposition import PCA, FastICA\n",
"\n",
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = (10, 6)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"# Trade mis-invoicing in Africa"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Policy and media attention on illicit financial flows (IFF) has increased, with the recognition that Africa is a net creditor to the world."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"source": [
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
New York Times (2013)
\n",
"
Guardian (2015)
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
Guardian (2017)
\n",
"
Economist (2019)
\n",
"
\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"**What is trade mis-invoicing?**\n",
"- The deliberate mis-statement of price or quantity of internationally traded goods in invoices presented to customs\n",
"- Can occur at import or export\n",
"- Can result in an inflow or outflow of money"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"**Motivations for trade mis-invoicing include:**\n",
"- Evading tariffs\n",
"- Exploiting subsidy regimes\n",
"- Subverting forex and capital controls\n",
"- Hiding transfers of wealth"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"**Mechanisms of mis-invoicing**"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"From the reporting country’s perspective, trade mis-invoicing can result in an *inflow* or an *outflow* of capital, and this can be achieved by misreporting the value of both imports and exports. Money can be moved out of the country by over-invoicing imports, where that country pays too much money to buy goods from its partner; or by under-invoicing exports, where that country does not charge enough money for the goods that it sells to its partner. Conversely, money can be illicitly routed in to that country by under-invoicing imports, where the country pays too little money to buy goods from its partner; or by over-invoicing exports, where the country charges too much for the goods that it sells to its partner. The direction of trade mis-invoicing in addition to its mechanisms is represented in the diagram below."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"**Why does trade mis-invoicing matter?**\n",
"- Outflows undermine the fiscal base and public spending\n",
"- Financing gap needed to meet the Sustainable Development Goals (SDGs)\n",
"- Combating trade mis-invoicing is crucial for the mobilization of domestic resources in the continent, and can catalyze sustainable development"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"source": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Plot distribution of illicit flow in each feature (i.e. sector)\n",
"fig, axes = joypy.joyplot(sector_features, colormap=plt.cm.viridis, figsize=(8,8),\n",
" title='Distribution of mis-invoicing across sectors');"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"I explore two possible transformations of the data: a (modified) log transformation and a Yeo–Johnson. The values of the data-set are all non-negative, with some values equal to 0. Therefore, the figure below displays the distribution of the data after taking $log(x+1)$."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"sector_features_log = sector_features.apply(lambda x: np.log(x+1) if np.issubdtype(x.dtype, np.number) else x, axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAI1CAYAAADPfh7JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd5wXxf3/n+9Pu8/1g7vjOHqvh1QREP1hSYJRQROjMRp7jCYxTb/GJCZiNIkmRo0lxcQokdgSTcBoFEkEK1KkIyD9gOvH9U/f9++P3YPjvApXuXnyWG4/u7Mz75md2Xnte2Z3RVUxGAwGg8FgMLQMV2cbYDAYDAaDwdCdMOLJYDAYDAaDoRUY8WQwGAwGg8HQCox4MhgMBoPBYGgFRjwZDAaDwWAwtAIjngwGg8FgMBhagRFPBkMbICJ/EJGftFFcg0SkSkTczu/lInJDW8TtxPcfEbm6reJrRbr3ikixiOS3QVw/EpE/H8dxV4jI0hNNvwXpVInIsGbCHHOeDd0TERknImvq/N4rIud2pk1tjdg8JSKHRWRVZ9tTHxE5Q0S2t0E8cSKyTUT6NBvWvOfJYGgaEdkLZAFRIAZsBf4KPKGq1nHEdYOqLmvFMcuBRap6PGJhATBCVa9s7bFtiYgMBHYAg1W1sDNtMZzcnEh7Oc70XgL+rqrPO7/30so23sJ0ltOB+aqX9hnAc8BoVa3u6PQbsEeBkaq6sx3ivh3IUtVbmwpnPE8GQ8u4UFWTgcHAfcAPgCfbOhER8bR1nF2EwUCJEU7di57mFXM8LC3uF0UkGzgL+Ff7WdViW9rz2jEY2Hs8wqkbXtOeBa4WkbgmQ6mqWcxiliYWYC9wbr1t0wELyHF+Pw3c66xnAP8GyoBS4B3sG5VnnGMCQBVwOzAEUOB6YD/wdp1tHie+5cAvgVVAObAY6O3smwMcaMheYC4QBiJOehvqxHeDs+4C7gT2AYXYHrVUZ1+tHVc7thUDP26inFKd44uc+O504j/XybPl2PF0A8fOAQ44ZVII5AEXAZ/H9liVAj+qE34B9l04gB9YBJQ4Zb4a+86xIRuvAd6t81uBm4BPgMPA44AAcU5cOXXCZjr56OP8/hqw07FtCdCvXrwjnPV44DdOmZQD7zrbGjrP9wDvAZXAUiCjTpxXOXGUAD+hgXpZJ+z5wDqgAsgFFtTbPxt438ljLnBNnXr8e+A1oNo5d2Md28qALcC8OvF8HtsTWwkcBG5rqg00YKcADznnvBzYyNE2FQc8gF33CoA/APF1jp0PrHfyuAu7vv8c2zscxK5rjzlhZzn1otz5O6tOPMud495zzu8I7Hqy28nXHuCKRsr5KmBZY9cLJw8PA4ec5WEgrk7Y27Hr+iHgBurUm3pxNpYvBb6JXX/3ONt+65zTCmAtcEa9dvMidjutdM7ntDr7f+Ccx0pgO3AO9rUp6KRfBdzdwvp/xC5a376nAx9g15884DHA5+x724m/2rHnMupdB2m6zj6N3c5fdfL5ITC8Xnl/Avy/JvuF9uhszGKWk2mhkU4K+6J+s7P+NEfF0y+xL/ReZzmDo0Pkx8TF0Q70r0AijXeqB4EcJ8xLHBUOx1w06qdBHZFRZ/9yjoqn65wL4DAgCXgZeKaebX9y7JoIhICxjZTTX7GFXbJz7A7g+sbsrHfsHOxh0Z86ZfY1bBH2rBPfeOwL+LD6+QK+DrwCJABuYCqQ0kg61/Bp8fRvIA0Y5KQ519n3F+DndcJ+E3jdWT8bW0xOwe4gHwXerhdvrXh63Cnz/o59s5xjGjrPu4BRTnkvB+5z9o3D7ihmAz5sURGhcfE0B5iALV5PwRYfFzn7BmF3Gpc7ZZ0OTKpTj8uB051jk5368SMn3bOdY0c74fNwOmegFzCluTZQz87PYXfwadhCaiyQ7ex7GLtT7u3Y8QrwS2ffdMfOzzh29gfG1K/fzu/e2ML4q4DHyfdhIL1O+P3YdcyDfRNQUSeP2cD4Rsr518DjTbS/nwErgT7Y4vt94B5n31wg30k3AfvmqkHx1FC+6tSzN508xjvbrnTOqQe41UnDX6fdBLFFi9s5TyudfaOxRVe/Ou1/eCPtpiX1/4hdtL59TwVmOHkYAnwMfLeh9lX/+uLE31SdfRpbrE134v8b8Hy9cl0CfLupfsEM2xkMx88h7ItDfSLYF9zBqhpR1XfUaZFNsEBVq1U10Mj+Z1R1s9pu858Al7bRkMoVwIOqultVq4AfAl+u52q/W1UDqroB2IAtoo7BseUy4IeqWqmqe7G9LV9thS0RbLESAZ7H9l781olvC/Yd5CmNHJeOfTGNqepaVa1oRbr3qWqZqu4H3gImOdufxe5oa/mKsw3scvuLqn6kqiHscpspIkPqRuwMAV0HfEdVDzr2ve8c0xBPqeoOpx68WMeWS4BXVPVdVQ1jd0KN1ilVXa6qm1TVUtWN2PNV/l8d25ep6nNO/SxR1fV1Dl+squ+pPZ9vEraovk9Vw6r6P2yxWVsuEWCciKSo6mFV/ajO9pa0gQh25zkGW1x9rKp5IiLYHez3VLVUVSuBXwBfdo67Hrv833TyeFBVtzVSHOcDn6jqM6oaVdXngG3AhXXCPK2qW1Q1it3JW0COiMSrap5T/xoiDbtjbowrgJ+paqGqFgF3c7RNXIp9vreoao2z73j4pVNGAQBVXeSc06iq/gZb3IyuE/5dVX1NVWPYgq22PcecsONExKuqe1V1VxP5aq7+H2MXrWjfThte6eRhL/BHjtbf5phB03UW4GVVXeWc779xtJ3VUol9bhvFiCeD4fjpj30HU59fY9/5LBWR3SJyRwviym3F/n3Yd1cZLbKyafo58dWN24M9Qb6Wuk/H1WBfmOqTgX2XVz+u/q2wpcS5oIM9fAK2x4Q62xpK+xngDeB5ETkkIr8SEa/zBE6VszTW+UHj+fsfEC8ip4nIYOwL7D+dfceUmyM8S/h0fjOwhxUb64Raaks/6tQBp7MtaSwSx+a3RKRIRMqxhyZr68vAZuypW9f6Abl67IMRdc/rF7G9GPtEZIWIzHS2t6gNOB3bY9jeuQIReUJEUrC9NAnAWhEpE5Ey4HVne0vyUJf6dbx+Ho7Js3ODchl2meWJyKsiMqaRuA9ji7+Wpr3P2Va7r25ZN3cNaIxjjhORW0XkYxEpd8otlWOvFfXrmF9EPGpPvv4utneqUESeF5F+NExL6n/9/LS4fYvIKBH5t4jki0gFtnBu6fWuuToLzV/TkrGH/BrFiCeD4TgQkVOxG+O79fc5d1K3quow7Lvb74vIObW7G4myOc/UwDrrg7Dv4oqxx/0T6tjl5mgH05J4D2FPBq0bd5RjL2otodixqX5cB1sZT6txPBt3q+o47CGxC4CrHG9HkrOMP454LWzvz+XYXqd/Ox4QqFduIpKI7f2qn99i7OGI4a1Nvx55wIA66cU76TXGs9hDDwNVNRV7CE2cfbnN2FO3zhwCBtabRH3kvKrqalWdjz0s9S/s8mquDRybmOojqjoVe+hmFPB/2OUWwB4uS3OWVFWt7eSaykP9Ol+/jh+Th4aOUdU3VPUz2N6zbdhD1w2x0bG5MRpqX4ec9WPOKce28YZo9trhPBX3A2yvVi9VTcMe3pRGjj02ItVnVXW2Y7MC9zcStCX1v7lrT1P8HrvcR6pqCvYQXIvyQDN1toWMxfayN4oRTwZDKxCRFBG5ANvtvEhVNzUQ5gIRGeEMPVRgu8Nr77gKsOcXtZYrnffJJGDPo/iHcxe3A/vO8XwR8WJP0q77lEgBMKSJJ4ieA74nIkNFJAn7Du8Fx53dYhxbXgR+LiLJjqfm+9gTudsVETlLRCY4wrECW8TFmjmspTyL7YW4gqNDdrXbrxWRSc5TOb8APnSGGI7gCLC/AA+KSD8RcYvIzGaf5Pk0/wAuFJFZIuLDHuJpqjNJBkpVNSgi07HFXy1/A84VkUtFxCMi6SJSf9iilg+xBfrtjjdvDrYYel5EfGK/NyvVGYqprevNtYEjiMipjpfM66QTBGJOuf0JeEicd+6ISH8R+Zxz6JPY5X+OiLicfbXeofpt7DVglIh8xcnvZdhzyP7dUIZFJEtE5jmCIIQ916yx+vQmMEVE/I3sfw64U0QyRSQDe7i1tk286ORhrNOuf9pIHLW05NqRjH3zUwR4ROSnQEozxwAgIqNF5GynbgaxxWtj+W5R/T8BkrHrTZVzXm+ut7+psmi0zrYkYRHpjz0dY2VT4Yx4MhhaxisiUol9x/tj4EHg2kbCjgSWYV90PwB+p6rLnX2/xL6YlonIba1I/xnsiY752MNA3wZQ1XLgG8Cfse+sqrGfaqnl787fEhH5iE/zFyfut7GfigkCt7TCrrrc4qS/G9sj96wTf3vTF1tcVGBPLF1BG4k2Va29EPcD/lNn+3+x5569hO1BGM7R+Tj1uQ3YhP2UVyn23Xyrrr3OnJBbsDuAPOw5GYXYnXtDfAP4mVNnf4rjEXLi2o891HarY896GpjH5oQNA/OA87C9Qb/D9urVzi/6KrDXGVq5CXuyMjTdBuqSgi2SDnP0ScIHnH0/wB76W+nEvwxn7o6qrsJufw9he1ZWcNQT8lvgErFf6PiIqpZgeyNvdeK/HbhAVYsbKTuXE/aQUz7/D7s8GyqfAuzh3fmNxHUvsAbbQ7UJ+MjZhqr+B3gEe57dTuxygsbP6TH5aiTMG9j1dAd2eQZp+XBgHPZrWIqxrzN9sD0+n6KV9f94uA1b8Fdi148X6u1fACx0rqOX1rOtuTrbHF8BFmrj8xIB85JMg8Fg6HY4XsIy7GGNPZ1tT09GRMYBC4HpjUyKb2k8Y4HN2K8yaJXn19A2OF60DcCZ2sw76Yx4MhgMhm6AiFwI/Bd7uO43wGnYrwYwF/FuiohcjP2+oURsAWap6kWda5WhJZhhO4PBYOgezOfoyxZHAl82wqnb83Xs+Um7sOcX1Z/bY+iiGM+TwWAwGAwGQyswnieDwWAwGAyGVmDEk8FgMBgMBkMr6G5fOzYYThbMeLnBYDC0DS19gWabYTxPBoPBYDAYDK3AiCeDwWAwGAyGVmDEk8FgMBgMBkMrMOLJYDAYDAaDoRUY8WQwGAwGg8HQCox4MhgMBoPBYGgFRjwZDAaDwWAwtAIjngwGg8FgMBhagRFPBoPBYDAYDK3AiCeDwWAwGAyGVmDEk8FgMBgMBkMrMOLJYDAYDAaDoRUY8WQwGAwGg8HQCox4MhgMBoPBYGgFns42wGAwGAyGjsCyLA4fPkxNTQ1erxe/309qaioi0tmmGboZRjwZDAaD4aSjpqaGFStWsGLFCjZs2MDGDRspKCwgFosdEy7eH0//fv2ZOGkis06fxRlnnMHUqVNxuczAjKFxRFU72waDoSdiGp7B0MYEg0FeeeUVFi5cyLJlywiFQrjETZIrhSRNJdGbRJz4cakbCwuLGEEC1MSqKIuWEKQGgPReGVz8hYu44Ws3MH36dOOZ6vp0+Aky4slg6BxMwzMY2oiioiIeeeQRfvf47yg9XEqiJ4lM7U8fTz8SQ2m4xd2ieEIapJRCSj35FEYPEiPG6OGj+b8f/h9XXXUVXq+3nXNiOE6MeDIYegim4RkMJ0hxcTH33nsvTzzxBMFAkCz3AAZ7R5IU7HXC3qKoRshnP4dce6iwysjK6MuCe+7i+uuvNyKq62HEk8HQQzANz2A4TkKhEI8++ij33nMvlZWV9HMNYah7LHGR+DZPS1UpIZ+9rm2UWSUM7DeIJ578I3Pnzm3ztAzHjRFPBkMPwTQ8g+E4ePfdd7n++uvZsWMHfTz9Ge2eSFw4od3TVVWKyeMT2UiNVnH2meew8G9PM2DAgHZP29AsRjwZDD0E0/AMhlZQWVnJD3/4Qx5//HGSfSmMdU0lJZTe4XZYGmM/n7CHj/F6vTz44IPc9M2bzKTyzsWIJ4Ohh2AansHQQj788EMuv/xy9u7dyxD3KIbExuGmZZPA24sarWKb6yNKrUJmTJ3Fy6/8g+zs7E61qQfT4eLJvMjCYDAYDF0Sy7K47777mD17NkUHS5gZ9xmGxyZ0unACSJAkJltnMJpJrFr7IaOGj+bVf7/a2WYZOgjjeTIYOgfT8AyGJigoKODKK69k2bJlZHsGM0Yn47a65nudq7SczbKKKi3nmzd+i4cffwiPp2vaepJihu0Mhh6CaXgGQyOsX7+eefPmkZ+XzxjXZPqEB3b5OUUxjbKdDRxiDxNGn8KbK5aSlZXV2Wb1FIx4Mhh6CKbhGQwN8PLLL/PVK7+KRN1Mdp+OP5TU2Sa1ijzdx8d8RHJiCq8ve40ZM2Z0tkk9ATPnyWAwGAw9D1Xl3nvv5Ytf/CJx4QRO1bO6nXACyJbBTGMO4ZoQs2edwRO/e6KzTTK0A8bzZDB0DqbhGQwOgUCA66+/nueee45+7iGMjk1u8SdVuiphDbFJVnJYi7j+qzfwh7/83syDaj/MsJ3B0EMwDc9gAA4dOsT8+fNZu2Yto7ynMCAyosvPb2opllrsYAMH2MX0STNYuvx1UlNTO9uskxEjngyGHoJpeIYez9q1a5k3bx5FBUVM9MwkLdyns01qFw7qbraxjr4Z/Vj+3v8YNWpUZ5t0smHmPBkMBoPh5Ofvf/87Z8w+g/LCSk7znHPSCieA/jKMKZxJcXExkyZM4o3Xl3a2SYYTxIgng8FgMHQYlmVx9913c+mllxIfTWaanoU/3P0mhreWXpLJqZyFO+LjvPPm8uCvH+pskwwngBm2Mxg6B9PwDD2OmpoarrnmGv7+978zwDOUUdFJuLr5xPDWEtUIW1yrKbIOcdVXrubPT/8Jr9fb2WZ1d8ycJ4Ohh2AanqFHceDAAebPn8+6desY7ZlE/8iwk2ZieGtRVXbKZvbpdqZPOY3/vPkavXv37myzujNGPBkMPQTT8Aw9hlWrVnHRRRdRWlTKKZ6ZpIYyOtukLsEh3cs2PqJvVjbL3nqTsWPHdrZJ3RUjngyGHoJpeIYewaJFi7jhhhuIw88k1+n4ggkdbkNUo4QIECWMorhw4SWOOOJxSedO/S3TYjayEnec8NI/X+K8887rVHu6KUY8GQw9BNPwDCc1sViMO+64gwceeIA+vmxymIEr0jHzmwJaTQn5lFJIBYcJUtNgOEFIIJk0MuhNHzLoi1s6/kWWAa1mk2sllVYZv/rVr7j1tlt77JDmcWLEk8HQQ+hWDS8/P59t27ZRUFBAUVERsVgMt9tNSkoKAwcOZPDgwQwdOtRc8A0AlJWVcfnll/P6668z2DuKEdEcpJ0f7o5qhHxyyWMv5ZQC4JdE0rxZJLl64Xcl4XX5cYkQ0xhhDRKIVVARLaEsWkCMCC7c9KE/AxlOqqS3q72ftj/Kx+41FMQOcMXlV/KXp5/E5/N1qA3dGCOeDIYeQpdueLt27eL111/njTfe4MMPP6SwsLDZY5ITk5k6dSqfnftZLrzwQsaPH2/EVA9k27ZtzJ8/n107dzHOM5WsyKB2TS+sIXL5hFx2ESVCoiuNfnGj6OMbTKI7tUV1UNXicDSfvNAu8sO7iGqEVMlgmI4lXbLa1f5j7VD2uD5mt7WVaZOm8drS18jMzOyw9LsxRjwZDD2ELtfwioqKeO6553jmmWdYs2YNAEmeFFKs3vT2ZRIfS8Qd8eIjDsGFYhElQpAAIXcNVe5ySiNFVGoZAAOyB/K1m27g2muvZeDAgZ2ZNUMH8eKLL3LDDTcQC1lMdM8iMdh+nyKJaZR97GAv27GI0cc7hCH+U0jz9jkh0R7VMAeC29kX3EzQqiJd+jJSJ5AkHfdZlXzdz1bWkpmRyZv/W8qECRM6LO1uihFPBkMPocs0vC1btvDggw+yaNEiwuEwaZ50+rkH0zuahd9KbHV8QQ1QIvkUuQ5SHMtHEM4561x+evdPmD17tvFGnYSEQiFuu+02HnvsMTLispjAabjD7TPkpKoUcIBP2EiIAFm+oQyPn0Kyp20f9bc0xv7gVnYF1hHTMENkLEN1dIe9l6pcS9koH4DH4rnnn+PiL1zcIel2U4x4Mhh6CJ3e8N5//33uueceXn/9dTxuL/0YzCD3SPyR1gumxghoNXmufRywdhEmRM6YCdzzy58xf/58I6JOEvbs2cOll17KmjVrGOoZw7DYeKSd+rKg1vAxaymhgGR3OmMSZtLbl90uadUStoJsq/6AvPBOEiWV8TqNFOnVrmnWEtQAm1wfUG6V8uM77uRnP78bl8t8GKQBjHgyGHoIndbw1q9fz5133smrr75KvDeBgYwgOzYEr7bf5NSYRjnEPnLlE2q0inGjxvPQow/ymc98xoioboqqsmjRIm655RZCNSHGu06lV7h95gepKofYyw42oMCohFMZ5B+HdOBrBorCuWypepuwBhklExmgHfOSz5hG+VjWkq+5zJg6k5dfeYns7PYVjN0QI54Mhh5Chze87du3c9ddd/HCCy8Q5/EzREbTPzoUFx33aLalFnnsY698TEBrmDpxGo/87rfMmjWrw2wwnDjFxcXcdNNNvPTSS2T4ssiR6XjCce2SVkTDbGE1xeTRy5PN+MQzSPR03PyjuoStIJuqllMcyaWPDGScTsEj7f9pFVXlILvZwUYS4hNY9OwzzL9ofrun240w4slg6CF0WMPLz89nwYIF/PnPf8aNm4EykoHWCDzaed/TsjTGAfawT7YR0iDnzjmXhx97mPHjx3eaTYaWsWTJEm688UaKi4oZ4Z7AgMjwdvPAVOhhNrGSIAFGJUxnsD+n0z2Vqsre4CY+qVlFgqQwUWeSIB3zYeNqrWCLazUV1mGu+srVPP7Hx0hKOvk/qtwCjHgyGHoI7d7wqqqqeOCBB3jggQcIBIIMdA1nqIzFE+06HyGNaZRc2cle3U6MKJd+6TLu//V9DB48uLNNM9QjNzeXW265hcWLF9PLl06O+zTi2vFt4fanS9bhlTgmJp9LL2/HvTKgJZRGDrG+chkAp+gMeknHvFLA0hg7ZTP79RMyemXy9DNPcf7553dI2l0YI54Mhh5CuzW8SCTCk08+yYIFCygoKKCfdzAjXRPwhv3tleQJE9YQ+1072G99gsvt4qabbuauBT8lI8N8A62zCYfDPProo9x1112EQxGGyTj6R4a122dNLI2xnQ0cZDe9PNmcknQ2fnfHf9KlJVTHyllX8QY1ViVjZQr9GNJhaZdpMdvkI6q0gvnnX8SfnnqiJ78Tyogng6GH0OYNT1VZvHgxd9xxB9u3byfD15fR7onEB5PbOql2I6g17HVv40BsD/F+Pz/4wQ+49bZbzdBEJ6CqvPjii/zoRz9i9+7dZHkHMNY1ud3mNoF9/jfyARUcZoj/FEYmnNrp355rjogVYkPlfymJHmS4K4ch1ugOG1q0NMZe2c4e3UZ8nJ+77l7Ad7/3nZ74ZnIjngyGHkKbNTxV5bXXXmPBggWsWbOGVF8vRrpOITWY0enzQ46XKq1gj3srBbED9Ertzc/uvZsbb7yxJ3YKHY6qsmzZMu68805WrVpFr7h0RsopJAd7t2t9KtUCNvEhFkpO0pn0jRvWbmm1NZZabK5aQV54JwNdIxllndKhba9KK9jl2kSRlUf/vgN45PHfcvHFF3fb9n8cGPFkMPQQTrjhqSpvvPEGd911F6tWrSI5LpWhjCEj1L/L3623lHItYZd7C6WxQvpl9ee+X/+Syy+/HI+n4z/eerJjWRaLFy/mF7/4BWvWrCHRl8wIGU9GqH+7dsKqyj62s5MtJLpSmZR8LkmejnmPUluiquyo+ZC9wU1kuQYx3praYS/UrKVY89np2kSVVc6YkWP5xf0/Z/78+T3h3VBGPBkMPYTjbnihUIjnn3+ehx56iA0bNpDsS2EIY8kMnzyiqS6qSgn57HZtpcI6TFZGFv93x/9x4403kpzcfYYkuyqHDx9m4cKF/OEPf2D79u2kxKUxWEeTGe7X7p1/VCNsYTVFHKKvbxjjk87skEf/25M9gQ3sqFlFb1dfTrFO6/D8WGqRz372ynZqtJIRQ0fykwV3cumll+L3d915jyeIEU8GQw+h1Q3vwIEDPPXUU/zud78jPz+ftLh0BjHipPI0NYWqUkweue6dlMYKSfAncN311/H1m75OTk5OZ5vXrYhGoyxfvpxFixbxwgsvEAwGSff2YbB7JGnBrA6pT1VazkY+IEA1oxJO6xKvIWgrDgZ3sKX6bZKlN5N0Fj5pv3lijWGpRQEH2CfbqdJyUpNTufHrN/KNb36DIUOGdLg97YwRTwZDD6FFDa+mpoYlS5bw1FNP8eabb6Kq9PH0Z6h3NEmBXidNZ9NayrWUg55d5EVzUSwm5kzk5m/dzCWXXEJ6enpnm9clCYVCvPvuu/zjH//gpZdeoqioCJ/bRxaDGOwdiT/Udp/laY7aD996xMfEpHPa/RMrnUFheB8bKv9LvCQxWU/HL53zxKCqUkoheZ695EcPAMqpU6dz9bVX8aUvfYk+ffp0il1tjBFPBkMPodGGV1xczKuvvsq//vUv3njjDQKBAEm+FPpag+jvGoI30nmud1UlQogwYTx4iCO+UwVcWEMUuHI5pHuo1HJcLhczT5vFZZdfyrx583r0+6JisRhbt27lrbfeYunSpSxfvpzq6mq8bi8ZZNM/bijJNb1xd+C8HEstPmEjuewkzZPFxKRz8Ls7TrR1NKWRPD6qeAOv+Jiss0mUzh1mDmoNBe5c8qz9VDntZdqUacy7aB5z585l8uTJ3XV+lBFPXRERuRh4GRirqttaEP7PwIOquvUE0x0C/FtV23RMorl4ReR7wC+BLFUtb0F8rwFfUdWyE7RrDnCbql7QwPbFwG7ADzyvqnefQDpVqtrqZ99FZBLQT1VfO96066DgfLPr0CFWrlzJihUrWL58OZs2bQIg0ZtMRqwv2b5BJAbTOlWkVGk5ueykiEOECR3Z7sFHumTRX4fSi8xOs1FVqaSMEk8++bFcqrUCgAH9BnDOuedw1tlnMXPmTEaMGNFdO4cmCYVCfPLJJ2zdupW1a9eyatUq1qxeQ1V1FQApvjTSoplkxfUnKZCGWzp+wn1QA2xiJeWUMDguh5EJ03G7OnZCdWdQES1mTcV/AJisp3fYR4Wbo0rLKfYcotDKo8IqBSAtJY1Zp8/i9NmnM3ldkUIAACAASURBVGPGDKZOnUpqaud8CqeVGPHUFRGRF4Fs4L+quqAD0x1C54inVUAIeFJVn27LtJuxaw6Ni6fbVPUCEUkE1gNfVtW1dcJ4VDXawnSOVzxdA0xT1W+19tj63Hbbbbp+/XrWr1tPSWkJAF63lzTJoLerD+mSRXwoudOH5cIaZAcbyWc/bvGQmTCctLhsfO4EolaI8lABhTU7iVhBerv6Mtqa2Ol31wDVWkmZu5DDUkxJtIAIYQDi/fHk5Exg2qlTGTVqFMOHD2fYsGEMHTqUhISu+SJGgEAgQFFREQcOHGD//v3k5uaSm5vLvn372PbxNnbt3kUsFgPAJW5SPb1IjvUiPa4PiaFU/Nq5eSvRAjazCosY4xLPoJ9/RKfa09FUx8pYU/EfIlaISczqsLeRt5SwBjkshZR5SiiNFFJN5ZF9fbP6kjMhh5ycHEaPHs2gQYOOLCkpKZ1o9TEY8dTVEJEkYDtwFrBEVcc42+cAC4BiIAdYC1ypqioiy7E7+zUiUgU8DpwLHAZ+BPwKGAR8V1WXOGLmGaDWf/0tVX2/MZHj2LQY6AV4gTtVdbET/j/Au8As4CAwX1UDIjIV+AtQ4+w/ryHxJCLDgVeAm4EfqernnO3XAPOABGA48E9Vvd3ZtxeYBiQBrzvxzwA2AE8BdwN9gCtUdZWITAceBuKBAHCtqm5viXhyfj+P7QkcB/QDhjjn4YdOHjOBIife/SIyFHgW8Dj2fU9VkxqI9zFgjao+LSKnAr91zkkI+AywybH5ILZnLt8JA7Yn6UxVPXrVaQKvx6dJkkqilUxvXwaJVioJ4ZQuNfG7TIvZyAdEiDA0dRqD06YR5/l0JxyzIuRWbGTn4fdRtRjLFPoysBMsbhhVpYpyqt3lVLsrKYuUUKllRIkcEy4lOYXMzEz69u1L3+y+ZGRkkJycTFJSEomJiSQlJZGUlER8fDxutxuPx4Pb7f7UumVZxGKxI0s0Gj1mPRqNEggEqKmpoaamhurq6iPrNTU1VFZWUlpaSklJCcVFxZSUlhIKBT+VL5/Lh18S8VuJpHrTSHanEReJxx9N6tChuKZQVfbwMbvZSqIrjYnJ55Ds6d3ZZnUKwVgVayr+Q8CqYAIzyJR+nW1So0Q0TDmlBH1VVGkFFZHDVFNBjNgx4ZISk8jK6ktGZjqZmZmkp6fTu3dvevfuTWJiIgkJCccsiYmJxMfH4/V68Xg8R9pN7Xrdxe1243K5EJEmF5fLhcvl6nDxZF6W0jwXAa+r6g4RKRWRKar6kbNvMjAeOAS8B5yOLRzqkggsV9UfiMg/gXuxO+JxwEJgCVAIfEZVgyIyEngOW4w0RhC4WFUrRCQDWCkiS5x9I4HLVfVrjsfsi8AibBFzi6quEJFfNxH35U767wCjRaSPqhY6+yY5eQ4B20XkUVXNrXf8COBLwI3AauArwGxs4fUjpzy3YQuNqIicC/zCsbNZRCQdW5jdg12GU4HZjkB8Bfirqi4UkeuAR5z0fgv8XlX/KiLfbEEaPuAF4DJVXS0iKdii86fU8Tw56X1TVd9zBO2ne7hGODN24VGhVDsK1oXmfh/SfXzMGuI9qUzLupQUf+PfFXO7vAxJm0pW0kg25P+bzaEPqXZXMyzWcW9abgoRIZk0kq00sOxtihIhTIAqAlQToJpQZZCqyhBbd+9gPZsIEyJGFKteh9EeuHDjxo0LNx48ePDhxYeXOPoyyFn3EUcCfuLxk2B/2Ln23jfiLNBl6lFYQ2xhFSUUkO0bztjE2XhdPfclp353EtNTL2RtxetsjH3AWJ1GP+mac/K84iODvsfUKVUlRIAgNQSdv6HqAFW7gxzevYetbCdCmAihT4ms9uZcuST7TevveR2ZphFPzXM5tpcE4Hnnd614WqWqBwBEZD22B6S+eApjezvA9lyEVDUiIpuc8GB7jx5z5tTEgFHN2CTAL0TkTOzuoD9Q27vtUdX1zvpaYIiIpAJpqrrC2f4McF4jcX8ZW5hZIvIythB63Nn339o5UCKyFRgM1BdPe1R1kxNmi3OM1stvKrDQEYrq5L85zhCRdU5+71PVLSLyJWxvYMAJMxP4Qp08/spZP52j4uwZ4P5m0hoN5KnqagBVewJNA0LgPeBBEfkb8HJtXWgJaRmphAKhLiEu6rM/soutodWk+wcyKWseXk98i46L96Qwvf9lbClcyp6qzWicxXjPpC6ZR4B4/KTw6WEHVfuFkVbUwopZtieJaJ0lhjr/OLJ29J+dW3H+uY6s1f1niyXPEcFUW0Yut30nLW6Xc9fdkSXSdpTEClgXfJ+QBhmXMJsB/jFdth50JD6Xn1NTP8+6ijfZGl0NXothvjGdbVaLicePPeBxLKqglt1eYjHb82oRO9Jeam9CatePbTFWk7+dFJr8H/gc8HS7ZbwBjHhqAsfLcTaQIyIKuAEVkdudIKE6wWM0XJ4RPTo2atUe44iT2vDfAwqAiYCL5j0YV2APTU11hNhe7InUDdkUjy22mh2fFZFTsD1XbzoXOh/2JO1a8dSS/NYNY9X5bdUJfw/wlqpe7Aw1Lm/ONuCd+sN5DtVNHKONrNcSxS7vWmrLsEXlpar3icirwOexvX/ntuSBAoCXiv7SkmAdzjPPPMPVV19NVvJwJmZeiKuVE4td4ianz1w87jj2ln/E3CvP5fd//m3zBxpOCsLhMHfddRf33/8sKf5eTE8+n/hYWmeb1aXwiI+pKXPZVP0WW0Nr+dxNc/jNw7824vLEeLqjE+w6Eyy6JpdgDwMNVtUhqjoQ2IM9DNWWpGJ7Oizgq9girbnwhY5wOgvbA9QozlNw5SJSa/cVjQS9HFjg5HWIqvYD+ou0uW85FXveEMA1bRjv+9ieM7DzWOsFfK/e9lr2AeNEJM7xzp3jbN8G9HPmPSEiyY7QrQSOzIYWkeGquklV7wfWAN3nFrIB3nrrLa677joyk4YwMXNeq4VTLSLCmPSz6J88nj88+Qh3/+QXbWypoSuybds2Zs6cyX333ceghLFMT7zICKdGcImbUxLPZoB/DA898huuuuJaLMvqbLMMrcCIp6a5HPhnvW0vYc/jaUt+B1wtIiuxh+ya8qYA/A2YJiJrsMVAS7wd1wKPi8gH2JO0G+LLfDq//+So8GgrfgX8UkTeo3mh2Bq+DVwrIhuxReh3nO3fAb4pIquxhRsAznytF4GN2GW6ztkeBi4DHhWRDcCb2F6pt7DF1noRuQz4rohsdsIEsCfrd0u2b9/OF7/4RRJ9vZiQcf4Jf5ZDRBif+VkyE4ax4N47efnvS5o/yNAticViPProo0yZMoVtW7Zzavp5jPGfjku7xqT1roqIi3EJsxkafwqLnlvIBZ+bRzgc7myzDC3EPG1nMHQOXabhVVVVMX78ePIPFjI9+3KS4truDd1RK8wHBxYR1SAbNq1n9JiRbRa3ofPZsmULN9xwAytXrqRvwhByks/EHe34T5F0d2q/h3fqpNNY+tbrpKUZj10r6fAxT+N5Mhh6KKrKq6++ytChQ9m/fz85mee1qXAC8Lh8TO47n2gsytSJM3js0ceIRCLNH2jo0oRCIe666y4mT57MxnWbmNL7XE7xn2uE03EyNH4i4xPPZM361YwblcP27ds72yRDMxjPk8HQOXRqw3v33Xe59dZbWbVqFQDD0k5jVPoZ7ZZeftUO1hcsIcmbQVpGAg/+9gEuueQSM0m2m6GqLFmyhFtvvZVdu3YxIHE0YxJn4I713FcQtCWlkTw2VC3D5RH+8dI/OP+Cz3e2Sd0F43kyGAztx65du/jSl77EGWecwaZ1W3Dhopd/ACN7n96u6fZNGsWglElURYqpKglz6aWXMmHcRFasWNH8wYYuwebNm/nsZz/LRRddRMmhcmZmXsh4/5lGOLUhvb3ZnJYyH68Vz4UXXsCCn/4M4+DomhjPk8HQOXRowysrK+Pee+/lkUceAUsYmjCR/Jo9BLSKWQOuJt7b/p9UiVkR3j/wDFErxNC4iewNbSQYq+KcOZ/h8T88yujRo9vdBkPr2bt3L/fccw8LFy7E6/YxIn4q2e7RXept+CcbUQ2zufptCkJ7OHPWHF5e8g/S09t2SP0kw3ieDAZD2xGJRHjssccYMXwED/7mQfp6h3NGr0uxokpFrJhxGed2iHAC+03kp2SdTzgW4LBVyOkplzAq4VRWrFjOuLHj+Nr1N1JUVNQhthia58CBA9x8882MGjWKvy58hkH+ccxO/RL9PWONcGpnPOJjYuI5jEmYybvvv82o4aN5++13OtssQx2M58lg6BzateGpKq+88gq3334727dvJzN+IOOSZuK3UqmIlrCy/F9kJY5kUt8L29OMBtl9+EN2lL5DTvJZ9PeNIGQF2BNax/6arfjj/Pz4zh/z/Vu/T3x8y95sbmhbNm3axEMPPcTf/vY3YtEYA+LHMCJpCp6ov/mDDW1OebSIjVX/IxCr5Bs3fYtfP3i/aRufxnwY2GDoIbRbw1u3bh233norb731Fmnx6YxOnEGqlY2IYGmMleX/IqRBTh94TYMf+m1vVC1WHXqRylAhs1K/SLw7CYCqWBm7gqvJD+4lK7Mvv/7Nr7jiiitwuYyXo72xLIs333yTBx98kKVLl+L1+OgfN4phiRPxxjq+jhiOJWqF2RH8kNzANgZkD+L5vz/L6ae37zzFboYRTwZDD6HNG97Bgwe58847WbhwIX5fAiPip9DXNeqYIZZPatawO7COyVnzyUrqvHcu1UTKeC93Iam+vkxL/NwxT92VRg6xI7CK8kgROeMm8OjjjzBnzpxOs/VkZv/+/Tz11FM89dRT7Nu3j8S4ZAbGjWNA3BjclpkI3tUoDh9ga807BGLVfPUrV/Gbh39NZmZmZ5vVFTDiyWDoIbRZwysoKOD+++/n97//PdFIlMHxOQyLn4TLOvZ7y+XRIj4sX0x20lhOyer8R6BzKzawpehNxiTPZrBv7DH7VJX88E52BNYQjFXx2XPn8ttHH2LMmG79BZwuQUlJCYsXL+b5559n2bJlqCp94gcxKHEMvawBJ/x2eUP7EtUwOwNr2R/YQrw/gQV338V3vvsdfL4eLXaNeDIYeggn3PAKCwt54IEHeOyxxwgGQwyIH8XIpKkNDrNYGuOD8n8SIcLpA67G5+n8OROqytr8lykN5DIr9WIS3Z9+q3JMo+wPb2F39TosYnzh4i/y0wU/YcKECZ1gcfclLy+PJUuW8NJLL/G///2PWCxGclwa2b4RDPCPxmuZobnuRlX0MDuCH1IUyiUrsy9337OAa6+9tqeKKCOeDIYewnE3vM2bN/Pwww+zaNEiwuEI/eNHMDJpGr5YYqPH7KhZzZ7Aeqb0/QJ9Eocdb9JtTjBaxbu5T5PoSWN60vmNPsUVsgLsC21gf+BjYhrl7Dnn8tMFd3LmmWeaF202QE1NDW+//TZvvvkmS5cuZfPmzQCk+HvTxzOYfgkj8EdTTdl1c1SV4sgBdofWURYuICszmzt+9AOuu+5aUlJSOtu8jsSIJ4Ohh9CqhhcIBFi8eDFPPvkky5Ytw+vx0c83gmFJE/HFkpo8tjxaxMryxfRPGseErPNOyOj2IK9yGxsK/83IxOkM809sMmzYCnIg/DH7ApsJW0GGDR7ON265mauvvpqMjIwOsrjrkZeXxwcffMAHH3zA+++/z5o1awiHw3jcHnr5ssn0DSTDOwC/lWIE00lIrYjaG1pPaTgff1w8V331Km7+5k1MnDixJ5xzI54Mhh5Csw0vEonwzjvv8OKLL/L8889TXl5OUlwqA+LGtHhCb1ccrmuI9fmvUFD9CTNSLyLF0/zLAGMaJS+0i0ORHRwO5+Nxezj7rHO4/IovM2/ePHr37t0BVnc8lmWxe/duNm7cyKZNm9i4cSNr137Evn17AXC7PKT5Mkn19CErfhCJsQzc4mkfWzRGZayUimgRldHDBK1KAlYVEQ0R0ygxjeISF268eFw+/K5E4l3JJLrTSPVkkuLJwCPe5hMytIryaBEHI9s4WPMJFjGGDRnO1ddexWWXXcaoUaNOViFlxFNLEZGLgZeBsaq6rQXh/ww8qKpbTzDdIcC/VTXnROJx4noa+EBV/1hn20XAjaraJjN6HXtnqeqzzYSbA9ymqhc0sG8vME1Vi1uY5nIgGwg4m+5V1X80Eva7wBOqWtOSuE8UEVkAVKnqAw3suxH4vvOzAvi+qr7r7DtSf1pbHo3QYMPLzc3l7bff5rXXXuO1116jrKwMj9tLlm8oQ5LHkhjNbNXF75Oa1ezugsN19QnHAryb+zQ+8TMzZX6rJi1XRkvJj+7kUGAXQasKl8vFjNNmMve8z3HWWWcxffr0bjUPRFUpLi5m586d7Ny5k127drFz50527NjBls1bqAnYTUUQkuN6kUAamQn9SPX0IT6W1m4TvlXtF6sWh3MpjhygPFqEYgHgkTjivSn4PSn43Am4xYNbPFgaI6ZRolaQQLSSQLSccKy2qQupnkwyvAPI8A4k1dO6um1omrAVpDCyh/zIbkpChwAY2H8g5194PnPnzmX27Nkn01vLjXhqKSLyInYH/V9VXdCB6Q7hOMWTiLhVNVbn9+eAO1T1rDrbngdeVdVn2sDcJkVRS8Mdp3i6TVXXtCBsq+I+URoTTyJyAXA38DlVLRaRKcC/gOmqmt8ONmthYSGbN29m8+bNrF69mnfeeYd9+/YBEO9NJN0zgP5Jw0mK9TmuO/Tap+v6ddHhuvoUVu/io/x/MjRhMqPip7X6+COdu7WPwsB+KqIlAMT54sjJmcC0U6cyefJkJkyYwLBhw8jKyurwzjoQCFBSUkJhYSGHDh3i4MGDHDx48Oj6gYPs2buHqqqqOkcJib5k/CST4k0nLT6TRE3Drynt5lWqRVWpjJWQF9pJXng3IasagBRfFr3jB5Eal0WaPxu/p+XDgeFYDeXBfMqChygO7KM8lAdAvDuFbN9w+sWNaPDhAcPxE4hVURzdT2nsEEXBXGIaBWDwoCHMOn0mp512GuPGjWPMmDEMGDCgO4pYI55agogkAduBs4AlqjrG2T4HWAAUAznAWuBKVdW6HbqIVAGPA+cCh4EfAb8CBgHfVdUljkh6BqidhfstVX2/MfEkdm37FXAetlfhXlV9wbHpLiAPmKSq4+oc4wYOAFNUNU9EEoD9wFBgFPAgkOTk5xonzKnAk0A18C5wnqrmOHHdB8wB4oDHVfWPIrISGAvsARYC/2wkX3OAnwElwGjgbeAbqmrVFQsiciXwbcAHfOiEOSIInXwdKes6234PnArEA/9Q1btE5NvAA865LHbOx5PANKcM/6KqD9WL+0LgTif9EuAKVS1wRNEgYJjz92FVfcQ55sfAVUAuUASsbUA8vQPcpar/q7PtHgBV/Um9+rPXsTEAvAgMANzAPar6Ai2gT58+WvdTJPHeRFJdWWQmDCDN3Yd4KxU5gU9gdJfhuvpsLnyDA5WbmZ5yIb28WScUV9gKcjiaR6UUUxYspCJSTETDR/b74/wMHDiIQYMGkpGZQUZGBunp6fTu3Ru/34/f7ycuLg6/34/P50NVicVixGIxLMsiFosRiUSorq6murqampqaI+vV1dWUl5dTUlJiL8UllJSWEgwGPmWnIMR7E4lzJeDVeBK9KSTH9SLenYInEk+CK7nDXx8QtoIcCu3gQGg71bEyBBcZCUPomzCK9MSh+D2NP5zQ6rRiNRRW7yavaislgf0A9Pb2Y7A/h0zvoC7XkasqUaceibi63dCjpTHKooVUUUxZpJDSUMERUQwQH5/AiOEjGDpsCAMGDKB///7079+f7OxsevXqRVpa2pHF6+0yee/wStK+ty3tx0XA66q6Q0RKRWSKqn7k7JsMjAcOAe8Bp2OLjLokAstV9Qci8k/gXuAzwDhsgbEEKAQ+o6pBERkJPIfdYTbGF4BJwEQgA1gtIm87+6YDOaq6p+4BqhoTkZeBS4HfAvOAt4Ag8CgwX1WLROQy4OfAdcBT2MN674vIfXWiux4oV9VTRSQOeE9ElgJ3UMej5Ai0xvI13SmDfcDrTp6ODLeJyFjgMuB0VY2IyO+AK4C/NlAefxOR2p7iHODHqlrqiLz/isgpqvqIiHwfOMsRZlOB/rXCVEQauv18F5jhCOIbgNuBW519Y7AFdTKw3RFspwBfxq4XHuAjbFFdn/ENbF8DXN1A2FrmAodU9XzH3tQmwh6Dr6IXYxKHk+TpTZKrFz6JP9pJKCd8KdhZs5aq2GGm9P1CtxFOAGMy5lAc2Mem6hXMSr34hDomn8tPlm8oWQwFr93pBa0qqmKHCWglgVgVFfsrWLt3E2ENEbGCRDR0QvYLLmfIyotHvHglDq/48bkSyXal403043M520jA70rE54pv+ClDC1uSdyAV0WL2B7eSF9qJRYy0uH6MSzuVrKSR7fY2ep87gQEpOQxIySEYreRg5RZyy9ezrnIp8e4Uhvhz6B83ut29bA1hqUVZtICSyEEqosVUxUoJWYEjw5UAbvHidyWR4k4n1dOHTN9AEtxd90k3l7jp7c2mN9kM8gIJELJqqI6VUR0rp9oqI2/7YfZ8nEvIqmmyTXhcPnweH26XB4/bay/OutvlwePyICKIuJy/ggsX1K6LC0GO7BNcR6590sBFUI7upO7Kml0r2q6AWkh3FU+XAw876887v2vF0ypVPQAgIuuBIXxaPIWxxQHAJiDkiIFNTngAL/CYiEwCYtieoKaYDTzneGEKRGQFtqelwrFpTyPHPQf8Gls8fRlbiIzG9py96XSobiDPERPJqvq+c+yzQO0w22eBU0TkEud3KjDSyWtdmsrXKlXdDSAizzl5qjtX6RxgKrYwBNuLVNhIvq6o53m6yZlT5MEebh0HbKx3zG5gmIg8CrwKLG0g3gHACyKSje19qluur6pqCAiJSCGQBZwB/LN2TpWILGnE3oYQmp7YvQl4QETux/ZGtvjLnTlJ/w9xSbvcVZeED7InuIEByRO69DynhvC44pjQZy6rD73IJ8E1jE9q209QJJJKIvU1rqKWLa4stYhqGIsYljoLMSy1jpwrwbngY3se3NhiyS2eYz1EgtMpOD+6KKpKcfgAu2o+4nAkH7d46Jc8nsEpk0j29+lQW/yeZIb3msHQtOkUVn/C3rK1fFz9PrsDGxiaMJFB8WM7RESVR4rYH9hKQWgvEQ0CQpI/k15Jw/B7k/F6EhDszx2FIlUEwocpqckjr2Yn22ogyZvOgLhR9ju0XHHtbu+JEu9OIt6bRAYDjm5UxbKUmEYJWtWErQARDRHVMBHL+es8HGBpDCsSIxaOESZK0GlDMY0BiqKgSu0/6q6pLUQVq87FtqHLrh67p87K3Iwbv/Z68RN/atNCaYZuJ55EJB04G8gREcUWFioitztB6srkGA3nMaJHxyut2mOcIara8N8DCrA9SS5sb1CTpjWxr7qJfe8B2SIyEZiFLaBGAltUdeYxCYj0aib9W1T1jXrHzKkXrql81a+x9X8LsFBVf9iEHZ82TGQocBtwqqoedibKf+oro86+icDngG9ie+SuqxfsUeyJ20vqDNPW0ti5b8nY9FZsYfi/OtumONsbxPF8TgU+D/xSRJaq6s9akBZ/WX0vVWVtP0e+rLyMeZedR2pCJuP6nN3m8XcE6fGDGJw6lX3la/nB3d/l3HPO6WyTTkpUlbfe/i+///NjbNyygcS4VMZnnU12wjg8rs79CLBLXPRNGk1W4ihKg7nsLvuAbVXvc4iPuflr3+DKy76Kz9e2okRVefu95Tz+p0fZsGkdHo+PPr3HkJ0+ltT4IXjcTaenqgTChykq30FB2Va2VX3AruBaLrrgEr5983fok9mxQrQzsSyLaDhGJBIlFokRi9rD3FbMwoopsZiFWvbNilqK2ioKVXtdVY9ctWu76ganGDle+kdv+9vLHZY5h24nnoBLgL+q6tdrNzhentltnE4qcMARVFfTvAP9beDrIrIQ6A2cCfwf9lBSozjDTy9iDxe+5gynbQcyRWSmqn4gIl5glKpuEZFKEZmhqiuxhVYtbwA3i8j/HC/aKOAgUIk9jNWSfE13hM4+7OG5J+qZ+19gsYg8pKqFItIb2xO2r5myScEWkOUikoU9L2y5s6/WvmIRyQDCqvqSiOwCnm4grlQnX9D0kFotbwNPO0OcHuBC4I8NhPsVcL+IzFXVEsczdw1wWmMRi0g/oFT1/7N33vFRVtn/f98pSSa990ZCCCWhI4KiYseOiisqCLr6212767rr6u7iNv2uulbQxYaCKAooWBELKE1AeiBACCEkpPdkkqnn98dMEDFAgCSTZJ736zWvefKUe8995jmZz5xzi8xz96Ob1g57AIjv0/H/SEWESZMeorKqknGpU9HRbfojnDT9ws+mqnk/f/rbQxy4PZ+wsOP9btA4GZxOJ4sXL+af//gnW7dtJdAvjKEJE4j2zUTngdTY8VBKEWFKJsKUTHXzQfLr1vJ/z/6Lt955k6ee/j9uuvmmDlk4+vvvv+eRRx5h9erVBAVEkNXnMqKDszDo2y8ilVL4+4aTEn0mKdFnUm8upbhqIwuXvMdHnyzkt7/9Hf/8198JCgo6cWEaJ8Xl086t6uo6e+Jy5ZNxdXo+kkXATR1czyzgVneH634cP3qE26ZtwFZc0YuHjx6ldRzexRUJeg9ARKy4ROL/KaW2AltwRaXA1bdptlJqLa5IUJ17/2u4oiSblFI7cAkEg9smu1Jqq1LqgRO0ay2uTuc7cKXDfnafxTXNw2PAl0qpbcByXCm44yIiW4HNQA7wBq5oWyuzgc+VUt8CCcAKd7p1DtBWhGsG8IG7g/cJR7u5+8ItwHUPFwFtptZEZKnbtjVKqVzgVVyDDUqOU3w2sN5t76O4+s55jNdee41FixaRGTkOP3r2PEd6nZHsqMtoNNdxzYQb2v7VqXFS2O123nnnHbIGZTFp0iTy9xQxPPEKxsZPI9ZvULcTDp0EQgAAIABJREFUTkcTbkpiRMwkRsZdj7nezpSpUxiQmcXy5ctPuczKykqmTZvGOeecw5ZNOxicdiWjM35DfNjIkxJObRHsH8uApCs4a+BdRIcO4IUXnyc1JZ0PPlioPc+9gB452s6bUUoFikije/tPQJyI3OdhszROng51vI0bN3L22WcT6pvA0MiJ3W6E0qmSV72GvJo1/O3P/2TGvx71tDk9EpvNxty5c3niiSfIy8sjxBRFRuRYIozppzWi05OICCWNu9hbs5pmWx1nnTmOl15+gaFDh7a7jPnz53PvvfdSU1NLWtxYUqPHdaqArG0qIvfgp9Sby7hg/CW89/48r54Vv4PRpirQOD7ukXeP4IoqHcA1hUHF8a/S6IZ0mONVVlYyYsQIaisbOTP+ZnTS/TuothcRJ5tKP6Sy+QCfffIFl152kadN6jFYLBbefPNNnnzySQ4cOECYfywZkWcRZkjtNeLa4bRTWL+F/Np12BwWrr3mep559j+kpqYe85q6ujruuusu3nnnHSJCkslKvRJffddMFukUBwfK1pFXsoLgwBDee/9dLr304i6pu5ejiScNDS+hQxzP4XBw6aWXsmLFSs5KuRkTve+XrM3RwrridxCdnZxd20ntk+Jpk7o1ZrOZ2bNn8/TTT1NcXExEQCIZkWMJ0Sf1GtF0NDZHC/vrNlBQ+yNKB7+58zfM+PvffhHZWbduHZMnT6awsJCMhPNIihx7zMWoO5N6cwk7DnxIY3MV9937IP999j8d0nfLi9HEk4aGl3Dajici3HPPPcycOZOh8ZcRaxp44ot6KI3WStYWzyc2Mp6cPVsICWn3lFpeQ319PTNnzuTZZ5+loqKCqKAUMiLHEqTie61oOpoWewP5tWsprNuOyc/Enx75Ew899Hv8/f353//+xz333IOfTzCD064lwHjC7pqdisNpI/fg5xRXbWHsmefy2RdLtOf61NHEk4aGl3DajvfUU0/x8MMPkx5xBhmh53SETd2aiqZ8NpV+xKDMIWzcuhZf396TnjwdqqqqeP7553nxxRepra0lNjidjMixBKjTm6G9J9NorSSvdjWlDXsJC41gUNYAVq1aRUxYP7JTJ6JT3ePZEREOVm5kd9EyoiPj+PrbZQwaNMjTZvVENPGkoeElnJbjzZ8/n5tvvpnE0IEMCp/gNZGF4oYctpd/znlnXcTyFZ9hMHTvEWKdyf79+3nhhRd49dVXaWpqIj4kk36RY/Gj1yz2etqUNe5lW8XnOJxWUmPGkhF/frfsJF/TeICt+xeilJOPPvqQSydc4mmTehqaeNLQ8BJO2fHef/99brrpJiL8kxgaPRFdV6/h4WH2125gd9VKzj/3Er5Y/nF3Wl+r0xERVq9ezbPPPstHH30EKOKD+tM3cgx+aIvpHkmjtZKNJYuwOVsYlHwlseEnvZZ7l9JsrWPzvncxt1Qx86VX+M3vfu1pk3oSmnjS0PASTsnxDgungESGxUxEOb0z8tIqoMaNGc/ybz/v9Sk8s9nMwoULefHFF9m4cSN+vgEkBmaTEjocI52z5lxPprr5IJtKP0KnMzA8fTLBAfGeNqld2OwtbN3/PtUNBTz80KM8+Z9/eE1U+TTRxJOGhpdw0o43a9Ys7rnnHiICkxjuxcKplQN1m9lV+TWD+g/hm5VfEh3d+5a/2Lp1K6+++irz5s2jrq6OEP8oUkOGE23qj/40Fk3uzZQ05LKt/HP8fcMYnj4Zk1/Pmp3e6bSz48BSSmt2cMP1tzD/vTno9d4VXT4FNPGkoeEltNvxHA4Hf/jDH3j22WeJD+lHVtRl6MS7hVMrJY257Cj/gpCQML786nNGjBjhaZNOm7KyMj744APmzp3L+vXr0esNxAX2IyV8GIEqVotEHAMRoaBuI7urVhIWkMzQtBswGntmVE5E2HvoawrK1nDBeRP4bNlH+Pj4eNqs7owmnjQ0vIR2OV5JSQlTp07lq6++Ii1iJBkh53TLDq+epM5SyubSJdiczTw+4+888ugfe9ycOTU1NSxevJh3332Xb7/9FqfTSah/DInB2cQGDMBA705Lni4iTnZVfkth/WZiQgeSlXI1en3Pj8ztL1vD3uKvGDFsLN+tWo6/f88Ug12AJp40NLyEEzreJ598wm233UZtbR2Doi4g1qQNYT4WFnsTO6u+oqxxL0OzR/DGW68ybNgwT5t1TESE3NxcPv30Uz799FNWrVqF3W4n2D+SGFM/EkIG4Kd6VrrJUzicNraWf0p5Ux4p0WPol3Bhr4rOFVVuYmfhp2T2zWLdhu8IDdUGBrSBJp40NLyEYzregQMHeOCBB/jwww8JC4xlaOyV+Io2ed6JEBGKG3LYU70Sq6OFmyffwt//OYO0tDRPmwZAaWkp3333HStXruSLL74gPz8fgLCAWCL8UokP6Y+JiF71xd/ZWB1mfiz5kDpLCf0TLyE5erSnTeoUSmt2sr3gQxLiUtjw42piY2M9bVJ3QxNPGhpewi8cr6SkhKeeeopXXnkFh91JetgYkoKGokPr33Qy2Bwt5Nf9QEHNj6Dgisuv5P4H7uXcc8/tso63NpuNnTt3smnTJtauXcvKlSvZs2cPAEaDL+F+icSFZBDum4qPCuwSm3obZlstG0sW0WJvIDt1IjFhAzxtUqdSVb+PLfnvExYayQ8bVnWbHwXdBE08aWh4CQKuaMkPP/zAa6+9xrx587DZbMQHDyQzchxGCfC0jT2aFnsjBxu2UFi7GZvTQkR4JJMmXc9FF1/EOeec0yEr2jscDg4cOMCePXvYs2fPYcG0bds2LBYLAD5GE2G+8UQGphBuSsSkItApbfTU6VDbUsKmksWIgmHpNxIamORpk7qE2saDbN73LiaTP9+vWsHgIdmeNqm7oIknDRdKqYnAYmCAiOR62p7joZRKBT4RkTZnoVNKPQA8AcSISF0XmnZMlFIjgakicq9S6jzAKiJr3Md+A5hF5O3Oqn/NmjWydOlSlixZQm5uLkaDD/GBA0iPPBMfCeqsar0Sh9NGhTmf8uY9lDXk4xAbAHGx8WQPzqZ//0xiY2OJjo4mIiICHx8fDAYDer2elpYWGhsbaWxspL6+ntLSUg4dOkRJSQkHDxZRULAfq9V6uC4fgx/BvjGE+MYQHhSPiQhM+lAtFdeBlDXlsbXsE3yNgQxPv4kAU+9bDPt4NDSXsSnvHXR6WL78S846e4ynTeoOaOJJw4VS6n0gDvhaRGa0cVwvIo4uN6wN2iGe1gMW4HURmdN1lrUPpdQMoFFEnu7COkWn0xMRkERC8AAifTMwKG0ocmfjFAd1llLqbSU0Wiupay7HbKvF7rSe+GJAr9Nj8gnGR+ePjy6AIFMEQb4RmPQh+BCMj95fE0qdyIG6Teyq/IZg/3iGpd2Ir49nU54Opw2bvRmlFDplwKD365LP32ypZlPeO9gcrslTr7r6ik6vs5ujiScNUEoFAruB8cBSEenv3n8e8DegBBgK/A54HChz/70Y2A7cB5iAa0Rkn1Jqkvs6B1AnIue0Ud8SIAwwAo+JyBK3KPocWAWMBYqBq0WkWSk1AngDMLuPT2hLPCml0oGPgd8CfxaRS9z7pwHXAHogC3gG8AGm4BJal4lItVJqBbAZGAFEAVOBR4BsYIGIPHa0eFNKPQQEisgM9/U/uO9lKHC7iHzvvpcPAXcD69z3pgK4B7gAt5hSSg0FXgH8gX3AbSJSc6xy2/g422R4/FUS7puCUe/X3ks0OhGH04bVYcbqbEHEieBExOn6QtQZ0SsfDDofDDpfTRx5ABFhd9VKCuo2EhXcj8F9rkWv79ofG3aHleqG/VQ37KfOfIimlgrsDsvPztHpjJh8Qgnxjyc0MJmokAx8jZ0j8Cy2BjblzaexpYLbpv+aiy+5AF9fX/z8/PD19cVgMKDT6dDr9eh0uuNut/59vGf7WMdOdn9HlwUQFxfX5U6p9UTtnlwDfCEie5RS1Uqp4SKyyX3sDCBLRPa7BcAQYABQDeQDr4nIGUqp+3AJgfuBvwKXiEixUqqtca4twEQRqVdKRQLrlFJL3ccygMkicoc7GnYdMA94E7hHRFYqpZ46TlsmA+8C3wOZSqloESl3H8sChgF+QB7wRxEZppR6FpdIes59nlVEznG3aQkuIVUN7HOfeyIM7ntyGS4ReWHrAREpUEq9whGRJ6XUBUdc+/YR7fy7+/r7T1TuiYjxz2zvqRpdgF5nxKQLwYQ2qrG74XDa2V7+GaVNe0iKHEn/xEtQuq7pMyYi1DQWUlT5I+W1uTjFjl7nQ2BgHDExQ/H1DcFoMAHgdNhosdRhbq6kon4vh6q3AoqwoBQSI4YTEzagQ/u6+RqDGNnvVrbse4/X35jNW2+9jd3R0mHl9yQuTX+o3+d5T+3pyjo18dQ9mcxPwuE999+t4mm9iOw/4twNIlICoJTaB3zp3r8dV1QEYDUwxy1+FrdRnwL+rZQ6B3ACCUCM+9h+Edni3v4RSFVKhQChIrLSvX8uMOEYbbkRlzBzKqUWA5OAme5j34pIA9CglKrDFaFqtX3wEWUsPWJ/zhHtzQeSgNpj1N1Ka5t/BFJPcO5h2mjnW8AHp1suQERMMJYWW9fHmjU0ehDN1gbW579PtfkQ/RIuJCV6TJdE/kSE8rrd7CtZSWNzGQa9H3FxI4iKHERoaCo63fG/OkWEpqYyyiu2U1a2le0Fi9lzKITU6DNJihyJroPEn1Hvx4i+t7Ct4EPKa3eREJxNQmAWggMRQXCCCIIArndXtqmtbWeH2IS7xFO5qs297SsqC9DEkzejlIoAzgeylFKCK60lSqmH3ac0HXXJkXFj5xF/O3F/viLyG6XUaOByYItSaqiIVB1x3c24UmIjRMSmlCrAFQ06unwHrnSgoh2TPCqlBuOKXC13/8PzwRUdaxVPJ7T9qPOcbVxjAOzAkVNKH50La73GQcc+86dc7rzVf+lAMzQ0eh8bNmzgmmuuodFezcjMGwkP6Ncl9dY0FpJbtIwGcwkmUwT9+00kJmbISaUJlVIEBsYSGBhLn9QLqKraTeHBVewuWkZhxXr6xp9PbOjADhGCOp2BIX2uI7doGQcrNjDs7L4s/mgBRmPPn2H9JGgrKNCp9Kw1DLyD64G3RSRFRFJFJAnYD5x9qgUqpdJF5AcR+StQiStacyQhQLlbOI0HUo5XnojUAnVKqVabbj7GqZOBGe52pIpIPJCglDpu+adAGRCtlIpQSvkCJ9t7sgH4xRA398jAGqXUOPeuKcDKo8/T0NDoWObNm8e4ceNorLcyZsDtXSKcrHYzOQc+ZsOeOVgdZgZkXsfoUfcTHz/qtPpXKaUjMnIAw4fdwZDB09AZfNi+fxGb8t+lxdoxg4+V0tE/8VL6xo3nk88+ZPSocdTU1HRI2Rpto0Weuh+TgSeP2rcIuAlYcIplPqWUysAVMfoa2HrU8XeAj5VSG4EtQHumRpgOvKGUMgPLjnHOjfwynfehe39ZO20/IW7R93dcHbj30z77j+RjYKFS6mpc/cSO5FbgFaWUP66o2fTTtVdDQ6Nt7HY7jzzyCE8//TTRYWkM6XM96heB5I6nom4POw4sxe5oITlxHKmp4zEYOr7eiPB+hIf1pah4Lfvyv2T1rlfol3ARiRHDTjsKpZQiLW4cfj7BbN32CQP6Z7Ni5Vf079+/g6zXOBJttJ2Ghmfo9o7ndDrJz88nJyeHnTt3UlxcTGVlJdXV1YgIBoMBPz8/YmNjSUhIIC0tjWHDhtGvX78um8lbo/dQVFTEjTfeyOrVq0mNPYOM+ItQdO5z5HDa2FP8FQcrNhAYEMvA/pMIDIrr1DpbaW6uJnf3Ympq84kJz2JQ0uUY9B2zAHRNYyFb8z9Ap4dFiz7gssuP1SW116BNVaCh4SV0S8fLz8/n448/ZsWKFaxc+R01NdWHj/kY/fEx+GPQuX6RO8WJU+xYbY1Y7ebD5/n5mjhj9GiuuOIyLr74YgYPHqwN79c4Lp9//jlTpkyhscHMoJQriAzq/KVWzC3VbMl/n8aWcpISziI97WJ0+q7tJyTi5EDhd+TvX47JL5whqdcT7B9z4gvbQbOlli37F9DYXMHfH/8Xjz72x97sh5p40tDwErqN4xUVFfHmm2+yePFitmxxDawM9I8gNCCZyNBU/Azh+PtEHvdXscNpx2ypoqG5FLO1jIqafBqaXTNSxMUlMmXKzUyZcgtZWW3Oo6rhpTQ3N/OXv/yFZ555hvCQBIakXY9Rdf50EZV1eWwrWIxSOgYOuIGIiK7pjH4samr3k7PzPRx2C9mpE4kO7ZipTOwOCzsOfER57W4uOP9SFi56l9DQtmar6fFo4klDw0vwuOOtW7eO5557joULF+J0OgkLSiYuYiARgRn4GU//H2yLtZ6qhn1U1OdSUbMPwUlmvwHcd/89TJkyhcBAbUFcb2b9+vXceuut5ObmkhJzBv0SLkR1cjdcEaGgbA17D31NYEAs2YNuxuQf0al1theLpZ5tO+bS0HCIjMQLSY06s0MiRSLCgfJ17C3+mqioWD77fCkjRozoAIu7FZp40tDwEjzieDabjYULF/Lss8+xYcN6fIwmEqOGkxQ5El9D5/3it9iaKKvdSUn1FuqaSjD5+TNlylTuf+BeBgzo/BSNRvfBYrHwj3/8gyeffBJ/vxAGpVxJsF9HD8D9JU6ng5wDSymp2U50VDYDMq9Fb+iYPkYdhcNhZVfuQsordhAfOYyBSZd12MSatY0H2VawCJvdzIwZf+eRPz/cm/omauJJQ8NL6FLHq6qqYvbs2bz44kuUlBwiwC+CtPgxRAVlYejCZS5EhLqmIoprNlFSuQOnOBh/3oX89W+Pcu655/bmPhkawLJly7j77rvJy8sjKXo4mYkXo6Pznz+7w8LW/A+oasgnLfVCUlLGd9tnTcTJ/oKvKTjwLZGh/RiSeh16Xcf0xbLazews/Jjy2t0MGTyCRYsXkJ6e3iFlexhNPGloeAld4ng5OTk8//zzvP32XCyWFiJD0kmNOZOwgDSPf3lYbU0UVW+isHw9VlsTAwdk85e//pnrr78eg0GbRaU3UVhYyIMPPsiiRYsICYpmQNKlBPuldkndFlsTm/bNp9FcRv/MicTF9YyUVVHxOvbs/ZiQoCSG9/nV4WVgThcR4VD1NnYXLUPphH/961888MB9Pd3nNPGkoeEldJrjOZ1OPv/8c5577jm++uor9HojCZFDSIwYRaBfVGdVe8o4nDZKqrdxoPwHmloqiY2J549//AN33HkHAQEBnjZP4zSorKzkiSeeYObMmTidQlrsOJIjz0R14Bpvx8NsqeHHvHew2BrIGngjkZE9K0VcXr6dnF3vE2CKZFjaTZh8fjGX7ynTYq1n18FPqKjLo296f+a89RpnnXVWh5XfxWjiSUPDS+hwx2tsbGTOnDm88PwL7M3bi79fCCkxZxATMgQfg39HV9fhiAgVdbsprFxHdX0hgQFB3HXXXTzw4P3ExHTM8G2NrqGmpoYXX3yRp59+msbGJhKjhpKRcC4G1XFf/iei3lzCprz5OHEyJHsqISGd36+qM6iuzmN7zjyMBn9GpN9CgF94h5UtIpTV7mJP8XJarHVcf92veOa//yE5ObnD6ugiNPGkoeEldJjj7d27l5dffpk33niDuro6woOT6BM3hjD/jA5dxb0rqW08SGHlOkqrczHoDUy89loeeuhBzjjjDE+bpnEcDh48yHPPPcfs2bNpbGwkLmIgmUkX4KML61I7qhr2s2XfAgxGE0OzpxEQ2LPFd319EVu3zUEpHcP73kywqWPbY3dYKShbRUHZWnQ6xe2338GMx/9KbGxsh9bTiWjiSUPDSzgtx3M4HHz22WfMnDmTZcuWodPpiQ0fSFrcGPyNPeYf3glpaqmiuHojRRVbsDssDM4exkN/eIAbbrgBX9/uNVLKW3E6nXzzzTe8+uqrLF68GKfTSXxENmnxZ+Gnj+xye0prcthe8CH+pkiGDJ6Gn1/vmNeoqamMzVvfwOm0Myx9MmEBiR1eR4u1jv3lqygq34zRaOS222/noYce7AmdyjXxpKHhJZyS4+Xl5TFv3jzeeustCgoKCPAPJSF8OEmRw9Drem//ILvDQknNNgorNtDUXElIcCi33HILt90+nWHDTn9dMI2TZ+/evSxYsIDXX3+dgoICTL4BxIYNJjX2TIy6rkvPHUlh+Xpyi74gJDiFwVlTMPp0/3T1ydDcXM2WrW9gtTYyJO0GIoPTOqUec0s1BRWrKK7cDji59JLLeOgPD3Leeeeh0+k6pc7TRBNPGhpeQrsdr6ysjMWLFzN37lzWrl2LUorIkDRSY0cRYkrvsam5U0FEqG7Ip6RmC6XVuTjFQUbfTH59x21ce+219O3b19Mm9lpEhJycHD788EMWLlzItm3bAIgKTSc5ZgShpr7odZ4ZsSUi5B36hv1lq4mMGMCgAb9Cb+i6KTi6Eoulni3b3sRsrmRwn+uICe28hX9brA0UV/9IYflGbHYzcbEJTL9tGtOm3UpGRkan1XsKaOJJQ8NLOKbjtX5JLV26lI8//pgffvgBESE0KI7YsCziwrMx6rTZuW32ZtfEmzXbqGk4CEBG30wm3XAdV199NSNGjOhNkwB6hKKiIr755hu++uorvvrqK0pKSgCIDE0lJnQAUSGZ+OiDO9UGu8OK2VKN3WEBBKPehJ9PCEbDT2ss7ir8hOKqLcTHjaJfxlXodL37c7fZzGzd9hb1DUUMSrmKhIghnVqfw2mjvDaX0trtVNTuA4TMfgO47vqJXHXVVYwaNcrTESlNPGn0PpRSDmA7rgfcAdwtIms6qa4ZwN+ADBHJc+97APgvMEpENh7n2vuB2SJiPtY57vNWAA8dr6x2cNjxnE4nOTk5fPfdd3z33Xd8//33h7+kwkMSiQzuR0xof/wMEVp66hiYLTVUNeylvHY31Q0HEHESGBDEuHHjuODC8zn33HMZPHgwPj69MxpxuogIZWVlbNu2jQ0bNrBhwwbWr19/+Dk0+QURGpBCTFhfQv374GPovLSc0+mgsn4vFXV7qWrYT4u1ts3z/HxDCQtIoam5gvrmQ6SmjKdP6oVe4yN2u4XtO+ZRU7uPzKRLSIka3SX1tljrKa/bSUXdHqobChFxEhwcwrhx4xg//jzGjRvH0KFDu9rXNPGk0ftQSjWKSKB7+xLgzyJybifVNQO4FnhfRP7p3rcaCAVuPYF4KgBGikjlCepYwWmKp//973+yZcsWtmzZwvZt22kyNwEQYAolxD+J6LB0Qv3T8DFoEaaTxWo3U9Wwj4bmIipq82lqqQLAYDDQP3MAI0eNYPjw4WRmZtK3b1+Sk5N7+gSB7cJms3Ho0CEKCws5ePAghYWF7N69m127drFrVy719XWHzw0OjCbQN5aIkCRC/JMxGSM7XZRY7WYOlK+juHIzVnsTeoMvoZEZBIYkYAqIxOjrD0phszTR0lRFQ+1BaivzcNgtGIz+JCWeTWL8aIzGjplMsifgdNrJ2fkeFZU7SYs7l/TYc7pUPNrszVTW51HXXEhl7X7MlmoA9HoDmf0yGTFyOEOGDKF///6kpaWRmpqKydQpn48mnjR6H0eJp0nAzSJyjVIqEFgChAFG4DERWaKUCgDeBxIBPfAPEVmglBqBK4IUCFQC00Sk5Ki6ZgA6YIKIjFJKpQEvAf64BY9S6mLgccAX2AdMB24DngZ2A5UiMl4p9TIwCjABC0Xkb+46VgAPAZuB14GRuCJJb4jIs+28J+JjNBHkH0OQKYbw4EQCfRPwNYR4zS/nrqLF2kBd00HMtjJqG0qoayrBam86fFyvN5CcnEyfPn2Ii4slNvanV2RkJMHBwQQHBxMUFHT43RNiS0Qwm800NTUdfjU2Nv5su7q6mqqqKiorK3/2XnKohNKyUo7+f+/vF4y/byT+vhGEBsUQ4BuJnyH6cEqsK3A4bRSUraGgbC0Op43wmP7EpZxJaHS/E6bfnA47NRV7OLR/NbUVezEYTfRJuYCE+NG9PnXXitPpIHf3YkrLNpMcPZrMhIs99j/EYmugtukgZms5dY0l1DWVYrE1/OycmOhYUlJTiI+PIzY2lpiYGGJiYoiKiiIkJOSwn7X6WmBgYHvS75p40uh9HJG28wPigPNF5EellAHwF5F6pVQksA7IwBU5ulRE7nBfHwKYgZXA1SJSoZT6FXCJiNx2VF0zgEZgLPBX4GqgCJdAeggoABbjEldNSqk/Ar4i8vejI09KqXARqVau6ZC/Bu4VkW1HiCcBnhSRi9znh4pI2zmGozgn6z7x89GEkicQESy2RsyWapqt1TRbatzb9VhtjVjsTTidtuOWodcZ0OsN6HR69DoDOp0BvV5/+G+ldG1+tof3SWveVhBx4nA6cLpfDqf98PbhlzhxOh3tbqNR74fR4I/RYMKoN+FjDMDkE4KfTwh+xmB8jcH4+QRj0Ht2uoeq+nx2Fn5Ks7WGiNgsUjIvJiDk1KbaaKw7xP6cT6itzCMgMI6B/ScRFNh7pu04HiJO9uZ9RlHxGuIjhjIw+Qp0qnuMirPazS7/stTQYq3FbKmh2VqLxdaE1d6Ezd7MicbP/ORjrpdBZ0CnN2DQG9HrDAxOnqJf9uPjzq5pkYveH6vW6A40i8hQAKXUGOBtpVQWrl8L/1ZKnQM4gQQgBpfQelop9X/AJyLyvfv8LGC5+wtID5T8sqrDvAfcCFwCXIBLPAGcCQwEVrvL8QHWHqOMG5RSd+Lykzj3dduOOJ4PpCmlXgQ+Bb5s3+0Ak69r7hlNPHU9SilMvsGYfIOB1COOCCIuceVwWrHYGrHZzdidVuwOCw6H5adtpxWRn0SNa9v1Eodrf3sQBIURvdJjUDp0Br1beOnRud+VUuiUHqX06HVG9Hof17vup3fXl4gPBr0Jo8H0sy9O1yPWvZ4zh9PO7oNfcLDyR0z+kWQPv5PQ6NMbKRkYEk/WmDuoKs2GX9VvAAAgAElEQVQhb+tiNm6aSVqfi0hOPBvVTYREZ6GUjoy+l2M0+LH/wDfYHS0M6XMdOg+NfjwSX2MAvsYAwgKTfra/NXDjFCc2exNWmxm70+L2NevhbbvDglPsLv9yOpAjtp0OOza7A+AfwKNd2S7P31kNr0JE1rqjTFHAZe73ESJic0d+/ERkjztFdxnwhFLqS+BDIEdExrSzqo+Bp4CN7shW634FLBeRyce7WCnVB1d0aZSI1Cil5uCKnB3Zlhql1BBcAu0u4AZc6b8TsnjFI7S0WNvZFA2N3kN+/j5u+/WtHKzcTnLGuST1uxid3tghZSuliIzLIjg8lbyti9m37wvq6g8yMPN6DIbePamqUoo+fS7EYDSxN+9Tag3f8sGCDwgM7P39Jm+69JnHu7pOTTxpdClKqf64okZVQAhQ7hZO44EU9znxQLWIzFNKNQLTgCeBKKXUGLcAMwL9RCSnrXpEpNmdkttz1KF1wEylVF8RyVNK+QOJIrIHaACCcPWnCgaagDqlVAwwAVhxVFsiAauILFJK7QPmtPc+BAT5ERDUdf1KNDS6A5999hmTJ0/GanUw9KxfExTRr1Pq8fENZMCoKRzKX0X+zk/ZaH6ZwVlT8DdFdEp93YmkxLMw6P3YsGExV1x5Od99/w1hYV27PE5Xs+zHx7v8l6gmnjS6ApNSaot7W+Ea9eZQSr0DfKyU2ghsAXLd52QDTymlnIAN+K2IWJVS1wMvuPtAGYDngDbFE4CIvNfGvgql1DTgXaVU60/Rx3CJrNnA50qpEneH8c3u8vOB1W1UkQC8qX7KCTzSrruhoeGFzJo1i3vuuYfgsESGjZ2CwSekU+tTSpGQPo6AkDh2bZjHj5v/x5DsWwkOSujUersDcXEj0Bt8ydm5gOHDzmDtuu970jp1PQKtw7iGhmfocY5ntVqpqqqipqYGp9OJwWDA19eX2NjYzhp+rNELcDgcPPzww/z3v/8lKn4Q/Ybd1GFpuvZibihnx7rXsFvNZGXdQkSYd8xEX12dx/acuYSHR7F69YruNit4R6KNttPQ8BK6reOJCHv37uW7775jw4YN7Ny5k127dlFVVXXMa4KDQ0hJSWXEiGEMGzaMsWPHMmzYMG2Gby/H4XAwffp05s6dS1LfcaQMuNxjnbctzXXsWPc6zU0VZA26maiIzlvWpDtRV1fIth1vo9crFi78gMsvn+BpkzoDTTxpaHgJ3crxmpubWb58OYsWLeKLL5ZRXl4GgK9vACZTFEGB0fj7h2M0+mPQ+yEonE4nInZstkYsljoaGyupqy/GZnPNoRQUFMz48eczceLVXHPNNYSG9o7V7TXax5HCKX3QBOLTx3vaJGxWMzvWvkZTfQlZWd4joJqbq9meM4+mpjIef/xfPPbYn3rbSF9NPGloeAkedzwRYc2aNcyaNYslS5bQ1NSEr28AYWEZREX2JSAgGZPfyS0JIyJYrQ3U1ObT0LCf8oo9WCx1GAxGzj//QqZPn8rEiRPx9e3dI5+8ne4onFqx25rZvuZVrxNQdruF3N2LKK/YwRVXXMt7771NQECAp83qKDTxpKHhJXjM8VpaWliwYAHPP/88mzdvxtfXn6jILOLiBhPgn9KhMzOLCPUNRVRWbae0dDsWSx3BwaFMnz6du+76bW/ug+G1OBwOpk2bxrx580jPuoz4tPM8bdIvOFJAZWffQmR4pqdN6hJEnBQcWMH+gq+Jj0/mk08+ZNiwYZ42qyPQxJOGhpfQ5Y5XXFzMK6+8wssvv0JVVSWBgTGkpp5NRFg2en3nL+Ip4qSmZh+lZRspK89BxMnYseP485//yIQJEzy9KrtGB9AThFMrLgE1G3NDGUOGTCcspI+nTeoyqmv2sSv3A+z2Zp588kl+//sHenoaTxNPGhpeQpc4noiwbt06XnjhBRYuXIjd7iA6agBJSWcRHJTquTWwLPWUlm2iqPgHLJY6kpP78Kc//YFbb70Vf39/j9ikcXo4HA5uvfVW3nnnnW4vnFqxWZrYunoW1pZ6hg25g+CgeE+b1GVYrY3k7llMZWUuY8acw7vvvk1KSoqnzTpVNPGkoeEldKrjWSwW3n//fV544QU2btyI0WgiMWEUcbFn4OcX3plVnxROp4Pyiu0UFa+mvr6YoKAQ7rrrLu677x5tXpoeRE8UTq1YmmvZumoWToeN4UP/HwH+kZ42qcsQEYoPrWNf/jL0eh1PPPEE999/b0+MAmviSUPDS+gUxyspKTmcmquoKCcwMJrU5LMIDx/crZenEBFq6wo4dGgNZeU7MRgM3HDDr/jjH//A4MGDPW2exnFwOBxMnTqV+fPn9zjh1Iq5sYJtq2ah0xkZPvROTH7eNTK0uaWGvXuXUFm1h6ysobz22iuMHj3a02adDJp40tDwEjrM8VpTcy+99BLvv/8+DoeDyMj+pCafTWCg51Jzp4rZXEnxobUUH9qI02lj9Oix/OEPD3L11VdjMGiLInQn7HY7t956K/Pnz6dv9uXE9TnX0yadMo11xWxb/Qo+vsEMH3IHvj69f024IxERSss2sy//C6zWRiZOvJ7nnnuG5ORkT5vWHjTxpKHhJZy24zU1NTF//nxmzZrFli1b8PU1ERszgqTEMfj49Py1rGw2M6VlP1JUtI7mlhpiouO49757uPPOO4iM9J7USnflZ8Ip63Li0nqucGqlrmo/O9a+in9gDMMH347B4H3rT9rtFgoPfkfhwe/R63VMn347f/nLn0lMTPS0acdDE08aGl7CKTmeiLB161befPNN5syZQ319PWGhCSTEjyYiIhu9vvum5k4VESeVVbkcKvmBqqq9GI0+XHXV1dx556+54IILtFnMPYDdbmfq1Km8++67vUY4tVJdtoud698iODSVoVm3ou/ipWS6Cy0ttRwo/IZDJZvQ6XTccstUHn749wwcONDTprWFJp40NLyEk3K8oqIi5s+fz9y5c9mxYwd6vYGY6GxSksfi5xff41Jzp0pjUxmlpRs4VLIZu72ZqKgYpk+fxtSpUxg4cKDX3AdP0puFUyvlRZvYvek9IqIGkD3gpg6d+6yn0dxSQ3HxKoqKN+B02hk9eiwPPHAvEydOxMen86c4aSeaeNLQ8BKO63giQm5uLkuXLmXp0qWsXbsWESEiPJXY2GFERAzCoPfeIf1Op53Kyl2UV2yhonI3Ik5SUvowadJ1XHvttYwePbonjhjq9tjtdm655RYWLFhAn4ETSOzbfWYO72gO7V/Nvu1LiIkbzsB+13psTb7ugtXaSFn5JoqK19PcXE1QYDATr72Wm2+ezPjx4zEaPRqh08SThoaX8AvHKy0tZeXKlaxcuZLly5eTl5cHQFhYEpERA4iJHoqPj3eNAmoPFksDVdW7qKzaSVVVHiJOQkPDGD9+PBdddCHjx48nMzNTi0qdIhUVFWzYsIF169bx6quvUlpaSnL/i0npd6GnTet0DuxeTuHu5SQmnUVG2mXaM4QrjV5dk0dl5XZKy3bgcFgICgrmwgsv5NJLL+Giiy6iT58un3BUE08djVIqFngOGAVYgALgfiAeeEhEruiEOteIyNhTuG4G0CgiT3e0TW3UdR7Hab9S6nngeiBJRJzufdOAkSJy95G2KqX+DnwnIl+1s+5U4BMRyWrP/hOUddim9l5zxLV/FpF/H+f4Z8BNIlJ7smWfiLq6OtmyZQubN29m8+bNrFu3jj179gBgNPoRGpJKbMxAQkP7YTQGd3T1vRabrZnqmt3U1e2jsjKPFksdAOHhEYwcOZJRo0YyYsQIhgwZQkpKitZfyo3dbqe0tJR9+/aRm5t7+JWTs5ODBwt/dm7qgAkkZfTeiNORiAj5O5ZyaP9q+qRdRJ9k72h3e3E4bFTX7KWmJpeKyj1YLPUAxMUlMGbMmYwefQZnnHEG2dnZREREdKYpXS6eevW4X+X6mfAh8JaI3OjeNxSI6cx6T0U4dSeUKz49ETgInAOsON75IvLXLjCrM/gz8Avx5H5ulIhc1lkVh4b+FEHyN4UQEBBP/8wrCAvtg69vtFf3sTgdjEYTMdFDiYkeSkZfobm5mrr6fBoai1izZivLly/H/VsAo9FISkoq/ftnkpGRQWJiInFxcYdfMTExBAcH96j0n4jQ0tJCc3Mzzc3N1NfXU1NTQ01NDdXV1Yffq6qqOHToEEVFRRQVFVFaWorT6TxcjsHgQ2BgNH6+EWT2G0RZ+U5qaw+QNuhKEtLHebCFXYtSirSsK7FbzezPX47RYCIx/kxPm9Vt0OuNREUOJCpyIBl9BbO5gtq6fOobDvD559+yePGiw+eGhYXTv39/Bg4cQFpaGgkJCSQmJpKYmEhCQgIBAQE9KrLXq8UTMB6wicgrrTtEZAscjrwEKqUWAlnAj8AtIiJKqRHAf4FAoBKYJiIlSqkVwGZgBBAFTAUeAbKBBSLymLvsRhEJdG8/DEwBnMDnIvInpdQdwJ2AD5AHTBER85GGK6XuBX4D2IGdreLviOOpwFygdVnsu0VkjbtdM9x2H92uS3FF4SqBTSe4bzuABcBkTiCelFJzcEWMFh7n3o0A3gDMwKrjlecucxpwFeAPpAMfisjD7mPTcd33EmAProjiz+xw/90oIoFKqTh3W4JxPfO/BS4HTEqpLUAO8CjwOfAtMAa4Rim1EldUq1IpdQtwL67P7Afgd25TXwdG4krDvSEiz56obQB90y8hNCQRP79ofHyC2nOJxkmilMLfPwJ//wjiGAW4fik3NZVibi7HYqmmoaGCFd9u4LPPluF02tosJyAgkODgYEJCQggNDSEoKAgfH5+fvYxG4+HtkxFbDocDu91++HX038fab7PZaG5uxmxuxmw209LSTHNzCy0tze2q12g04ecXjI8xGF/fONL6DMRkCsXXJxQfn3B8fYNRSofDYWNHznxqaw+Qnn0N8X169O/CU0IpHRnDbsBub2HPno8xGEzERg/xtFndDqUUAQHRBAREk4BLYFqtTTQ0FGOxVmI2V7Br1yF+/HEbVmvjL643Gn0IDQ0lLCyMiIhwwsPDCQ0NxWQy/eLl5+eHyWTC19cXHx8fJk+e3NXN7fXiqVU8HIthwCDgELAaOEsp9QPwInC1iFQopX4F/Au4zX2NVUTOUUrdByzBJaSqgX1KqWdFpKq1cKXUBOAaYLSImJVSretiLBaRV93n/BO43V3nkfwJ6CMiFqVUWx1dyoGLRKRFKZUBvIvrS/xY7doIvAqcj0uwLTjOfZnsLm8J8G+llFFE2v5mOQKllJFj37s3gXtEZKVS6qkTleVmqLstFmC3UupFXGLycVz3vQ6X2Nl8gnJuApaJyL+UUnrAX0S+V0rdLSJD3banApnAdBH5nXtfa7sGAL8CzhIRm1JqFnAzLtGV0JpmPMbn1CbJST1vhJLdbqGlpQaLpR4RBygdvj6B+PmFYzSaPG1eu9DrjQQHJxEcnPSz/SKC3d6C1VqPxdqA1dqI1dqI3d6Cw2HBbm+hqrKFsrJKHI5ixOnEKQ7EaXe/Ow6/y0kMpFRKd/wXbe1XKKVHpzOg0/uj14XgbzISFGh07dMZ0euN7ncfjAZ/jEYTBkPry69dkU273cL2nHeoqcmj7+BriUv13oiLTqen/8hb2LH2NXbt+gCDwY/I8EzA9ew0N1dRX3+QhsYSmpsrsVgbsTtaUCh0OgM+PkGY/EIJDIwnOCiRwMBYr+iA7uMTQEREP6Dfz/Y7HDYslnos1jrXu6Uem82M3d5MTU0zFeXl2OwHsNubcTrtOB0217vY26zntdkFV3z97SOfdEGTDtPbxdOJWC8iRQDuCEQqUItLdC13f3nqcUU4Wlnqft8O5IhIifv6fCAJqDri3AuBN1ujSiJS7d6f5RZNobgiNMvasG0b8I5S6iPgozaOG4GX3GlIBz9/OttqVyOwX0T2uvfPwxX9+hlKKR/gMuABEWlwi8mLgU/bsOFoMmnj3imlQoBQEVnpPm8uMKEd5X0tInVuu3YCKUAksEJEKtz7F3C0Z/6SDcAbbnH3UWv0sQ0OiMi6NvZfgEusbXC3y4RLvH4MpLlF3afAl+1oEwBx8aFYrfauT9SfBE5xUlmRR1HxVsor8qivLznmuf4BEURH9SUhLpvY2AE9dG6cIFwB5eMjAk4RxCmICE4RENeXaGsX0vb0JT0yReHaVLTu+km4u7fd78p9rLOzGy2WBr5f9Sa1tUX0G3oDMckjT3xRL0evNzJo9DS2r5nN9h3vMCT7GpqaKjlUsoOmpkoAdHoDfkFRGAKDMBldfXycDhstzfXUVR7EcWg9AL5+wcTHDSIleSRRkX17VLqq4zj2RL4CiFNwOAWnw4nT6fIzp8OB3W7DbrficNhwOO3gSsO3L+TagfR28ZSDq9PzsbAcse3AdT8ULlE05gTXOI+63skv76ei7SHpc4BrRGSrOz11XhvnXI6rv9FVwF+UUoNEfia7HwDKgCGADmg5Qbs4hi1HcykQAmx3O7Q/rlRbe8RTm/fOHZE5lZEJJ9sOO6570dpvyQdARL5TSp2D657OVUo9JSJvt3F90zHKVbj6zT3yiwNKDQEuAe4CbuCnCOVxmffOb9tzmkeorq7mlVdeYebMmRw6dAiD0ZfgsBTSk4fgHxiNTh+I0usRpxNrSz02Sw311QcoKt5GQcEPBAYGM23aNB5++CGSkpJOXKFGt6KgoICLL76YxsZSBo+dTnBEpqdN6jbo9T7EJI9k/87P2LJ1ITq9gZDYDBKGjscvLBXf4CjUMaJ6IoKlsZrG8nwaSndTWLSJ/fvXkpyazu8fvI8777gDPz/vm9G8g/i6qyvs7eLpG1xppzuOSJONwiUIjsVuIEopNUZE1rqjFf1EJOcU6v8S+KtSan5r2s4dfQrCFZEx4kr/FB95kbvDdpKIfKuUWoUr7RSIKyrWSghQJCJOpdStuKI8xyMX6KOUSheRfbhSc20xGfi1iLzrtiUA2K+Uas+kQse8d0qpOqXU2SKyyt3mU+UH4HmlVARQD0wCtrqPFeCKEL0PXI0rOodSKgUoFpFX3e0ZDrwN2NqZkvwaWOJOy5a7069BuMSWVUQWKaX24RLFPZba2lr+/e9/M3PmTMxmMxGx/Rky5iICwjLQG44/GV5cHxCng5rKPCqLNzFz5kvMmjWT6yf9imee/r/uvrSDhputW7cyYcIEamrrGXr2/8MvSBO/4Hq2y4o2cXDPN7SYqzCFxBCZfgaRaSMx+rVvDTylFH5BEfgFRRCZPopku5XqA1uozFvHfffey4zH/8FfHv0zd931u+40+aTGMejV4sndSXoi8JxS6k+4ojMFuKYqSDjGNVal1PXAC+50kwFXJ+uTFk8i8oU7rbZRKWUFPsM1wusvuETAAVzpv6N7DOuBee76FfBsG8PlZwGLlFKTcPX7OVbUpNWWFqXUncCnSqlKXJ22j54qwB9XFOX/HXFdk1vAXdmO9h7v3k3HlToz03aasl24O5/PANbiSqdu4ifh+CoukbMel+BpvSfnAX9QStlwpS+nuvfPBrYppTbh6jB+rDp3KqUeA750C1sbrkhTM/Cm+qnzwi8iUz0Bu93OrFmzePzxx6mpqSEmaRjZ/c7Hxz/6pMpROj3h0ZmER2eSnHkpJftXsfCD9/lw8SLuvfc+Zsz4C4GB3rXYak9iyZIl3HzzzaDzZei432H0O3EK0xuordzHvu1LMDeU4h+WQMao6YQmDjrtVJve4ENU+hlEpZ9BfWkeJTu+5MEHH+C/z73Aa6++wiUXX9xBLdDoDHr9PE8aGt2UbuF4O3bsYNq0afz4449ExPSjb/aV+Ph33EweLeYaCnO/oKxoMxGRMbzx+myuuuqqDitf4/QREf7zn//wyCOPEBaZwoBRU9EZNJFrtTSSv2MJFcVb8Q0II2n4VYQlZ3dq/6Taop0U/riEloZKLrnsSubOeZ2oKE3EtgNtkkwNDS/Bo45nt9t56qmnmDFjBjq9L/2GXktwZOetDVdfXUDetsU01Zdy2eXXMOfN2dqXQjegqamJ3/zmN8ybN4+45OH0HXI9qF6dkGgXlYe2s3fbYhx2C/GDzidu4Hh0xq5JpTkdNkpyVnBox3ICAoN4843Xuf66a7uk7h6MJp40NLwEjznezp07mTZtGhs2bCA6YQjpg6/BYAw48YWnidNp5+Debzm45xv8/QOYNeslpky5xUtHGnmenJwcJk2aRG5uLn0GXkp82nle/1nYrGb2bV9CRfFm/MMTSRtzI/5hcR6xxVxTwv6179JUXcx1N9zE22++ir+/965neQI08aSh4SV0ueM5HA6eeeYZ/vrXv4Iy0m/otYRGt3slnA6jqb6UvK0Lqa8p5MKLJjD37TeIjY3tcju8FRFhzpw53HXXXej0vmQOn0xAaJevRdbtaKg9yK6N87A21xGffSFxWRd6fKZ/p8NO8bZllOR8S3Kfvny17FMyMjI8alM3RRNPGhpeQpc6Xm5uLtOnT2fdunVEJ2STnj0Rg4/n+rWI00Fx/vccyP0Sk8mfl1+eyS233Oz1kY/OpqysjN/97ncsXryYyNh+9B8xGaXv/Khjd0ZEKD2wjn07lmL0C6LvuCkERqV62qyfUXsol/zV76BT8Pbbb/OrSdd52qTuhiaeNDS8hC5xPIfDwXPPPcejjz4KykDGkImERndup9eTwdxQTt7WD6irPsBFF0/grTmvExfnmTRJb0ZEWLBgAXfffTd1dfWk9r+Y2D7jvGKW6+PhsFvZu3URFcWbCYnvT9rYye2eeqCrsTRWs+/7t2msOsj9v/8j/33qiW7jx90ATTxpaHgJne54u3bt4rbbbnNHm7LoO/ha9Mbu98Ug4uRQ/ioKdn2Byd+fmS+9yNSpU7Qvhg4iNzeX+++/n2XLlhEelUrm8Bsw+EZ62iyP02KuIWf9HMz1pSQMvoT47Au6vZh0OmwUrF9E5b4NXHTplSz98H1tYk0XmnjS0PASOs3xjhxJpzf4kp51JaExQ7q9GDE3lpO3dSF1VQVceNElvDXnDeLj4z1tVo+ltraWf/7znzz//PMYDL4kZ15IdNKZx5wB25uorz7AzvVv4RQ76WdPITShv6dNajciQsnObyna/Cl9+2fz/bdfan0GNfGkoeE1dIrjbd68mV//+tds2rSJmKQhZAyeiNL3nBE6Ik5K9q9m/87PMZlMvPji80ybNq3bC7/uRH19Pc8//zzPPPMM9fX1xKeeQZ8BE1CGnvMcdCblRZvYs2UhPv4h9DvvdkyhHTevWVdSXbiN/NXzCQoJY8U3yxk6ZLCnTfIkmnjS0PASOtTxKisreeyxx5g9ezZ+piAyhkwkJGpQR1bRpTQ3VpC3bSG1lfs597wLeP21/5Genu5ps7o1paWlvPzyy7z00ktUV1cTnZBN2sCLMZp6pjjoaET+P3vnHR9Vlf7/95mWmfTeAyGhN6lSxAgWbBSxrLqKIpbdda27ut9d3VXX39bvuu7a1oJiw7KCIkVFkCJGeu8hgRQS0nuZTLvP748Z+CISSCCV3PfrdV/3zrn3nPPcm3lyP3PKczRyDyznSOYqgqJT6J12Z6cd39Rc6suPkLlmLoiHJUsWMfnyyzrapI5CF086Ot2EVnE8h8PB66+/ztNPP01NTS0JqePp0fcKDMauPw7C2wq1juz9y1Bo3HPvffz5T88SERHR0aZ1GkSEzZs38/LLL/Pxxx/jdruJjBtIr4GT8fPXB94fw+N2krH9Y8oL9xCVOoaeF16PwXh+BAN11FVwcPWbOOrKeXPu29x1x+0dbVJHoIsnHZ1uwjk5ntPpZO7cufz5z38mPz+fyNi+9Bl6HSbr+TcQ2NFYTf7BlRzN2YjN5s9DDz3Er3/9aLeOUJ6Tk8O8efOYN28eGRkZWCxWopNGk9RnAiZLWEeb16lw2KvYu+ld6quP0mPEVGIGpJ133cBuRwOZa+ZSW5rDM3/6K08/+T8dbVJ7o4snHZ1uwlk5XmlpKW+++Sb/+c9/yM/PJzw6hV4DJmML7nXevRBOpr62mCMHl1NasAeLxcKds2bx6CMPM2DAgI42rc3xeDxs3ryZpUuX8sUXX7Bjxw4AImJ6E5M0ktDogRhNtg62svNRW5XPvo1v4/E4SZ1wG6GJXbcr+0xobheHvp9H5ZE9zL7vfua8+hIGQ+eePdiK6OJJR6eb0GzHc7lcrFy5kg8++IBPPvkEp9NJZGw/evSdiH9Iynkvmk6mobaEwuy1FOZuRcTD8BGjuP8XP+P6668nPDy8o81rFRwOB1u3biU9PZ3vv/+e9PR0KioqMBgMhEamEBHTn4i4oZitoR1taqel7OhuMrZ/jMkvkL4TZ+Mffv7P3BRNI3fLQkoOrmPyNdNZsvATLJb2WZOvg9HFU3dAKeUBdp+QdJ2I5LSwjFnAchE52oqmtQtKqWRgqYgMPlO6UuoZoE5EnmuFenOAUSJSdq5ltQKndbzKykpWr17NsmXL+OyzzygvL8fiZyMqYQQ9ek/AZNXH/Tgbaykr2E5R3mbqa4sxGIyMGTuOG2+YwWWXXcbgwYMxGjv3tHy3201+fj4HDx5k165dx7d9+/bhcrkACAqJISCkB9EJ/QkITcVk1mfNnQ4RIT9rDTn7vyIgoid9L5mF2T+4o81qN0SEwr0ryd/xFReMHMt3q5cTFBTU0Wa1Nbp46g4opepE5JymeSil1gCPiciW1rHqtHWZRMTdiuUlcx6KpxY+p+OO53A4OHDgAFu3bmXr1q1s2rSJbdu2oWkaZouV8JgBxPcciX9IynkzyLU1ERHqqo5QVXqAsqN7qaspBCAgIJAxY8dy4ehRDBw4kAEDBtCvX792e5E4nU5KSkooKiqiqKiI4uJiioqKyM/P5/Dhwxw+fJicnBzc7v/7yvgHhGELjCEoNJ7QyGSsQYmYO3AZna6GprnJ2vkZxUe2EN5zGCljb8Zg7hYtLz+i9NAmsjfMp0dyb9anrz7fY6bp4qk7cCrxpChXif4AACAASURBVJQaBrwG+AOHgNkiUnmqdOAy4B2gALADDwMPi8j1SqnpwMdACGAA9olIilIqFXgFiAIagHtF5IBSairwe8AClAO3iUixT7TEA8lAmYj89ARbA4FFQBhgBn4vIot84ucrIB0Y77NvuojYlVIjgbm+utOBq1sqns7iHiKAj3zXbwKuAkaKSJlS6g/AbcARoAzYepZ1NPmcTsc999wjhw4dIivrEAUF+RzzQ7PFSmBIAmFRqYTH9MUvIKHDFyftajQ2VFJTkU1DTR4Vpdk01JYgmuf4+YCAQOLj40lMTCA6OpqgoCCCg4MJCgoiMDAQo9GIwWD4wd7lcuFwOH602e12qqurf7BVVVdTU11NbW3tKe3zswZi9Q/HYgsnMDiSgMBIzLYw/PyjMVu69zpz54LLWc/+ze9TXX6Y+CFXkDD0ym7XpX0yVUcPkLX2Xfz9A3nphecZPnwY/v7+BAQE4O/vj7+/P2az+Xx4Trp46g6c1G2XLSIzlFK7gAdF5Ful1LNAsIg8cpr0NfhanpRSJiBTRHoppZ4DLgEeAUzAz0XkVqXUSt9xplJqDPBXEblUKRUGVImIKKXuAQaIyK99omAqMEFE7CfZbwL8RaRGKRUJbAD6AD2BLLytOzuUUp8Ai0Vk3kn38Q+aFk/7gYwTkmOB53zCpqX38CJeQfOsUupaYCleUZQMvAmM8z2jbcDrZ1lHk8/pdPhZg8TqH4E1IAJbQAT+QVH4B8djC4js9EtEdDU0zUNjfTkNtcU0NpTjbKzBYa/G0ViN29mAx+PE42rE43E2u0xlMGIwmDAYzZhMVoxmK0aTFZPJisns2yz+WKxBWCxBmP0CMfsFYfEL0lsP24CGulL2bnwbh72SXmNvJjJlZEeb1GmoLz9Cxuq30FyNaOIBTfvBeaUMGE0WjAYjymBAGQwYDN4fDkoZjx8bDEavyPIJLXVMrxzfHTtQJ5V/7LM66bQ66fzZkzp8tmHtosfbVczoXtwx2EVk2LEPSqkQIFREvvUlvQvMbyr95MJExK2UylJKDQAuBJ4H0gAj8J2vpWi8r8xj2fx8+0Tgv0qpOLytKtknFL24CUGggL8opdIADUgAjkXiyxaRHb7jrUDyKe7jfeDqJp7NoZOezTO+/dncQxpwve8ZfaGUqvSlTwAWHbs3pdSSc6jjdM+pScZc+VRLLtc5BwwGI/5B0fgHRZ/2OhHNK6BEvC2BIohogIAyeMWSwYQ69hLR6RSUF+0jY9vHKKOR/pf/gqDoXh1tUqciICKJQVc/zMFVc7DXlBKbPI7A4Dg0jxOPx4Xm20Q03+ZBNA0R8R770jXRQDTwuoaPk/SK78T/pcoJOzn++cfnz1n3/Ab4+7kW0hJ08XT+8B1eQeICvsHbrWcEHsPbfVd1oig5gZeA50VksVJqIvDMCefqm6jrNrwtOCNFxOUbS3QsKqPjhOs8gA2v2DpX7zjbezhVvU29+Vr7OTXJ2kWPtzSLjo7OCWiaxp/+9CeefvodQmN60jttFga/jh0YrnncOBuqcNZXobmdaJrb2zrpF4DZFoTFP7RDhLdfQBgDrnyQQ9+9R1HOeh54+Ne8+K9/nE8/AtpVOIEunjoFIlKtlKpUSl0sIt8BM4Fvm0r3ZasFThz5uhZ4D3hPREp9431igb2+rqZspdRNIjJfeT1mqIjsxDs2qsBXxp3NNDkEKPEJp0l4u+tOd39VSqlqpdQEEUnHK75ahK+LsKX3sNZX15+UUlfjHaMF3jFXryul/orXB64F5pxlHTo6Ou1MTU0Nd9xxB4sWLSK2z4X0GH09GMztbofb0UBVwT5qSw5TW5pDY03JaVtRjGYrtrB4gqJTCI3vR2Bkz3ZbqNlksdFn0j3kbvqUl1/4J5lZWXy+4GOs1q6/GkFHoIunzsOdwGtKKX/gMHDXGdLf8aXb8Y7d2Yi362yt7/wuvALnmCffBryqlPo93kHeHwM78bagzFdKFeAdu9ScNu8PgCVKqS3ADuBAM/LcBcxVSjUAXzfj+lPR0nv4I/CRUmobXtGZByAim5VSi315c4EtQPVZ1qGjo9OO7N27lxtuuIHMzCxSxt5AROq4H42zaUs0j5vKvF2UHt5MbVEWIhpGi42AmJ6Epg7FEhyOJTAcg9mCMpoQjwt3YwOuukrs5YU0lBVQuHclhXu+wWQNJKLXSKJSR+Mf2vbL6RgMRpLH3IRfYARff7GIocNHs/qbZSQkJLR53ecb+oBxnW6JUipQROp8onQtcJ+IbGtHE3TH09FpASLCnDlzeOSRR8BooU/aHVjDk9utfldjHcUHvqMkawPuxjosQeGEpl5AaK+h+EcntWiih9vRQG3+QSozt1Odtxc0jeD4fsQPuoyg6PYJfFuRt4vD6z7C3z+AJYs+Y+LEiW1eZxuiz7bT0WkPlFIfAgPxjtV6V0T+2s4mdBnHc7vdFBUVUVhYSFFREY2NjcdjE4WEhBAaGkpMTAw9e/bEZNIbs3Van6qqKu677z7mz59PRNIAUsbfijK3T1gHt6OBov3fUnTgOzS3k+CeA4gaeBFBPfq1ysxYl72O8v0bKN29Fre9jsDoFHqMmEpgZI9WsP70NFQVcWjtOzTWVfC3v/+Dx3/9SFcdB6WLJx2dbkKndDxN09izZw+rVq1i27Zt7Nq1m/379+F0nnkav9FoIjEpiREjhnPR+PGMHTuWUaNG4efnd8a8OjpNkZ6ezsyZM8nLO0KPEdcQ1S+tXcJ5iOah+OA6CnZ9jcdpJzTlAmJHTsYW0Tbda5rbSfn+jRRt+wa3vZaIlJEkDbsWi39Im9R3DLfTTva6D6nM38c1U2fw0bx3CA7uchHZdfGko9NN6DSOV1NTw9KlS/n8889ZtWo15eXeAOzWwFCsIbEERSTgHxyFwS8QZQ7AYDIff3l5XA5vrKTGWtz1FTTUlFBTegRHXbm3DJuNiRMnMeO66VxzzTUkJiZ22H3qdC0aGhp48skneeGFFwgIiaT3hNuwhCa1S921JYfJ2fQZ9qpCghL7Ej92Kv6R7TMuyONspHjbN5TsXovBaCJpxDSiUi9s0xYhEY2ju1dSsPtromPiWfz5p4wZM6bN6msDdPGko9NN6FDHs9vtfPbZZ3zyySd8/fXXOBwObIGhBMb0JiKhP9aIZCwBYWcuqAlcjbXUleZSX5JJ+ZG9OOq8IbZGjxnH3XfdyU033XTeLOKr0/qkp6dz1113kZWVRdyACSQNuxaMbb/MisfZSN62xZRmbcQcEEri+OmEpAztkK4sR3UpeWs+oa7wEMFxfek15ib8AtvWZ2pLDnP4+w9x2Wv4w9PP8Icnf9fp14f0oYsnHZ1uQoc43oEDB3jjjTd4+513qKqsxBYUTljSECKTL8AvrGWDXpuLiNBYXUxV/h7Ksrdiry7BaDJx1VXX8NCDv+Tyyy/HYNCjqutAaWkpv/vd73jrrbcIDI0iZdzNWCPaZ2JrTVEWh9d/jLOhiuihlxA7cjJGS8dO4xfRKNu3nqMblqKUInnszUT0GNqmdbodDeRsmk9F7i4GXzCCTz6ax4ABA9q0zlZAF086Ot2EdnM8h8PBwoULef3111mzZg0Go4nwpMHE9b8Ia0Ryuy4HIyI0VBRQmbeNkqwtuB31xCUk8eAvf8Hdd99NdPTpo4DrnJ+43W5ee+01/vCHP1BTW0vcgDTiB09Gmdq+tUlzuziy4wuKD3yHX3AkPSbdQmBcSpvX2xIcNeXkfPM+DSV5RPUdR88R0zGY2i6ulYhQnr2VvK2LELeTJ578PX/4/ROYze0fS6uZ6OJJR6eb0OaOd+jQId544w3mzn2bsrJSbMGRxPYbR1iPkZhsQWcuoI05Fi+n7NBGqouyMBpNXDtlKo88/CATJ07sqrN+dFqAiLBkyRKefPJJ9uzZQ0RiP5IvvB6jf2S71G+vLiZr7XvYq4uIHHQR8WOu7fDWpqbQPG4KN31Jyc412MLi6J02C1tQ2z4nl72WvC0LKc/dSc9evXnzjVe5/PLL27TOs0QXTzo63YQ2cTyXy8WSJUt4/fXXWb58OcpgIDxxMHH9x2OLSu20iw7bq4spO7SR0qzNuJ0N9OiZwkMP3s+sWbOIiIjoaPN02oDVq1fzxBNPsGHDBoLCYkgafi0BcQPbTTSXZ28je+N8DCYzPS/9KcE9On3XFADVefvJXfkBIKRedDuh8f3bvM7KI3s4sm0xjbXlXHHlNbz6youkpqa2eb0tQBdPOjrdhFZ1vOzsbN566y3mzp1LYWEh/kHhRPUeQ0TqaEzWtp3q3JpobhcVeTspy9pATUk2ZrOF62+4gQcf+CXjx4/XW6O6OB6Ph0WLFvHcc8+xfv16AoLDiR8ymZCeIzC00zIlmsdF3pZFlGSuJyC2F8mXz8QSGNoudbcWjppyDi+bS2NlEYnDryVuQNu31GoeF0X713J0zzco0bh95h08+8en6dGj7eNRNQNdPOnodBPO2fGcTieLFy9mzpw5rFixAlCEJQ4gvv94bFF92m3NrLaiobKQisMbKc7ajMfVSO8+/XjowV8yc+ZMQkO71suuu1NZWcm8efN46aWXyMzMJDA0ipj+aYT3Go0ytt84msbacrK+e4+GinyiL5hE/IXXoLrGbLIf4XE5yFv9MVWHdxKePIxeY2/G2A5jxJwN1RTtXUlx5gYMSnHnrLt48onfkpLSoePEdPGko9NNOCvHExG2bdvGhx9+yLx58ygpKSEgOIKIlNFE9b4QYxdqZWouHreDypwdlGZtoLYsD4ufHzNm3MCdd9zO5Zdf3pkHsXZrNE1j7dq1vPnmmyxYsACHw0FIdE8SBl9KQOxAVDvPsKzI2032+o/BoOg58VZCeg1u1/rbAhGhZMcqjm78Elt4PH0uuQvrOYQYaQmO+kqK962iOHMjiMYVV17N/zz+ayZNmtQRLcS6eNLR6Sa0yPEOHDjARx99xEcffURmZiZGo4nQhAHEDxiPNaJ3u7+IOor68nzKD2+kNHs7Hqed4JBQfnLTTdx++21MmDChq8SkOW/xeDykp6fz6aef8tlnn1FQUICf1Z/w5BHE9RuHKSi23W3SNA/527+gaP+3+EclkXzFHfgFn1/j6Kpz95Gzch4Go5k+abMIikput7qdDdWUZa2n+OB6XI119ExO4Z677+L2228nObnd7NDFk45ON+G0jud0OklPT2fp0qUsXbqUzMxMlFKExvUhKmUEwfGDMFj828vWTofmcVN99ADVR3ZSlrfHu+ZYSBjXXH0V06ZN5corr9SDcLYTeXl5fPPNN8e30tJSTGYLIfH9ie41DP/YAe3SnXQMzeOmtuQwNcVZ1BYfpr4iH9HcKGXAZAvEHBCCLTKRoPhUgnsM6LSz61qKvaKIw8vewlVXRfKYm4hKHd2u9WseF+U5O6jI3kx10SEARo4ewy0/uZEpU6bQr1+/tmyR0sWTjk434QeO53Q62bp1K99++y1r164lPT2d2tpajCYTIbF9CE8aRHDCIEzWLrfmVJvjcTuoyt9HXVEG5Uf24XbUowwGBg8ewqWTJpKWlsaECRP0GFKtgN1uZ/v27WzZsoXNmzezYcMGsrKyALAFhBAQk0pM8gVYo/pgNLfvmoaNtWUUZ3xPefZW3I56UAaskbFYwqMx2QJQBhMeRwOu6grsJQVozkaU0URI8iCih04kIKZnu9rbFrgb68le/i51R7OIGXgJPYZN6ZBWaUddBZW52ynL2U5DZSEAST2SmTrlmuP+mJDQqsvd6OLpfEUpJcA8EZnp+2wCCoGNIjLlLMrLAUaJSNlJ6dOAgSLyt3O3un04zb3kALWAx5e0VkQeUkq9AywVkQUtrCcZGC8iHzZxPh54UURubEm5vrwtsmnjxo2yY8cOtm/fzo4dO9i1axd2ux2AoIh4/COTieoxCL/wXu3+EurKiKZRX36EuuIMqosOUVuai+ZxARCfkMiI4cMZPnwYQ4cOZciQISQnJ+sLF5+Ex+OhuLiY3NxcMjIyyMjI4MCBA2RkZHDw4EE8Hq872gLDsIUlEJ7Qj8CYVMyB0R2zjEl9JUd3Laf08BaUUgSlDiKk/3ACk/s12aokotFwNJeajB1U7tuC5rATmNiHxHHTsUXEt/MdtC7i8ZC/7nPK9n5PcEJ/el90OyaLrcPscdRXUnN0P9VH91NVmIXm9i4ynpCYxLixYxk27AKGDh3K0KFD6dGjx9l+h3TxdL6ilKoDMvG+vO1KqauBvwL5rSmeWgvl/QYrEdHaovyT6sqhafF0qvR3ODvxNBF47FTPWyllEhF3yyw/e5t8YhqL1R//sAT8w+MJi+2NX1gPTNbAszVD5yQ0j5v6inzs5bk0VORTW16AvaYEfP/3lFLExMaRmpJC796pJCUlER0dfXyLiooiIiKCoKAg/P39u9QyMh6PB7vdjt1up6GhgYaGBiorK6moqKCiouIHx0VFReTn55OfX0Bh4dHjAgnAYDThHxyJOTCKoPA4gqN7Yg6Ow2zr2MkJonkozkgnf+cyRDTCh44jcvQkzEEtm4npcTZSuXMDpZu+weOwEzn4IuIvvLbL/2gp27eOI+mfYQ2KpO8ls7EGR3W0SWiah4bKo9jLc6krzf7BIuIAVquNHj170js1hZSUFHr16kV8fPxxX4yOjiYiIgKTyXRy0bp4Ol/xiacXgW0iskAp9R6wF7hYRKYopS4E/g3YADtwl4hkKKWMwN+BK/F29cwRkZd8wuJdYCpgBm4SkQNKqVl4BccDvhd6DTAKiAV+c+zlrpR6HPgJ4AcsFJGnfS0zXwGrgXHA50CoiDzqy3MvMEBEfnXSvb0KjPbZvkBEnvalN2VjBPAREAVsAq4CRp6NeFJKjQSeBwKBMmCWiBQqpXoDr/nq8AA3AR8AA4Bsn12VwLWAFQgAZvvKHXya5/6U735swDrgZyIiLRVPfS65SwLCE7AEhOmxi9oZze3CXl2EvboYZ30FjbUVOOrKcdSV47TXHBdWP0ZhsvhhtvhhttgwWfwwGIwYjUYMRhMGg29vNPqOjaiT/6c3428tmoaIhqZ5EE1DEw3xHEvTEM1z/Pj4NZoHj9uF2+XE7XLicTvRPM35LaAwWayYrUGY/UOw+Idg8Q/FEuDdW4Oi8AsM73RhLxpryziUPo/68iME9hpA/KXXYwk9t0Hgbns9Jd8vo2Ln9/iFRtPzstsIiEpqJYs7htqCLLJXvAOa0PviOwiJ69vRJv0Ij6uRhqoi7FWFOGpLT/DHCjyuxlPkUFis/t7Nzx+L1UaPi+81bHz/V+0qZn4k33TalI+Bp5RSS4GhwFzgYt+5A0CaiLiVUpcDfwFuAO4DegHDfedOHAVbJiIjlFL3A48B95yizjhgAtAfWAwsUEpNBvoAF+JV7IuVUmlAHtAPr3C7XykVAOxSSv1GRFzAXcDPTlHHkyJS4RMcK5VSQ0Vk12lsfBpIF5FnlVLX+u6xKVYrpY79DH5XRP517IRSygy8BEwXkVKl1M3An/GKoA+Av4nIQqWUFTAAv+WElief0BwHDPXZn3xCvU0995dF5Flf/veBKcCS09h/SsJ7DGlpFp1WwmAyExCRREDEj1+Momm4nQ24G+twNdbhctThcTTgcTvwuBxobicelwOP23esaThdbsThRMTjFTY+QSOa54dlN3OCpVLKGwleGVDK4B2zogy+dCPKoHyfzSiDHxgVymDEYjBhNVkwGM0YTGbv/sRjkwWjxYbJ4o/Jzx+TxR+j2drlZmqW52wne+N8lMFA0jW3E9x/eKv8ADHZAoi//AaC+w4l/6sPObjwBRIvmkHUoItaweqOISihN/2uf5TDX71Fxqo59Bg1nZi+F3WqH2xGs5WgqOQfzRAUETxOO67GWlyNdT6frMXVWI/bUY/H1YjH1Ui9vRHgn8CvTlF8m6GLp3ZERHb5XtC3Al+edDoEeFcp1QdvS8ex4DWXA68d61ISkYoT8nzm228Frm+i2s99XW/7lFIxvrTJvm2773MgXjGVB+SKyAZfXfVKqVXAFKXUfsAsIrtPUcdPlFL34f0+xQEDgWPi6VQ2ph07FpEvlFKVTdgOMOk0XZP9gMHACt8/AyNQqJQKAhJEZKGvjkagqX8YK056psdo6rlPUkr9BvAHwvG2HrZYPP3pl9dSVlnX0mw6nRS3puHxaLjdGm5NQ9METdPwaIKIIOIVT001aikFCuXdK+/eoBRKKYwGA8oARmXAYFAYjb69wdD+fRUdiObx8NHbL7EpfR6BCb1IunYmxhZ20TWHwB596H3HYxR89RH5332KvaKQpPEzumwwTb/gCPrOeIi8VR+Qt3khyaEa9zzwW0znUXy0f3/47bz2rlMXT+3PYuA5YCJwYjvz/wNWi8gMn8Ba40tXND2t3eHbe2j6b+k44VidsP+riLx+4oW+eutPyv8m8ATelrG3Ty5cKdULb4vSaBGp9HVfnThKsykbW6OJVQF7RWTcSTa1ZErayfd7Ytk/sNHXgvUfvF2JR5RSz/DDe202V4ztdzbZdHS6JfX19dx22218sWgRUSMuJjptWpuKGZMtgB7XzaY4/QvKNq/GUVNGyuS7uuw4KKPFSvLkuyja/BVrVyzCXlvKl0sWERnZPgswtzW3Xj1yW3vX2bXaa88P5gLPnqIFJwQo8B3POiF9OfBz3+w8Tuq2O1u+BmYrpQJ9ZSYopU45j1tENgJJwE/xjlM6mWC8AqTa17J1dTPqXwvc5qv7auBsQ+JmAFFKqXG+ssxKqUEiUgPkK6Wu86X7KaX88c7cC2pm2ad67seEUpnv2bV4Vp6Ojk7LKCkpIS0tjcVLlpB0+Q3ETGqfViBlMBCbNpWEK2+hLj+LrKWv4mps6rdW50cZDMSNuZael97Gls2bGHzBMHbvPlVHgk5z0MVTOyMi+SLywilO/S/wV6XU93i7n47xJt7utF1KqZ14Rcy52rAc+BBYr5TaDSzg9KLiE+B7EflR95qI7MTb/bcXrzD8vhkm/BFIU0ptw9t9mHeaa1crpXb4tvdOqtuJV8D83fdsdgDjfadnAg8ppXbhHdgdi7cr0a2U2qmUevQMNv7ouYtIFTAH2I13MP3mZtyrjo7OWZKfn09aWhq79uwl9fp7Cbmg/ccfhQ2+kB5T78ReVkDm4ldw1te0uw2tSXjfkfSZ9ksqqmsZfeEYFi5c2NEmdUn02XY6Z8Q3wP1fIrKyo205j+j0jiciHD58mIyMDHJycsjNzaW6upq6ujoaGxvx8/PDZrMRFhZGYmIiSUlJDBw4kD59+ujLpOicM4cPH+ayyy7jaFExvW64D3NsxwaxrMvLJO/ztzAHhtF72v1YbM1txO6cOOuqyFn+DvWlR/jDU8/wx6f/0KkGkrcQPVSBTudBKRWKN5TAThG5qaPtOc/odI7n8XjYtGkTy5YtY/369WzevIWqqv9rbDQYTZj8bBjMfiijCc3jRtwu3I4GNLfr+HVWmz+Dhwxh0iVpXHHFFUyYMAGbreOC9Ol0PQ4cOMBll11GeXUNydffizm6c4QMqM8/RM6nb+AXEknvqfdjtgZ0tEnnhOZ2cuTb/1KRuZ2rp83gkw/eIzCwS8aZ08WTjk43oVM4XmNjI19++SXz589n2ddfU1VZiVIGAqLisUUmERKXjCk4ClNgOCb/QO8U+pMQETyN9TjrKmmsKMJZWUhdcR51xbmI5sFi8SNt4kRm3vZTpk2bRmho68+Q0jl/yM7OZsKECVTU1pE04178olp1GY9zpi73ILkL38QvPJbeU36B2a9r/zAQEYq3r6Rw01fExCey6LP5jBkzpqPNaim6eNLR6SZ0mONpmsbq1av54IMPWPDpp9TW1GANCCYwqT8RvQZhiU3F5Hfuiw57XA7qCg9jP5pJ+aFdOGsrMJnMXHr5Fdz/8/u45pprMJ9H06V1zp2CggImTJhAQXEJSTPuwz+uR0ebdEpqs/eTt2gu1sgE+kz5RZedhXcitUezyFv1Ea6Gan73xB949pk/dKXud1086eh0E9rd8SorK3n33Xf5z3/+Q2ZmJmY/GyG9hhDdfxSW6F5tGkVaRGgoyaMmeyflB7fhaqghLCKSu++ezc/uvZfevXu3Wd06XYOSkhJGjhrF0cIiet5wHwGJqR1t0mmpydxN3pJ3COrRj9TJd3fZOFAn4nY0UPDdp1RkbWfI8FF8+t8P6dOnT0eb1Rx08aSj001oN8fbsWMHr7zyCvM++IBGu53guF7EDr0YW9JADCZLe5lxHNE81OTtpzJjE5U5e0GE8RPSePThB5k+fbreGtUNWbZsGTfddBP1DXZ6zLiboOT+HW1Ss6jYtZ6jK+YT1m8UPSfe2pUHXB9HRKjM3Ep++kLQ3Dzx5O/5/RO/xWJp//8VLUAXTzo63YQ2dTyn08mCBQt45ZVXWLduHSazhbA+I4gefBGW8M4zhsRZV0Xlwc2U7d+As7aS8Igofv6z+/j5z39GUlLnGCSs03Zs3bqV3/3ud6xYsQKUgZ7TZxOUOrCjzWoRJeuXU7JuGVHDJ5E4ZmpHm9NquOprOLr+cyqydpCc2pcP3nub8ePHnzljx6CLJx2dbkKbON6RI0d4/fXXmTNnDiUlJfiHRRE9eAJBvUe2yjimtkI0jZoj+6ncv57KnP0og+LKK6/ioQcfYPLkyV1p7IXOGRARvv76a/7xj3+watUqDAYjmmgkTbmDkL4XdLR5LUZEKFz5GRU7vyd+/DRihk7saJNaleqcveSnf4qzroppM27gxX/9k549OzZsxCnQxZOOTjeh1RxP0zS++eYbXn31VRYvXoyIEJo8iNghF+MXl3rKGXKdGUdNBVUZGynZtx63vY6EpB48cP8vmD17NtHRpwyEr9MFqKur47///S///ve/2bNnD7bgMDD6Ya8sIuGqnxI2aFRHm3jWiKZx5Iv3qTm4kx6X/ZSIPl33Xk6Fx9lIyc7VFO9Yg9EADzz4EE/9/knCws52cYhWRxdPEvQ78AAAIABJREFUOjrdhHN2vIqKCt5++21ee+01srKysAYEE9ZvNNGDLsIQ0PXDAWgeNzU5eyjft46agixMJjPX33A9v7z/fi6++OLzYnzJ+Y6IsGXLFubMmcNHH31EXV0dQdGJRF+QRvnhvVQd2kncpTcQMbz9I4e3NprbTe6nr1N/NJuUq+8hJKlrjNtqCc66Soo3L6MsYzNWmz8PPPAAv3n8MaKiojraNF086eh0E87K8TweD6tWreK9995jwYIFNDY2EpqQSvTgCdh6DMJgPD/X+m6sLKYqYyOl+zfidtjp268/D/zyfmbOnKnHjeqE7Nu3j/nz5zN//nz27t2LyeJHWOowYgaPxxiWQP7a+ZQf2EjMxVOIuvDSjja31fA47GT/9xWcVWX0nno/AdGdM9TCuWIvP0rpjpWUZ+7A4ufH7NmzeeThh+jXr8MWPNfFk45ON6HZjici7N27l/fff5958+Zx9OhR/GwBhKQOI2bIBEwhMW1pZ6dCczmpyd5Jyd511Bfn4me1ccsttzDrzjuYMGECJtP5KR47Oy6Xi40bN/L111/z2WefsW/fPpRSBCf0JqLPCIJ7XYCyWBERCtYtonT3WqLGXEHMhOasI961cNXVcPijF9FcDvpOfwhraIe3yrQZjZXFlO5YRXnmNkTzMCHtEh59+CGmTJnS3rPzdPGko9NNOK3jaZrGxo0b+fzzz1m4cCGZmZkYjEZCew4gqv+FWOP7YTB17yn9DaVHvK1RB7aguZ2EhIUx47rruOnGG7nsssvw8+v6gQs7Kx6Ph3379pGens7y5ctZtWoVNTU1KGUgOD6F8D7DCOo5GKMt+Af5jm76iuJtK4gYfjGxk647b7teHRUlHP74JQxmP/pe9xAW/+AzZ+rCuBpqqczYSOnedTjrqggMDuGmG29k5u23kZaW1h4TPnTxpKPTTfiR4+Xl5bFy5UpWrVrFN998Q1FREQajkeDEvoSnDCEweQhGv669llZb4HE5qD1ygLrcvVQc3o3H5cDPamPCxRO4+sorufzyyxkyZAgGQ9caON9Z0DSN3Nxc9uzZw5YtW1i/fj0bN26kpqYGAP+QCAIS+hLRayCW6F4Ym5jVWbR9JYUbvyBs8BjiJ//kvBVOx2goyiPnk/9gCYmk79RfYuziy7g0B9E81BzJoDZ7J+WHdqK5nASFhHLV5MlMmXItV111VVtN+tDFk07HoJQSYJ6IzPR9NgGFwEYRmaKUmgYMFJG/tbEda4DHRGTLKdLjgEagDpgtIhlnWcczQJ2IPHcWeR8B3hCRhrOp+xgNDQ2yfft2Nm/ezJYtW9iwYQOHDh0CwBoYjH9cKpGpQ7HG98VoOf//6bYWmsdNbf5B7EcPUpl3gMbKEgCCQ0IZPXo048eN5cILL2TkyJHExsae9y/wllBdXU12dvbxbf/+/ezZs4c9e/ZQV1cHgFIGAqMSsEb3ICwhFXNEIuagiDM+x9I935GfvpCQ/iNIvOqnKGP3ELK1OQfIXfgmAXG96H3Nz87bMYmnQnM5qc7bR0N+BpW5+3A11AKQ0rsPl1w8gYsuuogxY8bQr1+/1giMq4snnY5BKVUHZALjRcSulLoa+CuQLyJTWrEehfd7pzVxfg1Ni6fHRGSLUuo+YIqITDvpGqOIeJphwzOcvXjKAUaJSFlL856IyWQSj8drqi04DGtkIqFJfQmI640pJFp/qbcSzroq6o9mYS/OpqYoF3tFIfj+5wUFh9C/Xz8GDx5E//79SU5OJjExkaSkJOLi4rr8+CkRwW63U11dTXV1NSUlJRQXF/9oKygo4PDhw1RWVv4gv8U/EGt4HLbwOIKi4rGExmIKjWnxOm7lBzaSt+a/BPceQtKUO86LZUxaQtW+LeR/9SEhqRfQ67KZqG7YAiqiYS87SsPRg9QV5VBbmI27sR4Ak8lMap8+DBs6lEGDBpKSkkLPnj1JTk4mLi6uuV1+unjS6Rh84ulFYJuILFBKvQfsBS72tTzNwisaHlBKvQPUAKOAWOA3IrLAV87jwE8AP2ChiDytlEoGvgJWA+OA64DfAqMBG7BARJ725V/DmcVTf+AzERnos/t54Erg18CFwGxftjdF5N++/E8CdwBHgFJgq4g8d1K5kcAWEUlWShmBv/vKFWAOXgd9DsgAyoDLgbd8z0GAuSLyr+Y874TRV0pwbDLmsHhMAef3eIjOhMflwF5WgLOiEGd1CXXlhTRWluBqqPnBdQaDgYjIKCIjI4iMiCAiIoKwsDDCw8MJDAzEZrNhs9mwWq0/ODaZTBgMBgwGA0qp48cnpnk8nuOb2+3+weeT09xuN42Njcc3u93e5Ofa2lqqqquprqqiurqa2tpa3G73KZ+DUgqLfxAm/yCM1iCsIRH4h0ZiDYlA2UIxBYZh9PM/ZxFfmbWdnG/mEdizLz2m343B3LUF6dlStmUNRd8uJmLIBJLGz+j2P45EBEd1KfbSfNzVxdSXHaW+vBBnbcUPrjOZzMTExhIdHUVMdDRRUVHHt5CQEIKDgwkODmbq1Knt/kC75zdZpyk+Bp5SSi0FhgJzgYubuDYOmAD0BxYDC5RSk4E+eAWMAhYrpdKAPKAfcJeI3A9eMSMiFT6RslIpNVREdjXTzqnAbt9xALBHRJ5SSo0E7gLG+OrfqJT6FjAAtwDD8X7ntwFbz1DHfUAvYLiIuJVS4T57fwVMEpEyX30JIjLYd0/NnjMfM+qq5l6q04oYzX4ExqVAXMoP0t0OO666Spz11bjrqnDWV+Gsr+ZoQwNHKo/i3puFx2HH42hAczs7yHovymjGYDJjMJpQRhMGk9m7N/thtFgxWsIxxicQYbF6P/vZMJr9MFoDMfsHYbIFYbIGtHkLSMXBreSu/hD/xBR6TLur2wongMhRE3HV1VC+dQ1mWxBxI67oaJM6FKUU1tBorKHe8U/H5iNqLifOukrvVluBs7aChvoaskrrOHBkDx57Pe7G+h/54PCfP3/ZtlcfXdme99B9v806P0JEdvlaiW4FvjzD5Z/7ut72KaWOzZWf7Nu2+z4H4hVTeUCuiGw4If9PfN1vJrxCbCBwJvH0gVLKDuQAD/rSPMCnvuMJeFu76gGUUp/hFX8GX3qDL33xGeoBb6vSayLiBhCRilNccxhIUUq9BHwBLG9GuQBYLSacLg/d/Adop8Fo88fP5g9RP173TwDR5PgIfxENcbvRPC40twvx7TW3CxBExNs1KIJwwrGItzTlbYFSBiMohVIGbxR4g/cYZUD5WqlQRgwmEwajGWUyowzGJlstlAJDJ/lClR3YRO6qjwlISqXndXdj6NyLyrYLsZdMwWOvo2jTVxiNRuKGX9bRJnU6jH5+mP1iCYiI/dE5EdB8PWWay4nH1YjH6d3w9mjo4kmnQ1mMt2tqIhBxmuscJxyrE/Z/FZHXT7zQJ8jqT/jcC3gMGC0ilb5uQGszbLvt5O48oPGEcU6ne3M01T/txiuuOMkGdZo83gK9tl+At2vvl3i7K2efLs8x1r3w4Jkv0tHpgrz55pvc9+rHhKX0J3HaLMTYvUNqHEMpAwlX3ox4PBSsX8qsq8byp6ee7Gizzhf+1N4V6uJJ52TmAtUislspNbGFeb8G/p9S6gMRqVNKJQCuU1wXjFdMVftara4G1pyDzcdYC7yjlPobXvEzA5jpOz6WbsLb7XdM4OUAI4FNwI0nlLUc+LlSas2J3XZALRAElPnGSDlF5FOl1CHgnVa4h05FbW0t69evZ/v27ezevZuCggKKiotxuVwYjEYiIyJITEhk4MABjBw5krFjx3aGpRp0OogXX3yRhx9+mLDeg0iYcifSjWaXNQdlMJJ4zU8R0fjz07/HbDHz9G9/09Fm6ZwF+jdb5weISD7wwlnmXa6UGgCs93Ut1AG34+1aO/G6nUqp7XgHpB8Gvj8no/+v3G2+VqxNvqQ3RWQ7gFLqv8AOIBf47oRszwGfKKVmAqtOSH8T6AvsUkq58A4Yfxl4A/hKKVUIPAK8rf5v5d3ftcZ9dDTl5eV89NFHfP7556xduxaXy6t/rSHhGANDMQUEYjDbQPNQeKSErfsOMn/+fEBQSjF0+Ahuun4Gt99+e2dcfV2nDRARnnjiCf72t78R3u8C4q++HbrZrLrmogxGkq65nSOah2d+9z9oHg9/fPK8+NfRrdBn2+nodAydzvHS09N5+eWXWbhwIU6nk4CoOAJTBhLSqz+G8FhMtqYDdHqcDhpLCmgsOERN1l7qi/JQSjFh4iR+9dCDTJs2TQ9SeZ7icrm45557eO+994gafhHRE2d0y+n4LUXzuMn/4n1qMnfzwK8e58Xn/t7tZ+GdA3qoAh2dbkKncDwRYdmyZfzlL38hPT0dv4BAgvuPIGLIWEynGLTZXJzVFVTv3UTFno24aqtJ6pXCs0/9gdtuu601AuLpdBKqq6u55ZZbWLZsGfETribswst1AdACRPNwdPknVO7dzE9n3c37b72h/8g4O3TxpKPTTehwx1u9ejWPP/44W7duxRYaTtToSwkcMAqDufVmRonmoebgLso2r8RecpSYhET++fe/ceutt+oviS7OwYMHmTZtGplZWSRNvomggRd2tEldEhGNom+XUL71W66YMp0lC/6rr8vYcnTxpKPTTegwxzt48CCPP/44ixcvxhYaQcxFV+Hf54LTLh0hIriqK2g4mo2zuhxPYwPKZMEcEIwtNglrTOIZ89ce3kfZ+q9pKM6n78DBvPrSC1x66aVtcYs6bcyyZcu45ZZbcGpCz6mzMMUld7RJXRoRoWzTSorTv6Tf0GGsXfF1W60Bd76iiycdnW5CuzteRUUFzz77LK+88grKZCZ6zOWEXHDRaVuaPE4Hlbs3ULlnE46ywuPpBosfmssFvlV2DH42QvoNI2L4xVgjm+7uE9Go2r+N0u+/wllTycWTLuO1l19k4MCBrXejOm2Gy+Xiqaee4u9//ztBsYn0mD4bAkI62qzzhuqDOyn46kOCw8JZvfxrhg27oKNN6iro4klHp5vQbo7ndDp59dVXeeaPf6S6upqIIWOJGn8VRv/Apo3TNCp2pFOyYQUeez3W+B4EDxmBrWcqftGxKKMREcFTV4P9SA61B3ZTt3834nYT3H8YcWlTMQc1HXBdc7so3/YdZZtWorkc3HHXbP73L3/Wf213YnJycrj11lvZsGEDUcPGE3PJdDDp49daG3vxEfI+n4s4G3np5Zf5+b33dLRJXQFdPOnodBPa3PFEhCVLlvDYY4+RmZlJSK/+JEyajiEs5rT5GsuLKPj6Y+yFefgn9yHy0quxJSWfsT6PvZ6K79dQuXEtymAgJm0q4UPHnXYAsbuhjrINKyjb8T1Wm40nn3ySx371KFZrc2Km6rQHmqYxZ84cfvOb3+BwuUmY/BP8ew/taLPOa1x1NRR89QF1eZlMu+EmPnhnLoGBTf/Y0dHFk45Od6FNHW/r1q089thjrFmzhoCoOOInTseS1OeMM6Gq9m+lYPknGMwWoq+eQdDg4S2ePeWsLKd4ySc0ZGcS1GcIiVfegtHPdto8jvJiStK/oDprDzHxCfz7n89x88036zO3OpiDBw9y33338e233xLaqx+Jk2+GwGYv4ahzDoimUbpxBSXrlxOTkMQnH8wjLa2ppUa7Pbp40tHpJrSJ4x05coQnn3yS999/H2tgMNHjJhM0aAzqDAELRfNQtHYp5Vu/xdYjhfgb78AUFHzWdogIlRvWUrpiCebQCHpedzfW8DN3ydXlHqR47RLsJQVcMGIkr778EuPGjTtrO3TOjqqqKv7yl7/wwgsvoExmYi+ZRuCAUbqY7QDqj2RR8PXHOKsrmHX3vbz4r38SFBTU0WZ1NnTxpKPTTWhVx6uoqOC5557jX//6F26Ph8iRlxB54aVgPnP3l+Z2k/+lN1hf6OgJRF85/Yxiq7k05B7m6CfvgAg9ZtxDQNyZI46LplG1dzPF33+Fu76GaTOu54Xn/0lycnKr2KTTNA6Hgzlz5vDMM89QUVFB+ODRxF08BWx6l1FHorkclHz/FWVbvyMsKorn//G/3DFzph7u4//QxZOOTjehVRyvvLyc559/npdeeom6ujrCBowkPu3aZs+A0lwOche9TX3uQaImTyd83CWtYdYPcFaUkj/vDdy1NSRNvZPglObNrPM4HVRsWUPJ5lUYgDvunMVTv39CF1FtQH19Pa+//jr//Oc/OXr0KCHJ/UiYNA1DeFxHm6ZzAg1Hcyha/TkNRXn0GzSYV196kUmTJnW0WZ0BXTzp6HQTzsnxcnNzeeWVV3j11Vepr68nrP9w4sZPRoU2f7aax9lI7qdv0FCYS+zUmwkZ3nZBDt11teR/OAdnSSFJ02YRnDKo2XldtVWUbVxBxe5NKIQbb76Fp3//pB7eoBXIzMzkjTfe4O2336a8vJzQ5L7EjL0CU3yK3kXXSRHRqD6wnZL0L3HWVDJ81Gieffoprr322u78N9PFk45ON6HFjicirF27lpdeeomFCxcCENpvWItFE3i76nIXzqH+yCHib5hJ0KC2jyfjsTeQP+91HMVHWyygwCuiKrd9S+mOdYjbxbgJF/PoQw8yffp0LJbWi4p+vlNRUcHnn3/Ohx9+yMqVKzEYDIT0GULMhZdiik7qaPN0monmclK5eyPlW9fgrKmkV5++PPrgA9x+++2EhYV1tHntjS6edHS6Cc12vIyMDObNm8e8efPIycnBLyCQ0MFjiBo+4awCFIrm4cjS96jJ3E3s9FsJGTa6xWWcLT8UUHc1uwvvRNwNdVTt3kDFrg04ayoIi4hk5u23cesttzBmzJju/Ov7lIgIhw8fZsWKFSxevJgVK1bgdrvxD48idNBowgePAX99AHJXRTweqjO2U7H9OxqKjmC2WJh+3Qxuu/UWJk+ejL+/f0eb2B50H/GklBJgnojM9H02AYXARhGZopSaBgwUkb+1Un3vAEtFZIFSag3wmIhsaY2y2wql1DPA00AfEcnypT0KPA+Mbm37lVIPAb8AtonIbS3M+wjwhog0tKZNJ5RfJyKnHLWqlJoBfAYMEJEDTVwTCvxURP7j+xwPvCgiN56mzjW03fekScdzuVysW7eOL7/8ki+++IK9e/eiDAZCkvsSPmg01l6Dznr9ORGh4Ov/UrV3E9FXXkfY2LSzvoGzxWNv4Mj7r+EsKaTHdfcQlNzvrMoRTaMu5wA1ezdRdWgf4nETG5/ATTfewJWTJ5OWltYtZyW53W7279/P5s2bWb9+Pd988w05OTkA+IdFEthnKBEDRmCIiDut0NTcblzV5bgaanHX1+Kx1yEeD6J5QASD2Q+DnxWjnw1zUCiWkAiM1tOHpNBpW+zF+dTs20zFvq14Ghuw+Fm5YvIVTJ86lUsuuYQ+fc4crqSL0q3EUx2QCYwXEbtS6mrgr0C+iExpg/reoWuKp+uBT0TkT76074FQ4M42EE8HgKtFJPss8uYAo0SkrAV5TCLibua1pxNPnwBxwEoReeYU541AEt6//+AW2LeGNhZPIkJhYSHbt29n/fr1rFu3jk2bNlFfX4/BaCQoKZWQ1EEE9r0Ag//Zhw44VlfRt4sp3/otEWmTiZx0VavcyNngsddz5N1XcZaX0vP6ewlM6n1u5Tns1B7aS13mTqpzDiJuF0ajiRGjRpE24SJGjRrFqFGjSE1NPW9eHi6Xi+zsbDIyMjh48CAHDx5k7969bN++nYYG728Ys80f/8RUwlIGYE3qjTE44pT3r7mcNBTm0lCQTWNJAY3lxTiryo4vv9NcDFYb1sh4bDGJ2GIS8Y/vhSUkvFXut60REZyVpcfv391Qi+Z0oAwGDBYr5qBQrFFx2GKSMJ0mOn9nQDwe6vMP0ZC9l8qMXbjqqgGIiIrmkrQ0Ro0cwbBhwxg2bBixsbHng090O/H0It5WjgVKqfeAvcDFvpanWXhfxg8opW7C2wLjAapFJM33Qvw7cCXeF9EcEXlJKTUSb8tMIFAGzBKRwqbEk1LqVWA0YAMWiMjTPvtygHeBqYAZuElEDiilAoCXgCGACXhGRBYppazAq8AowA38SkRWn3gfvnKXAs8B3wFv+a4XYK6I/OukZ/QMYMAraEYrpVKAlwH/c7D/GaBORJ7zXbcHmAL8FpgNZABzge+Bf/vKtQN3iUjGqZ473i/uc768ZSIy6USxo5S6EZgiIrN8f4cKYDiwDfgP8AoQBTQA9/rs7AV86HvGy4BHTyWelFKBvnonAYtFpL8vfaLvO1MIDAN2AdN9167w1blURAaf5rt04vdkMvBHwA845HsedUqpvwHTfH/z5SLy2Mk2norZs2fLvn372H/gADXV3n9symAgMDYRv9iehCX3xRSfitGv9SJtl2z8hpL0/8/eecdHVaX//32mJJPeO4TQAoQiINJEQBAFsWFDVIpiA/v+dNUt3y2ua91111VBsCAiiIooKCC9ShUQpIoQWkjvmWTafX5/3AnGGJIAIYXc9+s1r3vn3HvPec6dOXM/85znnLNIn45gxKgG/8F0lxRz/MO3cOXnkXTLgwQktK6TfDW3C3taKo4Thyg8+hP2jBOIR9fofv4BtG3blk4dO9CuXTvatGlDbGwsMTExxMbGEh0d3WAr2rvdbgoKCsjLyyM/P/9X26ysLNLS0jh58iRpaWmcOHGCjIwMNO0XceMTEIRPWBT+sS0JTkjCEhGPOTQCpX47nF1EKMs8SdHhPRQd2U9pxnHQNEBhDY/ENzoW36hYrBFRWIJCsAQFYfYPQJkt+jQWSqE5HWhlZXhK7bgL8nDl5eLMy8Zx6iSOjLTT99waGkFgYnsCE5MJbNWhUXmnRITS9GPk79lK0eF9uIry9ANKYQ4IQPn6giZopXa0sjLvVQpbXEuC23YhrEtvrAHn96fmQlMuCktPHqb0xM8UnTyCsyD39PGg4BDatGlDcnu9PSQlJRETE0N0dPTpV3BwcIP/XtRAvRt35mXQ64dPgP/zCopu6A/tqqZQ/T/gGhE56e1+AXgAaA30EBG3UipcKWVFFzY3ikiWUmo08AK6KDgTfxSRXO8DdIVSqpuI7PIeyxaRnkqpycBTwH3AH4GVInKv15YtSqnlwEMAItJVKdURWKqUSq6m3O5AQrknpEK9KlMIHFdKdUF/+M8F7jkP+6tERB5SSg0HrhSRbKVUMDDQe2+vAv4J3EIV991b/u/Kr62mzuUkA1eJiEcptQJ4SER+Ukr1QRdTQ4D/AlNEZKZS6uFq8roJWCIiB5VSuUqpniKy3XusN9BFRI4opZK8+90BvO/L+U2dKhaglIoE/uS1uUQp9QzwO6XUm8AooKOISDWf4W+Y9ek8fMKj8U3qQnxEDL6RsfjFtsRkvTAP7pydG8hcv4igrj2JHnFTo/ghtAQE0nLsJI7NeJOj86eTdOsk/GPPP2DZZLF6H9btieg/AvF4KMtJpzTjOI7sUxzNy+bg8tU4583zCoZfY7b6YPG1YfW1YbX5YbX5YfHxxWQ2614Ik9m7bz6dJpqGiIZoom9FEE0D777m8eBxu/A4nXhcTtwul3erv/e4XGhuV7X1Mtv8sQaGYAkMxhrekshWXfANi8InNBJrWBQWv4BqrxfRsJ84TMGBnRT+vBd3cT6gsCW0JLzflfgltsavZRJmv9rFyJgsVij3wCQk/rosjwdHVjqlRw9jP/ITBQd2krdrE5hMBCS2J6RdV4LadsEa2DDCQzQP+ft3kL11FY7sUyirD/7JHQhJHootsRXW6ChM1l+v2+ex23Gmn6L058PY9+8lc/0iMr9bQnByN6L7XoMtovpljxoKpRS+4dH4hkcT2rUvcYCnrJSy7DTKMk/izMvi5/wc9i1fjavgC71btnIeZrPeFnxtv7QN777F6oPJbNHbgtl8et9Uvm/S2whK6QpHqV/tK5RX+ij9d6nivtd+Tp9TNZvmvle3N60WNKh4EpFd3ofYGGBRNaduAGZ4u2e+8KZdBUwt7/bxPsC7AF2AZd4bb0b3PFTH7UqpB9DvRRyQgu6loEJZ36N3nwFcDdyglCr3MNiARGAAunDD6zk5ii4SzsRhoI1S6n/AN8DSas79BLgD3TMylF+Lp7O1v7aEAB8qpdqje2PKf0l+c9/PMl+Az7zCKRDoD3xW4WFerh4uRxdrAB+he4aqYgy6hwz0+zQG3aMFsKWWXZA11akv+n3d4LXTB9iILmzLgHeVUt8AX9eiLAA6PPRXFNSLiMnfv51TK74goH0KcTeOqdIT0VBYgoJpOW4Sx2e8Req8qbS5fTL+0S3quBALATEtCIj5db4ejxtXcQHuEj2mx10e2+MoQ3M50JwO3E4HTmcZWokdEQ00jy6UvC+8okn/0fc+ILz7SikwVXhvtmKyWlEWGyZbEGaLFavFgrJYMVmsmCw+mGx+mH39MNv8vdtf3pusPuf0nSnLOkXevm3k79uOqygfZfUhoG0HApOHE9C+E5bAuo8LU2YzttgEbLEJhPW5AtE8lJ08TvH+Hynav5u05Z/D8nn4x7citEN3gpMvwaeahaTrChGh4MBO0jcsxpmXhU9sHFGjbiWwew9MftV7ec3+/vi1aYtfm7aEDxuGMzOTws2b9NeBHwhJ6Un8gOuqXRC7sWDy88fash1Bv+ouFzSPhqukELe9GHdpMW57MR67vtVcDjSXE81ZRpnTib2oGE9ODuJxn46FE82jtxGP9sv7eujd6tqyy627X3vy8wteUAUa2vMEsAC9y2cwEFHVCV6vSB9gJLBTKdUdXYdW/lQUsEdEarWeg7dr6Cn04Os8b5dSxRbk8G49/HKvFHCLiByolNeZftHc6F1v5di8dcpTSl2CLogeBm7nzB6yhcCrwDYRKaygyM/F/irtqYLngVUiMsorcFeXV5XajRSreE7lMkq8WxOQX+4NqiGP36CUikD3UnVR+gAEMyBKqd9XKqcmaqqTApaJyJgqbOiNLmjvAB7x2lMj70+6jZyi2pp37mzHWoJvAAAgAElEQVRZt4a/vz6HwKS2xN02rs5mDq9LrCFhtBg3iRMz3uL4/On894OPadW2fUObdRoRcGseHC4PLo8Hl0fD49HwiIamyW++OCal0HWTwmwyYTGZsJhNWM1mrBYTFpOZC62Z7SXFrFr0NYvmzeXwgX16l3C7jsQOvwFbu06YfOq3a1KZzPi1TMKvZRKRV43EmZVByf7dFO39gbRVX5K26kvad7mEK4dfy4CrriEqJrbObThx9Ahvv/g8xzZ/h198Agk33otvx066V+Qc8ImOJvL6GwgbMoSCNavJX78e+897Gffw44waMxZzI2xrdYnLo1HmcuFwuXG6PTjdettwuT24NQ2PprcTl9uNx6OhiYbH40EEPF4vrd5+vB5b9EEgWrnYEt2Li+ii90w/0BazibWHM3bWV71Pl1vfBVbB++hxTLu9cSq/QSnVVkQ2A5uVUtejB/8uBR5SSq2u0NVyAIhSSvUTkY3ebrxkEdlzhrKD0R+wBUqpGGAEv4iEM/Et8KhS6lFvV00PEdkBrAXuAlZ6u+sSvfYEA5OV/nc/Ab0rqbwryCki85RSPwMzzlSgN6D+GeBgHdifih7jhFKqJ3p3VVWEACe9+xMqpP/mvns9NUVAEHqcGUCGUqoT+j0Y5T1euV6FSqkjSqnbROQzrwDtJiI/oHsb7wBmod/XqrgVmCkiD5YnKKXWoHsBK1NuX1WcqU7lbALeUkq1E5FDSil/oAWQBviLyCKl1Cbg0Bny/w2Xta1j70oVrF+/npeeeQK/2HgS7rgXznGEXn3gExZBi3EPcXzG2zx9/3i+37yJ9u0bj4BqKuzZs4cpU6bw4cyZFBcVERDfkhbX34atQ1fMAY0jyFkppcdURccSPnAYzpxM7Pt2cXzPD0x77UWmvfYil/Xpy513jObWW2+lRYvzaysej4dXX32Vv/zlL2CxEHfzrfj17nPOoqky5oBAwq+9jqA+/cj58gve+9dLbFy1lMXz55OYmFhzBgZ1Qa1/e+uKBvffi8gJEflvDae9qpTa7Q1uXgv8ALwLHAN2KaV+QB+G7kR/oL7sTduJ3i10prJ/AHagB6qXB0nXxPPoXVi7vPY8701/GzArpXajxyVNEBGHN88jwG50D1t5l1ICsFoptRNdOD1XXaEi8kmFWJ7zsX8eEO4tdxK/FWTlvAK8qPTRfRX/Qv3mvnvTpwGLlVKrvO+fRe/GWkn1Xad3ARO9ee1Bj+sCeBx4WCm1FV3IVcUYYH4V9buz8okikoPe7fajUurVSofPVKfya7PQBeQcpdQudDHVEV2Mfe1NWwM8WU0965Xt27czcuRITEEhtLjrAajDwPMLhU9ENC3GPYTd4aD35QM4cuSsB302S5xOJ3PnzmXQoEF06dKFqdOmYWnbkXYPPEnCfU8Q0LNfoxFOVeETEU3ogKto9eD/o/UjzxI7dCS7jx7nySefpGXLlvTt14///Oc/nDhx4qzzPn78OEOHDuW5557Dr1MKiU89g3/ffnUmnCpijYgg5t77iB49hv179pDcuTOzP/uszssxaBwYk2QaGDQMF6zh7du3j4EDB2LXIPHeR5BGPhqoMmXpJzkxcwphoaHs2LL5vD0PFyvHjx9n2rRpTJs+ncyMDGzhkYT3vhy/rpc2+qH0tcGZk0nZ/h/J+3EHZem6E7x3n76MqaVHasmSJYwZM4aSsjKib7oZ3x49622ghCs7m8zZsyg7cZwHHnuMKa+/bizie2FpPlMVGBg0cy5Iwzty5AgDBgwg315K4oRHkJCmuUxD6cljnPhoKlHR0ezYvIm4OGOBWgBN01i+fDlvv/02CxcuRBMhKDmFyD5XYE1q16gGA9Qlzpwsyg7sJm/3L0KqV+/ejBk9mmuuuYaUlJTTwkhEeOWVV3juuefwT2hB3NhxSFj9zzUlbjfZX82ncPMm+g8bxtL58wkIqH5EpME5Y4gnA4NmQp03vBMnTjBo0CDSMrNodc/DEH526901NuzHjnDy43eITWjBzs2biIqKamiTGozc3FxmzJjBlClTOHToEL5BwYT06ENwz76Ym6hAPlecOVmU7d/9K49UWEQkVw0dysArBrB48WIWLVpESI+eRN56W4PG+okIBRvWkbNwAS3atWPjypWGJ/XCYIgnA4NmQp02vNTUVIYMGcLJjAySxk1CxSTUZfYNhj31ECc+nk5CUhI7Nn5HZGRkQ5tUb4gIW7ZsYcqUKcydO5eysjICW7Ulos8AfNp3xmRpDON9GhZXfi6lqYdwHP2ZgkP78RTr41LCrxlB6JChjWI+M4CS/fvI/PgjAkND2bx2LR2Tq5vFxuAcMMSTgUEzoc4a3qFDhxgyZAhZeXkkjn0IFR1fV1k3CkoO7efk3PcJj4ll46qVF/0ovJKSEmbPns2UKVPYsWMHVl8bQd16EnHZAExRdT+E/2LAXVTA8Vnv4MrJJnrMnQR2u6ShTfoNZcePk/7+dKwWK+tWrqBXz54NbdLFhCGeDAyaCXXS8H788Ueuvvpq8opLSBz3ECry4ny42o8dIW3u+1jNJpZ8/Q2DBla1EEHTZu/evUyZMoWZM2dSWFhIYFwLQnv1w79zT32ZEIMqceZmc+KjqbjtJcRNuBe/due3TuKFxJmRwan3pqGcThYvWsTQQYMa2qSLBUM8GRg0E8674a1YsYKbb74Zl8lMy7EPopp4jFNNOHOyODl7Ou7CfF597V88+dijjaZb5lwpLi5m3rx5vP/++6xduxazxUpQyiVE9bkCFdeiydfvQuPISOP4rHcQzUPcvfdjawLzKrnyckmfPg1PcRGLvvmGq4fUal5dg+oxxJOBQTPhvBrehx9+yH333YdfVAwJd96HBJ5pKqyLC7e9mIz5syk+tJ9rR93M3JkfEhjYtIbliwjr1q3jgw8+4LPPPqOkpAT/qBhCevYhqNtlKH9jRFZtKD2eyonZ01E+PsTf9wA+sU3H6+ouLOTUO2/jKSzim0XfcI0hoM4XQzwZGDQTzqnhORwOnnrqKd58801C2nUk7rbxSD0vtdHQiGjkrltB9uolRCe04JOZM7nyysENbVaN/PTTT8yZM4cPP/yQw4cPY7X5Edj5EiJ69sNkeJnOipKfD3By7gdYgoOJu+9BrBH1PxXB+WIIqDrFEE8GBs2Es254R48e5fbbb2fLli1EXX4l4VdeCxf5+lnVYU89RMaCuTjzcrhrwgT+8+qrjW403uHDh/n000/59NNP2bFjBwBBbZMJ79EH3/YpqGYmfOuCor0/kDZvFj4xMcRNfABLcN0vbFxfuAsKODVtCp7CIhYvXsSwK69saJOaKoZ4MjBoJtS64YkI06dP56mnnsLh8RB34xhsyZ0vpG1NBs3pIGfVEnI3r8XPP4A//OE5fvfEE/j7+zeIPSLCjh07+Oabb1iwYAHbtm0DIKhVa4JSuhPYqSsqKLRBbLsYyN++iYyvP8PWqhWxE+7D7O/X0CadN+6CAk69MwVPcRFLlizhKiOI/FwwxJOBQTOhVg3v4MGDTJo0iZUrVxLStgOxN4yGYOPhWxlHZjq5K7+h8MAeAoNDeHjyZB579BHi4y/8tA1ZWVmsXbuWRYsWsXjxYk6dOgVKEdiyFcEp3Qno1A2T8ZmdN7kbVpK1/Gv8kjsSO248Jp/Gu9D12eIuKCDtnbeR4mKWLVvG4AFVrW1uUA2GeDIwaCZU2/AyMzP529/+xjvvvIPZx4foYTfg3723ERdTA/ZjRyjcvIaCfbtRSjHgioGMH3s3w4cPJyHh/CcOdbvdHDx4kO3bt7Nu3TrWrVvHvn37ALD6+ePftgNhHbtgTWqPqREvxtuUEBGyV3xD7oaVBHbrTvQdY1AX4QSh7vx80qa+jVZSwr9ee5V7xo0jOLhprUvZgBjiycCgmVBlw0tNTeWNN95g+vTp2O2lhPXqR9TgaxA/YwTW2eDMzaJk1/fk796OMzcbgKQ2bRnQvx9du3YlJSWFhIQEoqOjCQsLw2w2YzKZ0DSN/Px88vLyyM7O5ujRoxw5coQjR47w448/smvXLsrKygCw+vnh17I1ga3b4ZfYBnNsAsrUfGPQLgSiaWR88zkF2zcR3LcfkTfdjLqIF9h15+dxcspbeErsoHno3LEj/fr1O/1KTk42FhiuGkM8GRg0E043PIfDweLFi/noo4/48ssvQSlCOncnevBwCItoSBubPCKCIyMNR+oh7KmHsJ86gbuw4Kzz8Q0OwRoZgy02nsCERMyRMZgjYy7qB3lDIx43p+bPpmjPTkKvHEr48BHNwvPqysslbcrbaGWl+EbH4crKwF1qByAkNJS+ffqcFlPdunUjJiamWdyXGjDEU2WUUh5gN2AB9gHjRcReB/kWi8hZ+9WVUjOAQUABoAEPi8jG87SlFzBORB47n3yqyb8v8F/A1/uaKyJ/VUoNBpwi8t2FKPdC4v0cvhaRz6tIvx2IEZEib9p/gceAKBHJribPP4jIP2tRdirQq7q8aiIzM1OWLVvG0qVLWbhwIXl5efgGBRN8SS8i+gxCApvuCKLGjqfUjjMnE624GFVmRyuzgwgioBSYfW2Y/PxRNj8kMARraBimBlxctjmiOR2kffYhJYf2E37tdYQNrptRaCKCuFwoi6VRC19Xbo4uoJxOWox9CJPFinbqBCXHj1B8/AiOzHTwPruDgkPolNKJrp07k5KSQqdOnejQoQMtW7bEarU2cE3qDUM8VaaiyFFKfQx8LyL/Po/8zCLiOU/x9LWIfK6Uuhp4TUS6VVXGudpY1yilDgC3i8gPSikz0EFE9iql/goUi8hrDWvh2VODeOoJvCIis5RSJmAnEA50r0E81eo7URfiSSklAD4Bgfi37UBE996YE9ugmvHUAwYGAJ7SEk7Mfpeyk8eIuvlWgvv0Pad8RNMoSz2C/eABHMeP4czIwFNcDJoGgLLZ8ImKwicuHv/2yfgld8Ds13hG77lysjk59W3E5abl+EnYKqxZ6XGUUZZ2HC0nE2dWBvbMUzizMnCXFJ8+x2QyERMXR+uk1rRpnURSUhKJiYnExMQQGxtLTEwMMTEx2Gy2BqhdnWOIp8pUEk8PAd2Ap4H/AV3RPVJ/FZGvlFJJwEdAeYDIIyLyndfD8hfgFPoDNKU8X6VUHDAXCPbmNUlE1lVjzwx+EU82IFdE/L0P1PeBq4E3gVzgb+ienp+Be0SkWCl1GboXKABwAEOBS4GnROQ6pVS4N582gB14QER2VRY6SqkfgeuALOBToAVgBp4XkbmVbM5DF0yZFdKSgE2Ax5vHo8Axb9lR3rR7ROSYt86FQC8gFvh9uWhRSj2N7unxBeaLyF+UUgG1sOl+4AHABzgEjBUR+5nKUrpf+n/AEOAIemN5/wzi6QDQX0SuV0oNAW4DRuAVPEqpu9E9UT7AZmAy8AL692o3sEdE7lJKfQm0BGzAf0VkmreMVK99pTXV80zEDh0pge07Yo6Ob9T/gA0M6hNXYT4nZr2DKy+H6DF3E9i161nn4S4ooOC79RRt24qnqAhMJnwS4rAmxGEODsbk54s4XWgldlzpmTiPn0QrLQWzmYAuXQnp1x9b6zaNoivMmZVF2jtvg0ejxfhJ2KLiqj3fYy/BkZ2BlpeDVpiPIy+HstwcXAW5uAryT3urKhIYFERUdDThYeGEh4USEhJCcHAwISEhp1/+/v7YbLYzvnx9fbFYLJjN5ipfJpOpyrQ6vMf1/mE1mSELSikL+gNwCfBHYKWI3KuUCgW2KKWWA5nAMBEpU0q1B+agP+QAegNdRORIpazvBL4VkRe8XpmzmSDmevSHbTllIjJAKRUJfAFcJSIlSqlngN8ppV5CF2qjRWSrUioY/QFckb8BO0TkJu+DfybQvRobhgNpIjISQClV1TodrwMHlFKr0e/fhyKSqpSayq8F2UJgpoh8qJS6F3gDuMmbRxwwAOgILADKPW/t0e+tAhYopQaii6+abPpCRKZ7j/8DmIgujqosCxgFdEAXzDHAXnShVxU/ATcqpcKAMcAs9O8OSqlOwGjgchFxKaXeBu4SkWeVUo+ISMV7fa+I5Cql/ICtSql5IpJT4Xht7n2VhF5xVW1PNTBoFjizMzk+6x08ZXbi7r3/rBf4dRcVkbf0Wwq3bgYR/LqmENCrO35dOmGynXkyUvF4cKQew759NyWbtlHyw05srVsTPvxa/Fq3Od9qnRc+UVHEPzCJtHfe5sTMqbQcPwnfahb/NvsH4J/YBhJ/a7d4PLiLC3EXF+EpKfJui3EXF5FdUkRGXiFaeiZaWRmaoxRPWRnicl7I6v2WSmLqF3GlfrUp3yk/3P6Pr0Tu/+uT59wTcC40BfHkp5Ta6d1fB7wHfAfcoJR6yptuAxKBNOBNpVR3dI9KcoV8tlQhnAC2Au8rpazAlyKys4pzKvOqUupP6N6ZiRXSy70OfYEUYIP3w/cBNqI//E+JyFYAESkEKqvvAcAt3uMrlVIRNTyUdwOvKaVeRveI/cZrJiJ/93Z5Xo0uFscAg6vIqx9ws3f/I+CVCse+FBEN2KuUivGmXe197fC+D0QXU+tqsgno4hVNod7rvq2hrIHAHG93aJpSamXVt+M0XwB3AH2AByukl3v6tnrvux+66K6Kx5RSo7z7Lb11qyiearz3ZyLY5ovD7aYB/jAZGDQ67CeOcuyjqWBSJDw4Gd8WLWp9rXg85K9dQ96K5YjbRdCAvgQNHYQ1qnZLtiizGVvb1tjatib0xuGUbNxGwZIVpE15i4AePYi87kYsQQ0Xg+gTHU38g5NImzqF4zOn0PaeR7FFncM6fhYL+EZBRFQ1JwkeTdBEf4nmQXOUoblciNvtfbnQvFtxuxGPG3G5ENFAE+9WQ0S8W033eFWVphfJr3ZOb850vJL3TH9/E/Du2d+Uc6cpiKfSSt4AvF04t4jIgUrpfwUygEsAE1BW4XBJVZmLyFqvt2Qk8JFS6lURmVmDTU9X7i6qVIYClonImEr2daPmyRGrepoK4EavUzk2r/0HlVKXAtcCLyqllorI33+TgcjPwBSl1HQgSylVm2FcFW11VGGjAl4UkXd+U4mabZoB3OSNw5rAr8VcVWVVtqcmPgG2o3vZtAoCVXnTnqvuYm9X71VAP2934mq89/y0MbW891Wx5dnJZ1EVA4OLl6+++oo7X3wW34AA4u97EAkLq/W1zox0MufOwXHiBH5dUwgbdR3W2OrEQfWYfHwIGtSfgH69KFy6moKlKyk9sJ+I628i+NJeNWdwgfCJjiH+wYdIe2cKJz6awpYNG+jcqVOD2dMIqVfhBL9+GDclvgUe9YoolFI9vOkh6J4dDRiLHodSLUqpVkCmtwvpPfRgY5RSM5VSvc/Rvk3A5Uqpdt68/JVSycB+IN4b94RSKsjbHVmRtcBd3uODgWyvhyq1gm09gdbe/XjALiKzgNfKz6lUx5HqF/XQHt0rlw8UARX/Un2H7q3Ba8P6Gur5LXCvUqo8Ji1BKRVdG5u85Z7yevzuqqEc0O/LHUopszdOrdrhNyJyDL179+1Kh1YAtyqlor02h3u/AwAurz2gf5fyvMKpI7o38VfUsp4GBgZVICL861//YtSoUZijo0mY/EithZOIULDxO07893VceXlETryb6En3nJdwqojJx4fQ664m/g+/wxoXS9bcOWR8OgfN6aj54guET0wscQ88hMPlolffvmzasqXBbDFoGp6nqnge+A+wyysKUtGDp98G5imlbgNWcQZvUyUGA08rpVxAMTDOm94NPcD8rBGRLK83ZY5Sqryz/U9eT8Vo4H/eOJpSdO9GRf4KfKCU2oUeMD7emz4PGOftwtwKHPSmd0XvRtQAFzCpCpPGAq8rpezoHqy7vCMOF6LHLt2IHjD+GHoX5tN4A8ZrqOdSbwzRRq82KwbuBtrVwqY/owdrH0Xv/qrJLz4fPVh8t7fua2o4n6o8Yt5Rhn8Clip9JJ4LeNhrxzT079R24F7gIe/ncABdEFemNvf+osBut/Pzzz+TkZFBYWEhpaWl+Pr64u/vT3x8PElJSYSGGkuQGNQOl8vFI488wrRp0wjt3oPI20aj1XJYveZ0kvXF5xRv/x5bSkcix43GHHxhZnO3xkYT8+RDFCxaRsHiFTiOHSNm7Hh8Y86h26wO8I2NI37SI6S/O40rBg/m6wULuOYqI36yIWj0o+0aAm8g93sicltD22Jw0dJoG56I8MMPP7Bq1Sq+++47Nm7axMkTJ2q8LjQigt6XXcYVl1/OkCFD6NOnD2Zj6gWDSmRnZ3PHHXewYsUKIq8aRvBVV9d6xKk7P49TH7yPM/0UIdcOI2TE0HobrVq6/yeyP5iNuN3E3D2OgPYd6qXcqnAXFJD+7jRcOTnM/HgWd91+e4PZ0kgwpiowMGgmNKqGJyJs2rSJzz77jHlffMGxo0cB8I2IwCexFQHx8VgjItECAlA2G8pi1YNFnU59xu6CfFzp6RSnpuLMzAAgOCyM66+7jvFjxzJ06FBjWQkDtmzZwq233sqp9Ayib7kVv56X1vpaR1oap96fjuZ0EnXvXfh16XgBLa0ad04umVM+wJWeSeSomwnp06/ebSjHY7eT/sG7lB07xkv//jfPPPFEg9nSCDDEk4FBM6FRNLy8vDw++ugjpk2bxp49ezBZLPi3Tyb0ku5Y2rbDHFLr2RdO47HbKT14AMeB/RTu+RGtrIyouDgm3nMPD0+aRIuzGEllcHEgIkydOpXHH38cn9BQYu8eD3HVz1lUEfvBA6R/9CEmPxvRkyfi06L219Y1WmkZWe/NomzvAUKHDCH8mmsbbE4ozekg8+NZlOzby10TJzJj6lQsF+GiybXAEE8GBs2EBm14x44d45VXXuG9996jrKwM/8RWhPfvjzWlC6Y6nHFYc7mw7/mRku3bKD5wAJPJxA2jbuaPz/yeXr0abvSSQf2Rn5/P5MmTmTNnDiEpnYm+YwyarfYzeRft2E7m3DlY42KInnQvlvCGj60Tj4fcufMpXr+ZoP79iLqh4RYsFk0j55uvKVi3hksHDGD5woXNMf7QEE8GBs2EBml4P/30Ey+99BIzZ85EA4J79iLs8gGYzsILcK64cnMp+m49BZs3oTkc9Ozbl5f+/neuuuqqRjGbs0Hds2LFCiZMmEDaqVNEXj2cwEGDz0pkFG7bStZnc/Ft14boBydg8m88S4mICPlfLqJw2WoCevYg5rYxDbq8UuGWzWR98TnRCS1YunABl1xySYPZ0gAY4snAoJlQrw1vz549/POf/+STTz5BmS2E9OlLyKBBmELq/x+qVlZG0ZbN5K9bg7uggM49evDKP/7BiBEjDBF1kVBSUsKf/vQn/vOf/xAYG0fMmDshLr7mCytQuHkTWV98jq1DO6IenIDJt/EtziwiFH67ivwFi/HrnELsneMwNeBivKWHfyZz9iyktIx//+d1Hp00qbm0KUM8GRg0E+ql4X3//fe88MILzJ8/H4vNRki/ywm+YiCmwAsztPtsELebwm1bKVi1AldeHh26duOVfzzP9ddf31x+8C9KFixYwKOPPsqxY8cIH3AFYSNGwlkKioKN35E9fx62lI5EPzAO5dNwgqQ2FK3ZQO7cL/Hr1JHYuyc0qIByFxeR/clsSg4e5Jobb2T2++8THl672dabMIZ4MjBoJlzQhrdhwwb+8Y9/sGTJEqwBAYRefgWB/S/H5H82SzfWD+J2U7T9e/JXrsCVm0P7zp158W9/Y9SoUcYIvSZEamoqTzzxBF999RWBCS2IuvkWTC0Tzzqf/PXryFnwJX5dU4i6byzK2jQCoIvWbyJ39jz8OnUkbuw9qAYM3BZNI3/1SnKXfktQaCgz3n2Xm0eNqvnCposhngwMmgl13vBEhG+//ZYXX3yRtWvX4hscTMgVgwjs0xdVh0HgFwrxeCjasZ2ClStwZmeR2LYtf//zn7nzzjuxNuA/eYPqycrK4oUXXmDKlCloShEx7BoCLx8A5xD/k79mNTnfLMTvki5ETbyrQQXIudCYBBSAI+0k2Z/NpezkSa69aRTT3vwfCQkJDWrTBcIQTwYGzYQ6a3gej4cvvviCF198kR07duAXHk7IwEH49+qN8ml8cSI1IR4Pxbt3Ubh6JWVpacQkJPCnZ59l4sSJ+PnVfpSWwYUlJyeHN998k3/9618Ul5QQelkfIq6+BjnHRXTzVq4gd8ki/Ht0I/LeOxs0+Pp8aGwCSjwe8letJG/lciwWC8899xzPPv30xdaWDPFkYNBMOO+GV1RUxMyZM3njjTc4ePAgAbFxhA6+Et9ulzT4D3ZdICLY9++jcNUK7KmphISH8+Tjj/PQgw8SExPT0OY1W1JTU3n99dd59913sdvtBHftRvS1I5GIyHPOM3fZUvKWfYt/rx5Ejh/dZIVTOUXrNpI75wv8UjoRd/eERtEeXbk55C36hqJdPxAZF8ff/+//mHjvvfg0wT9YVWCIJwODZsI5N7x9+/bx1ltvMXPmTIqKighslUT44CuxdEppsLlmLiQiQtnhwxSuWUnx/v2YLRZuHDWK3z3+OP379zeCy+sBl8vFokWLeO+991i0aBECBPe8lIjBV0JU9DnnKyLkLV1C3orlBPS5lIixt1803+HGKKAASg8dIu/bRZQePUpkbBz/98c/cM+ECQQ2gkEk54EhngwMmgln1fBycnL49NNPmTVrFt999x1mi5XA7t2JGDAQFX92Q8CbMs7MTEo2byR/6xa0sjLaJCczcfx47rrrLlq1atXQ5l1UaJrGxo0bmTdvHrNnzyYjIwNbaCgBPS8ltP8ACA4+r/xFhNzF35C/ehWB/XsTfuctF41wKue0gGoEo/AqIiKU/nSQguXLsKcewS8wkAnjxvPIw5NJSUlpaPPOBUM8GRg0E2pseGlpaSxatIgFCxawePFi3G43AfEJBPa8lIBLe6ECAurDzkaJ5nBQvGM7Jdu/x556BIBeffty5+23M3LkSJKTkxvYwqZJdpXQ5QUAACAASURBVHY2q1evZtmyZSxYsID09HTMFgv+HTsR0bcvprbt66RLTUTIWbiAgvVrCbyiH+Gjb7rohFM5p2OgOnYgduw9jUZAgf45OI4dpWTTRgp27kA8Hjp26cK4O+9k9OjRtGnTpqFNrC2GeDKoGaWUB9gNWIB9wHgRsSulikXkrH2vSqkngGkiYve+XwTcKSL5dWn3WdiTBHwtIl2qSN8HHAB8gG3ARBFxVZPXX4FiEXmtUvpg4CkRua7uLD8rftPwCgsL2bhxI+vWrWPJkiV8//33ANgiIvDv2o2wSy9DoqONbqpKuHJzsP+wk6Id23GkpwPQsnVrbrruOgYPHszll19uxEhVgdvtZv/+/Xz//fds27aNtWvXsmvXLgAsNhv+HTrqaxy2a1+nozVF08j+aj6FG78jaPAAwm67oVF8p8XlwnHkGK70DNzZuWhlZaAJyuaLJSwUa1wMvq0TMZ1DoHXRhs3kfvw5tg7JxI27t1EJqHI8xcWU7NhO8a4fKD2aCkC7Dh0YOXw4w4YNY+DAgQSd42CAesAQTwY1U1EkKaU+Br4XkX+fh3hKBXqJSHYdm3pO1CCevhaRLkopM7AMeE9EPq4mr79yAcSTUsosIp5zuRYgNzdXdu/eza5du9i9ezdbt25l165daJqGMpnwT2xFYEpn/FNSUFGGYKotrtwcHAcOYN+/j+JDPyEuXVe3TEpiQP/+XNKtG127dqVLly60bNnyor+vIkJubi6pqan89NNPHDx48PR21+7dlJWWAmDx9cU3sRWB7ZPxb9ceFRd3QYK2RdPI+vxTirZtJXjYlYTe1LCzymtOJ6U/7KF48zbKDh4Gt1s/YLFg8rehTArNXoY4vf/PlMInqSUBvboT0KsH5qDa/9wWf7eFnI8/x9a+HXHjJzZKAVWOKy+X0t27KT14gJIjhxGXC2Uy0S45mX59+tD7ssvo1q0bycnJRDeOP3SGeDKomUri6SGgm4hMLk9XSgUCXwFhgBX4k4h8pZQKAD4FWgBm4HkgBngN3ZuTLSJXVhRTSqlxwFPonpJdIjJWKXUb8BfAAxSIyMBK9p2p/CRgMbAe6A+cBG4UkVKl1KXA+4Dde3xEdeLJ+/4lIFdEXqlkcy/gNREZ7BVPbYEEoCXwiohM94qnvwM5QAdgLTBZRDSl1NXA3wBf4GfgHhEp9pbxPnA18CYQDTwEuIG9InLHWXyGpxueNSAQn/g4/Fu3JbBNW4iPr9PFeZsr4nbjOHkC97FjlKYewX7sKO6CgtPH/QICSExMpE1SEklJSbRq1Yro6GgiIyOJiIg4/QoODsZqtTbIA0LTNBwOB2VlZae3paWlFBQUUFBQQH5+/q+2eXl5ZGRkkJaWRtqpU6SfOoXT6fxVnrbwCMwREfjGxRGY2AoVG4c5MvKCd5uJx0Pm3DkU79xByLXDCBk5rMEeup4SO0Wr11O0aj2avRRzZBj+PVOwdWqDT1IC5tCg0/dDRNBKSnEeTcNxIBX79r24jp8Ci4XAvpcSPGww1qjajTQs3riVnFmf6QJq3L2YmsBIN83loiz1CJ5jRyk9dgz78WN4iotPHw8ICqJ9+/Ykt2tHXFwc8fHxp1/h4eGEhoYSEhJCcHAw5gs3itIQTwY1U0EkWYB5wBIRmVIp3V9ECpVSkcAmoD1wMzBcRO735hMiIgWVPU/l79GF1RfA5V5REi4iuUqp3d58TiqlQit371VTfivgkLesnUqpT4EFIjJLKbULeFRE1iilXqUG8aSUsqELscdFZFcN4mkU0BcIAHYAfYBkYAmQAhz17r8DrPbWeYSIlCilngF8ReTv3jLeFpFXvPakAa1FxFHVfaiOiJHXi29cHD6xcZiDgxvDP7dmgcdux5mRjis9HVdWJq68PFx5ebjz89Ds9jNfqBRmX18sPj6YfXww+/hitlpQJjPKpFDKpG9NJpQygdL3EUFEQzTvSwTxeLen07xbjweP243mdOFxOdHcbrRyT0htMJkw+/lhDgzCHByEOSgYa0gIlqBgLKGhmCMjsUZENojHQ9xuMuZ8TMnuXYTeOIKQa4bUuw3gnYh17Ubyv/4WKS3Dr2cKwcP649ux9VmJR+eJDIqWfUfx+u0gQvCVlxMy4qpadekVb9pGzkefYmvXVvdANQEBVRERwZ2fjyszA3dWFs7sLJxZmbjz8vEUFaI5HGe81mKzYfX3x2S1Yrb6YLZaf/Uy+VgxmS16O6rQnpRScLqd6e+V6Zd2tm/hgnr/AW0cYycNzhY/pdRO7/464L1KxxXwT6XUQEBD97rEoMdJvaaUehldhKyroZwhwOflokpEcr3pG4AZXvHzRRXXnal8gCMiUm7790CSUioECBWRNd70j4ARZ7Cprbfu7b227aqhDgBfiUgpUKqUWgX0BvKBLSJyGEApNQcYAJShC6oNXkHjA2yskNfcCvu7gI+VUl8CX9bCjtOEDb4Sk1L1/3epmWMOCMCnTVto0/Z0mqA/EDwOB56SYjwldjR7CZ6SEjx2O+J0IC4XmtOFuJz6vsuFx+UCkdMCCRHE5dbTvKJIKQXKBKYKDwCrFZTS07wPgPKHgMVqRVks3pcVZTHrW+uv35tsNsx+fphsNkw2P0x+NpTVR3+owOltY8BTVsapDz+g9NBPhN1yA8FDr2gQOxzHTpDz0ae4Tp7C1qU9YaNH4JMYd055+bSIIeKeUYSMGkrBvGUUrlhH8ebvCb/jZgJ6dKv22sC+vUApcmbO5dQH00kYPxFzU5qwUiks4eHYwsOhY6fTyQJoImhlZbiLivAUFuIptaOVlaKVlv1qK243Hrcbt9uNuN1ISTHi9uj7bvev25Sm/dLONAH57ft2r/77/kNP/256fd4GQzw1TUpFpHs1x+8CooBLRcTl9ZjYROSgt3vsWuBFpdRSEfl7NfkoqghsFpGHlFJ9gJHATqVUdxHJqal877GKf0s8gN+ZyjkDP4tId6VUHLBaKXWDiCxA7zor/+tYuc+rct5STboClonImDOUX1JhfyQwELgB+LNSqrOI1MpVsOTe8eSXltXmVIMmgiaCIGgiv/5mKVAoXS8pReORNRee7MxMnhg/DseRw8RMuBNb7x71boNoGoXL15C/YAnmkEAiH74L/8s614m31xIaTMTEWwgc2pfcD+aTPf0jSvv0JPy2mzD5n1kQBfa5FGUykf3hJxTP/IAPP/2MiKio87anKSIILo+G0+PG5dFwa7+8NBE8p7dyuo2JiPdPj57HC6tWL6hvuw3xdHESAmR6hcuV6N1lKKXi0WOEZimlioEJ3vOLgCCgcsD4CmC+Uup1Ecmp0G3XVkQ2A5uVUtejxxJVFE9Vln8mRCRfKVWglBogIuvRxVe1iMgppdSzwHPAAiAVuBS9K++WSqffqJR6Eb3bbjDwLHq3XW+lVGv0brvRwDT0Lsa3lFLtROSQUsofaCEiBytmqJQyAS1FZJVSaj1wJxCI7tGqkXYREbU5rdGgaRrp6emcPHmSrKwsNE0DIDIykvj4eOLi4oz15wx+xaFDhxh9260cT0sj/uGJmDu2r3cbPEXFZL//MWUHDuHfqwvhE0ZhDqr7xbF9kxKI/fMkChauomDBKhyHjxL1wDh8Es48B1vAZT0w+fuROW0md95wHVvXrG1KUwM0Ku7p1TOjvss0xNPFycfAQqXUNmAnsN+b3hV4VSmlAS5gkjd9GrBYKXVKRK4sz0RE9iilXgDWeKdH2IEuuF5VSrVH99KsAH6oZfnVcQ/wvlLKDnxby3p+CfxVKXUFeoD3e0qpPwCbK523BfgGSASeF5E0pVQyenfcS+j3ZS0w3xswPgGYo5Ty9V7/J+BgpTzNwCxvl6MCXm+oqR0uBC6Xi/Xr17NkyRI2b97Mtu+/p6RCkGhlrD4+pHTtyoC+fRk+fDhDhgzB37/uH1IGTYM1a9Zwyy23UOJyEf/kQ9Cy/hejdZ48ReaUD9CKigi/52YCB/W6oLGFymImdNRV2Lq0J/vNj0l/9U0i7r6NgF5n9rb5de5IzOMPkPn2B3S77DLWrVxJj0suuWA2GtQdRsC4gUHD0OganoiwceNG3nvvPeZ98QUF+fmYLBZ8Wybgm9QSv/hYVEgIWoCfHseDoJXYkYJCtMxsSlOPU3r0GOJwYvX15erhw5n8wANcffXVWBrJ0hQGF57p06czefJkfKOjiJ50D1pEWL3bYN+1l+wPPsZk8yXq8bH4tm1Zr+V78ovIems2joOphFw7lJCR11Qr3Jxp6WS9+S7K6eSzTz/lxpENNf1ck8UYbWdg0ExoNA3P4XAwc+ZMXn/9dfbt24fF5otf926E9OiKat8Gk8235ky8iMtN2c+Hcf24n8It2/EUlxAeHc0Tjz3Gow8/TGho6AWsiUFD4nK5eOqpp3jjjTcI7ppCxL13ovnW/rtTVxSt3Uju3Pn4tIon6vGxWMJD6t0G0EcY5sz4ipJ12wjo34uIMbdWO3eWOzeP7KkzcJw8xQuvvMJz/+//GaNwa48hngwMmgkN3vAKCwt55513+Pfrr5N+6hT+SYmEDOqP5ZIuZyWYzoS43ZT+uA/7+s2U7D2Ar78f993/AH969lliY2ProAYGjYWjR49yxx13sGnTJsKuGkTQTdfW+3IrIkLht6vIX7AYv0s6EDn5Tky2hp0GQEQo+HIFBV+uwNY5maiJ46ptW1qZg5wZc7Dv2sPt48cxa/q7Rixh7TDEk4FBM6HBGp7T6WTq1Kk8//zzZGdnE9ApmYjhV0G7pAv2T9d5/CTFK9ZStG0nVh8fHn7kEf7yxz8anqiLgK+++op77rmHEoeDyLtvxdq9a73bICLkz/+GwuVr8O97CZH33YayXrAJGc+aotVbyZ0xH982iURPvg+T35knwRVNI3/BEgqXriKl16Us/fIrEhLqP2asiWGIJwODZkK9NzxN05g7dy5//OMfOXLkCAEdk4kcdW29BvO6MrMp/GYpxVt34BcUyDPPPMPTT/7OCC5vghQVFfHMM88wZcoUAlu3Imri3Wjh9S+GRdPInfMFxRs2EzikL+Fjr2+UiwyXbN1N9pRP8ElMIPrhiZj9q1/Yu3jLdnLnzMPPz5/PZs/m2hFnmvrOAEM8GRg0G+q14S1fvpxnnnmG7du349eyBZE3j0Qlt22wmArniTQKF35Lye69hERF8tLz/+C+iRONwPImwvLly7nvvvs4duwYoUMHEnz9cLDW/2cnIuTOmUfx+s0EXzeY0FuvbtRxQvYd+8h682N84mOIfuR+zIHVr43nSs8k591ZOE6l88jvfse//vlPfJrYjOT1hCGeDAyaCfXS8Hbt2sXvf/97vv32W2xREYRfPwJLz66N5p952c9HKPxyMaU/H6FFm9b899XXGDVqVKN+ADZn0tPTee6555gxYwYBcbFEjr0dkup3JFs5IkLep19StOY7gkcOIvS26ke0NRZKdx0g641ZWKIjiHnsQcxBQdWerzmd5H+2gKINm0nqkMy82XPo2bNnPVnbZDDEk4FBM+GCNryTJ0/y5z//mRkzZuATEEDw8CH4XdFXXxqkkSEilO7aQ8FXi3GmZ3JJr17879//5oorGmYZD4Pf4nA4eOONN3j++eexl5YSMnQgQdcOaxBvE3iF07yFFK1cR/DwKwi9Y0STEE7llO45RNbrH2KJjdIFVED1XXigT7+QO/tztBI7v3v6KV7469/wbYDRjI0UQzwZGDQTLkjDKyws5OWXX+b111/H6XYTPPhygq8ZAtUsFdFYEI+Hkk3bKPhmGe78Aq4aMZz/vPoanTt3bmjTmi0ul4sPP/yQF154gdTUVIIv6ULELTegRdb/3E3liAj5Xy6icNlqgq7qR9jd1zcp4VRO6e6DZP5nJj4JccQ8dj8mv5rj/jwldgrmLaRo0zZiExOZ+r//ccP1TbP+dYwhngwMmgl12vDsdjtTp07lpZdeIisri+DePYm4cQRaWNMbzaY5nZSs3kD+tysRh5Mxd93FSy+8QMuWDdM91BwpKSnho48+4uWXXyY1NZXANkmEXT8cU4e2NV98gclf+C0Fi5cTeGUfwsff2KSFg33nPrLe+BifVgnEPHI/JtuZR+FVpHTvAfI/X4AzPZP+Vw5m6n/foGvX+h/l2IgwxJOBQTOhThpeuWh6+eWXyczMJLBTMpGjrkNanNtq8Y0JT3EJJUtXkb96PWaTmYcmT+K5p39PfPyZ1wszOD9+/vln3nrrLd5//30KCgoIaN2K8OuvQXVo1yhESv6iZRR8vZTAgb0Iv2dUo4ndOx/s2/aQ9dZsfNsmEj35fky+tQsIF4+HotUbKFi0DK20jOtGjeLlf/yDlJSUC2xxo8QQTwYGzYTzanhZWVm88847vPnmm2RkZBCU0pHwkVdD64vPO+POyaPom6UUbv4es9nM6DFj+OOzzzbXh0Sdk5WVxWeffcbs2bPZsGEDJrOZwJ7dCBsyEElMaBSiCaDg25Xkf7WYgMt7EHHfrReFcCqnZPMusqd8gq1DW6IeuheTT+1jEz0ldopXrKVg1XrE6eSakSN57qmnGDhwYKP57OoBQzwZGDQTzqnh/fDDD7zxxht8/PHHOBwOAjt3JOLaYdA6sa7ta3S4snMoWbmOwg1bEJeLAVdeyWOTJnHDDTcYgbNngYiwa9culixZwpIlS1i3bh0ejwf/FvH4X9qdgL69IKT6EWD1TeGKNeTN+1qfAPPB2y8q4VRO8Ybt5Ez/HFvnZKLvn4A6y2B8T3EJxSvWUrh+E1qJnfYpnfh/jz3O6NGjm8NktIZ4MjBoJtS64WVkZDBnzhxmzpzJjh07sNh8Ceh9KWFDByJRERfSxkaJp7iEknUbKVq/GXdePsFhYYwbO5Yxo0fTt29fTBfhg/V8KC0tZfv27WzatIlNmzaxfv160tPTAQhIbIFvSgeCeveA2JgGtrRqCldvIO/TL/Hv1YXISXegLOc/c7hoGq7j6ZTtP4zrVDbu7DzE4QSTwhwciCUqHN82LfHt2BpzYP1N4Fq0eiu5H3yBX7dORN03DnUO855pThf2rdspXr0Bx8lTWHx8GHHttdwzbhzXXHPNxTohrSGeDAyaCdU2vEOHDrFw4UK+/vpr1qxZg8fjIaB1KwJ798T3sh6oJjB67kIjmkbZvoOUbvqeop27weMhPCqKW26+meuuvZYrrriCsLCGGxVWn4gI+fn5HD16lP3797N371727dvH3r17OXjwIG63GwBbdCSWVi0J7twJc4e2mEKCG9jy6ilav4nc2fPw65FC1MN3nveSK86TGRSv3UbJdzvQCksAMAX5Y40KxeTng2iCJ78YV2Y+eDxgNuHXuR0BAy7Fv1fnahf2rSuKVmwid+ZX+HVPIWriuHMuU0RwHj2BY9sOCrfuwFNUjNXHh4GDBnHTDTcwbNgwkpOTL5auPUM8GfwWpZQH2A1YgH3AeBGxn2eefwfWisjyMxx/CLCLyMzzLCcJ+FpEupzDtROApSKSdj421BXeuvQXkdl1kN3phici/PTTT6xfv57169ezbt06Dh06BIB/i3hsXVMI6t0TYqLqoNiLE620lNIf9+PctZei3XsR5/9n77zjoyj6P/6eu0vu0gtJICFAACH0Lk1AAUUUFBRBLNh7fez6e/RBUewNsRcEH1ERRYog8IgK0nvvvYT0crlLcm2/vz/ugiEmEEN69g372t3Z2ZnZzc7tZ7/znRknSinad+rEwAED6NatG507d6Zdu3a1polPRLDb7aSnp5Oenk5GRsap7fT0dJKTkzl27BhHjx7lyNGj5Nntp85VBgOWmGgMDaOwxMUR2KIZNInDEFqzmuPOhG3VOjL++z0BnRKJfvBGlH/5x5RyHj1Jzpwl5K3fAUYDQd0TCe7dlsD2zfGL+ruA1JwuHAdPYlu7m9yVO3CnZWOKiSDsikEE9etW6c2G1v+tJOvreQR27UDUbTees2gTj4eCfQdw79hL7raduFLTAAhv0IB+ffsyoH9/unXrRseOHYmJiamIS6hqdPGk83eUUjYRCfZtTwc2iMjbRY4bRcRTbQU8A+conv4AHheR9SUcq/JrVkpd5CvP8HNN67333pPt27ezfft2tm3fji03FwD/kGD8WjQjuG0i5nZtUNU4nk5tRVxuHIeP4jlwiLzd+8k/fBRxOgEwmkw0TWhGy+YtaNG8OQkJCcTFxREZGXlqiYiIwGKxYDabMZvNZ20G9Hg8FBQUkJ+fX+o6Pz+fvLw8cnNz/7ZYrdbT9nOK7DsdjpIzNSj8QkIwRYSjwsMwN4jA3CASU2Q40iASY0z0P/aZqUnY1mwg46sZWNq1JObhm1Dm8g3uqtnzyfphEbbf12IIMBM+rDdhQ3viF372QSkLEY+Gbd1uMmf9ieNAEv7NGxN50wjMLSq3c4Z18Qqypv9MYLeORN16Q4VavVypaTj3HcJ96Aj2fQdxpaWfOhYZFUWnjh1pk5hIQkLCqaVZs2ZER0djrALrWznQxZPO3ykmnu4BOgHfA+OBk0AXoCPwKnARYAY+EJFPfOc8CYwDNOAXEXlaKTUVr6j5QSn1KnAl4MZr6XlcKfU8YBORN5VSXYCPgUDgAHCbiGT5xM0aYCAQDtwuIn8WK3uCL58OPkvSlb50WgI/iciTSikj8AXQA69FZgpwDJgKnADygT54rW5TgCHA+8A9+MSVUioKWC8iCb58RgJGoAPwFuDvuwcO4HIRyVRKtQQ+AKKBPOBOEdntuzdWX3kaAU/67tNqoC1wCJgGLAa+9KVtAEaJyL4y/ElRSolfSDB+sY3wi21IULN4jAlNUTFRddIZtjoRTcOdloHrRBJyIhlHajqO9Ay0zCzcubaznm80mfDz8wMFogmapiGahuZbyovRYsFoMaMsZpTZjDL7g8WM0WLBFGDBaAnAFBKMMTgQQ1AgEhCABAViCA7CEGCps8+JfcMW0qdMx5zYnJhHbsZgKd9cbnkbd5Ix9Sc0q53wy3sROfoiTCHlb+4WEXL/3EbaV4vx5NgJu/Iiwq4cVKlNedaFy8n6dj6B3TsRdcv1lZaXJ9eG80QSnEzFmZRM/vEk3BmZeGz20+IppQgNDycqKoqGMTHEREcTERFBcHAwQUFBBAcHn7ZtNpsx+epPaYvJZEIpdWoxGAyn7Z9tMRgMREVFVbl4qr2fJvUQpZQJuAxY6AvqCXQQkUNKqbuAHBE5XyllBlYopRYDbfAKiV4ikqeUiiyWZiRwFdBGREQpVVK3jK+AB0Vkqa+5bzzwL98xk4j0VEpd7gu/+CyX0QXoilfE7FFKTQZigMaF1imlVLiIZCulHqCI5cnXNl8gIv18+/ecIZ8OvnwswH7gKRHpqpR6B7gJeBf4FLhHRPYppXoBHwKDfOfHAv18928u8APwNEUsT76yTxKR6Uopf7xirUzEv/IchtCQuuJvUKNRBgN+DaPxaxgN3TpT1OagOZx4cnPR7Hl/LXn5iNtdZPGA2w1KnbYog2/bYECZTCg/P99S0rYJg78/ymLGYDGj/P3rrPg5FwotTubzmpVbOInTRdaMX8j9dRXm5rHE/PsGAlqe+9hgSilCB3QiqHtrUj+fT87s3yjYvo+o+2/AFBl2zumXROjQfiBC1ncLSDcYiLppbKUIKGNIMAFtWkOb1gQAhVejFRTgzsz2CqnMLDy5Njy5dk7a7RxPTUY7uB8tvwBxONEcDjiHj4lzodmHb7Q8fO/jB6oyT1081Q4ClFKbfdt/4rXS9AXWisghX/gQoJNS6hrffhjQCq+Y+bLQR0pEMoulbQUKgM+VUvOBn4seVEqFAeEistQXNA2YWSTKLN96A5BQhmtZIiI5vrR3As2AHUALnxiZj9eiUxozypAHwO8ikgvkKqVygHm+8G1471Mw3ns4s4iAKeoMM1tENGCnUqq0bkirgH8rpeKBWWW1OgHExsaS73ZXva1Z53T8zXCWiVl1qobMZSvJ+O8MLG2aE/3wTeUSTu7MHNLe/QrnkSTCr+hD1PUXYzgHX6mSMAZZiH14FEHdW5Py0VySX3if6AdvxHxeswrNp5DQy/ojmkb29wvJUopmt91UIT0Oy4S/GULDIKHka/OIoImGRxM8ouFxufA4nIjDiTgc3o8Pj4Z4PKD51h4P4tF8aw+iaVDYAiZy2rZ3U3weor5jxcJ80bvjbRWpMnTxVDvIF5EuRQN8L/yiNlWF1zq0qFi8oZyhZ5eIuJVSPYHBwFjgAf6yvpSFQqcMD2V7noo6cXjwWq6ylFKdgUuB+4ExwG2lnF/0mt14m8vAa2EqLR+tyL7mK6cByC5+X0s5v0SNIyLfKKXWAMOARUqpO0Tkt1LSO421N99blmg6OvWC9957j4e/+o7QLm2JfOB6pBz+Wo6Dx0h7979oTiexT19PyPmJlVDSvwjt1xFz04YkvfoNya98RtSd1xDUu7Sfk3MjbNiFoBTZM37BEhTKsvm/EBCg97gtwvdVnaFuN647LALuVUr5ASilWiulgvBacW5TSgX6wos32wUDYSKyAG9T3Gm132clylJKFU5xPw5YSgXi81cyiMiPwHNAN9+hXOBMZoHDeL84AK45Q7y/ISJW4JBSarSvDMon4M7EaeVRSrUADorIe3ib9jr9kzLo6NR3RIRXX32Vhx9+mLDzOxL5wA3lEk5567eT8vKnKLOJJi/fUenCqRBz0xiavnYXAa3jSf/4e3J/W1VpeYVdPoDIW65i/R/L6HZhP6xWa6XlpXN2dMtT3eFzvM1mG5XXLJUGjBSRhT6H7/VKKSewAPi/IueFAHOUUha8FpZHSkj7ZuBjnwA7CNxawWVvDHyplCoU88/41lN9+RY6jBfnTeB7pdQ4oEwWn2LcAHyklHoW8AO+A7acIf5WwK2U2uIrmwW4USnlApKBCeUoQ43F7XazadMm1q1bx549e9i3bx+paWlkZGbicjnx8/MnMDCQ+MaNada0Ke3ataN79+507dqV4ODg6i6+Tg3H4/HwGcm3JQAAIABJREFU6KOP8t577xHWtyvht49CytEcZVu2nowps7C0iif2qev+UU+6isAYEkjjZ8dx8u2ZZE6bi2bPI3T4oErxZwwZ2BNDoIXdn8ygQ++ebFj6J9HR+hAm1YHe205Hp3qokRUvJSWFn376iTlz5vDn8uXYbd7eaEaLGb9GUajQIExBgRhMJsTtQStw4MzKwZORjSfX26Jq9DNxfu/ejLh8GFdffTWtW7euzkvSqYHk5+dz4403MmvWLCIuG0DImEvL5UBvXbScrG/mE9i5JbFPjMUYUL6eeRWBuD0kfzCb3GVbCRs5kPCrhlRaXvlb9pD2/nQiG8aw4tffSNTrmD5UgY5OPaHGVLyCggJmzpzJlClTWLZsGZqmYYmLwdy2JcHtzoPmcRgjw876Je3OtuI8nIRn3xHsW/fgOHoSgPZdu3D3rbdx/fXX06BB/ZtORud00tPTGTFiBKtWrSLqhisIvKQko/LZyZ69hJyffiW4dzsaPjwKYwU7hpcH0TRSPpqL9bdNhI8eQtjwgZWWV8G+I6RP+i8mpfh59lwuHlh5edUCdPGko1NPqPaKd+jQIT788EOmfPklmRkZBMTGENi7E4Hnd0TFRZ9zs4M7M4f8tVuxr9iM42gSfmZ/xlx3HU89+hgdO3asoKvQqU1s3LiRq666iqTkk8TcfS1+PdqXK52ceb+T/cNiQi7qQqP7rqySaVPKing0kt//idxlW4m4/jJCLx1QaXm5UjJIf/crXKkZvP/xR9x3+52VllcNRxdPOjr1hGqreHv37uXll1/m66+/RoDA7u2JGNwHldis0sadch49Sd5va7Cu2Ig4XfQa0J+Xxz/PwIED9bGu6glff/01d955J4aQIKIfvBGaNSpXOoUjb4cM6ESjB6+qkeNlicfDyXd+xLZqB5E3X0HIoL6VlpfHnk/G+9PJ33mAcXfdyeeT38ffv/qaL6sJXTzp6NQTqrzi7dixg4kTJzJjxgyUn4mQgb0IG9ofIqpunCOPzY596XpyF6/EnW2lY4/uvDbhRYYOHaqLqDpKfn4+Tz75JO+//z4h7c4j6r7r0co50nfu0nVkTplFUM+2xD0+ukZZnIojbg9Jb8zAvmEvUfddS1DPs3XmPbe8smf8gnXxChK7dmbx7Lk0bdq00vKrgejiSUennlBlFW/z5s289NJL/Pjjj5gCLIQO7kPwpRegQqu2V1JRxOnC9ud6rPOX4c7IJrFzR159fgIjRozQRVQdYtu2bVx//fVs376diKH9CR19KZRzgEf76i2kfzyDwM4tiXv6Ogy1YO4+zeHi+ISvcOw/Qczjt2Bpe16l5mdft43Mz3/EbDYzfdpXXDViRKXmV4PQxZOOTj2h0iveunXrePHFF5k3bx5+gQGEXtKXwCF9MARXn2gqjrjd2JZvInf+UlypGbRs15ZXnn+BUaNGnXVCXp2ai9vtZtKkSfz73//GEGihwZ2jMbZvWe708jbuJO396QQkNiHu3zdiLOd8d9WBJzePY89OwZVhpdEzd+LfrHGl5udKTiPjg29xHD3JNTdezxcffERoaGil5lkD0MWTjk49odIq3ooVK3jppZdYuHAh/sFBhFx6AYGDe2MIqrkjEovHg33VFnJ//gPnyTSaJ7bmpf+M59prr62ps7jrlMKGDRu466672LhxIyHd2xN12yi04PI/e/k79pP69lTMCY2IH38zxkDz2U+qYbjSczj2f58jHo2Gz96DX3Tl9joVl5ucn34lZ8EyIhs15L9fTOHyyy6r1DyrGV086ejUEyq04okIS5YsYeLEifzxxx+Yw0IJGdqPwIE9UQG152Ujmkbemq1Y5/2B80QKTVu24MX/jOf666/HZKr5zTT1mbS0NCZMmMCHH36IOTyUiBuuwNS97Tk1wxbsPUzqG1Pwi40k/vlbMIUGVmCJqxbHsVSOPTsFY0ggDf/vboyhle9r6Nh/lMzPf8B5Mo1Lhg/js/c/oFmzypmDr5rRxZOOTj2hQiqepmnMnz+fiRMnsmbNGgKiIggZ2h/LgO4oc+1p2iiOaBp5G3aQO/d3HEdPEtesKROe+w833XQTfn5+1V08nSLY7XbeffddXnvtNWx2O2GDehF+zaXIOYp2x6ETpLz2GabwYOJfvA2/iNo/an3+7qMcf2Ea/k0aEvPUXRiqoI6Ky4114XJy5v2GEQP/euQR/v3UU4SHh1d63lWILp50dOoJ51TxcnNzmTZtGpMnT2bv3r0ENIwibNiFmPt2gVrgSFtWRNPI37yb3Lm/U3DoOJENY3jo/vu59+57iImJqe7i1WuysrL46KOPmDRpEqmpqYT26ECD0UPRGp17k5TzeDIpL3+KIdBM/Eu34R8VVgElrhnY1u4m6Y3vCOjUiugHb0KV04H+n+LOyMb6/UJyV28hMCSEJ594nEf/9QghIVXX27YS0cWTjk49oVwVb+fOnXz22WdMmTIFq9VK8HnNCBtyAcYe7Wp0t+1zRUQo2LoX+6+rsG/dg9HPj1Gjr+FfDzxI79699R56VUjhM/j5559js9kI6dSGyJGDoWV8haTvSk4n5eVPwQDxL96GOTby7CfVMrIXryf1k3kE9+9G5O3XVOnz6zySRO7sJdg27iQgJJg777iDRx56mISEhCorQyWgiycdnXpCmSteRkYG3377LdOmTWP9+vUYjEaCe3Ykcmh/JCGuMstYI3GdTCNvyRpy/lyHFDhp0qI5d95yK+PGjavtL4AaS0ZGBrNmzWLKlCmsXr3a+wz26kTk8IFI44qbmNadkU3ySx8jLhfxE27F0rTuWhfTZ/xO5vd/EHblRYSPurTK83ccPIZ90Upy125FAYMvHcLdt93O8OHDsVgsVV6ec0QXTzo69YQzVrwjR44wZ84c5syZw7Jly3C73QQ1jyeobzcsvTuiQmu//8e5ouUXkLduO/krN5O36wAAnXt0Z/TIqxgxYgTt27fXLVLlREQ4cOAACxYsYPbs2SxbtgyPx0Ngk1iC+ncnsG8XCKnYIS/cWVZSXv4EzZZH4+dvIaBlbIWmX9MQEVI/nkfOrxuIvPlKQgaVb46/c8WdkY39t7XkLl+PJzuXwJAQRl9zDVePHMmgQYMIDq4VvzW6eNIpH0opD7ANMAG7gJtFJK96S3U6SqmLgMdFZHgJ4XOAQ76gdBG5+BzzugXoISIPlHK8CxAnIgvKkNZDwL3ARuA2YD4QBbwiIjPKWcTTKl5KSgrLli1j6dKlLF26lO3btwMQGB+LuUsbQvt2gcZ19yv8XHGnZZG/Zgt5G3dScOAYALFN4hky+GIuuvBCBgwYQPPmzXUxVQoOh4OdO3eydu3aU89gUlISAIFNYrF0bUtIjw5I00aVcg89VhvJL3+KJyuHxv+5icDEJhWeR01EPB6SXveOQh79wHUE9qi+OR9F0yjYdRDHqi3krtuGVuDA5OdHvwsHMPTiS+jbty89evQgIKBGDnmiiyed8qGUsolIsG97OrBBRN4uctwoIp5KyrtMaZ9FPP0t/BzLdAtnFk9nPF4s7m7gMhE5pJTqDbwmIheeS/nmzp0rmzdvZvPmzWzavJnDh7y60WQxY27VjKCOrbF0bYuKqXv+HpWNO9tKweY9OLftxb77IJrN+w3RICaabl270r1rNzp37kzHjh1p3rw5gYG1t/v7P0FEyMzM5ODBg6eW3bt3s3nzZnbu3Inb7QbAHB6KX2ICIe3Ow9SmBYYKcAA/Ex5bHimvfoY7JYPGz95IYPuESs2vpqE5nBx/fhqOQ8nEPHErlsQW1V0kxO2mYO8R3Nv2Ydu8C2dSKgBGk4n2HTvSo2tX2rdvf2qJi4ur7kFtdfGkUz6Kiad7gE7A98B44CTQBegIvApcBJiBD0TkE594mQBkAInAMuA+EdGUUh8B5wMBwA8iMt6Xx2FgCjAEeB/IBF7wpXsAuFVEbEqpocC7QDpey02LsoonpdR1wP/hrRjzReSps4TfCjzju969gENEHlBKjfbdBw+QA1wM7Pdd0wngFaAtYBORN31pbQeGA0/jtTbtAb4G7gSi8VrJRvn2rwTcwGIRefxsfytf+oJSBMRGY4hvRFCLJpjbNEc1aVRlvW/qA6JpuJJSce89guvAMfKOJOFKSkU8f2n9BjHRtGzRgvNatCQ2Npbo6Giio6OJiYkhOjqasLAwgoODCQoKIjg4uNqGStA0DafTicvloqCggNzcXGw226l14XZubi7p6emkpqaSkpLiXaemkJycjC3Xdlqa/hFhmJo0IqBZYwIS4iC+IYaGDarMQqflFZDy+uc4jyUT98wNBHcp/yjktRlPbh5H/+8LPDk2Gv7f3fjHl2/S5MrCk2vHceAo2oET5O8/jON4Mh6r/dRxP39/YuPiSGjWjIRmzYiPjycqKooGDRqctoSGhhIYGEhAQEBFj9umiyed8lEonpRSJuBHYCHe5rv5QAef1eQuIEZEXlJKmYEVwGigmS9+O+CIb/sTEflBKRUpIplKKSOwBHhIRLb6xNOHIvK6UioKmIXXOmNXSj2FV0S9DuwDBuEVKzOAwDI0280EvgRWA92BLGAx8B6wtpTwNb6lO16B9DuwySeetgFDReSEUipcRLKLW56UUs9TgngSkcO+a+0hIulFhZ5SKhJYBbQRESlMuyx/r0bP3Sv+TRphsNSeASzrCuJ240pKw3UiBU96Fq60TNypmbjTsvBYbYjTdcbzDSYTRosZg78fBqMBZTCijAYMRiMGkxFl9O4rZQDf76uI/G37rzXetaaheTxoLjfi8aC53WjuwrUbtH/wW60UxpBADCHBGEODMIQGYwoNxi86EmN0JMaYCEzRkVUyzlBpaAUOUt/4EsehY8Q+MZaQ8xOrrSw1AVdqFkef+RyMBho9ey+myJo9DpPHasN1IhVXUgqejBzc6dm4M7JxZ2bjybKeet5Lw2AyYTT7exeLGYOfyVuHjEaUwVuflNGAMhq99czoq1sGA0oBSnlFvlIc/WNVlYunujMgjE6AUmqzb/tP4AugL7BWRApFyRCgk1LqGt9+GNAKcPriHQRQSn0L9AN+AMb4RJcJiMUrsLb6zi/09+ntC1/h+2L1xycqgEMiss+X7tfAXaWU/8+iokopNQL4Q0TSfPvTgQF4fYVKCqdY+AygtS98BTBVKfU9XpFXUViBAuBzpdR84Oeynmhp1QwFqKr/YNIx+WFsGoel6ek9FTWfG5rmcKJZ7XhybXisdqTAgVbgRBwOxOFCK3AgDifi9ngtWB4N0TQ8Hg23xwOahng00DRQBt83sfL+L7To+H70KbKvDApMvpeH0QiFQsxkhMIXickERgPKz4TBYkZZzBgs/r61GWXxx2AxYwgKQPmaUWrCc+ax51Ow5yAFuw/hSkrFlZKOJysH8WgYAi1kzviN3GVbsLSMI6B9ApaWcafKX1/wi4kg/rlxHHtuCmlvf0mjp+/GWIPmoSyOITQEv9AQaHu6tVDD9yGQV4Bmz0Oz5aHZ8vHY8pACB+J0oTmdiMOFOF2Iw4nmcOLxeHD76o1oGng8iMsFBYX7f62Lf4gkfPXqo4dvevrtkspZWejiqe6QLyJdigb4fqjtRYOAB0VkUbF4F/H33l+ilGoOPA6cLyJZSqmpQNE+rIVpK+B/InJdsXS7lJBuWSnt1/5Mb4ES8xKRe5RSvYBhwGZfuYrjBor+Wp+1r66IuJVSPYHBwFjgAbxWtrOyccxD2F3OskTV0amVuN1uFv08nx+//Y7f//crHrcbo9mPgKZRWBJjMAY2wWA2oRW4cWXZyD94AtvKHQCYIoIJvqAD4Zeej39cVDVfSdVhTmhE3JNjOfHS17je/5b5i34lLLzuDBD6TxDALRqapuERwSMamoh3wWux1fCKp1ELv/64qsuni6f6xSLgXqXUbyLiUkq1xuvzA9DTJ5aOANcCnwKheAVSjlKqIXAZ8EcJ6a4GPlBKnSci+5VSgUA8sBtorpRqKSIHgOtKOLc01gCTfE2CWb5zJ+NttjtTeAO8FqHRwBYAX/5rgDVKqSuAJkAuUHRo3cN4fZxQSnUDmp+tgEqpYLzNkAuUUqvxNk2WiUhLIJGW+uGorFO/KCgoYMqUKbz55pscOnSIgKgwGl11PpG9WuPfKgaDf+mvHVdOHjnrD5K1ci85v6wl++fVBHVvRYOxg7G0qNtDFxQS2LEFsU+O5eTr3zF82GVs+XMVYWH1U0CVlcM3PV3lPct18VS/+BxIADYqr1kqDRjpO7YKrzN5R7wO4z/5HMY3ATuAg3ibv/6GiKT5fIi+9flSATwrInt9TX7zlVLpwHKgQ1kKKiInlVLP4PVdUsACEZkDcIbw533XcRKvc3qh5/UbSqlWvvhL8Iqqo8DTvqbOV/D6id3k21+H1+H8bIQAc5RSFl/aj5Tl2moTLpeLbdu2sWXLFg4dOsSRI0ew2WwUFBRgMpmIiIggOjqaxMRE2rVrR5cuXepN7zWd0xERZs+ezWOPPcahQ4cIaxNP+/HXEnB+AspYtiY4v7BAogZ3IGpwB1yZNlJ/2UzK7HUcfeJjQvq2I+rmofjVoalaSiO4e2tiHx/DkTdm0G1gPzYvXVlXplGpM+gO4zqVMlSAzlmpsRXv6NGjpwboXLFyJQX5+QAog8IvMgxDoD/4mRC3B81egDvHjri83dyNfia69ujO8EsvY8yYMbRt27Y6L0Wnijhw4AB33303S5YsISShIQl3X4K5c3yF9Npz2wpInrWWlFlrQCkaXDeI8Mt61enpiArJXb2Tk2/NpGWXDmz4bZlugSodvbedTtWji6dqoUZVPLvdzsyZM/nss89YuXIlAAFNGhLYqQUhbZpB8xj8osNLHEZBNA13Wg6Oo6m49hzHtv0g+ftPgAgt2yZy1y23cfvtt9OgQeWOF6RT9Wiaxscff8wTTzyBxwDxN19IxGWdymxp+ic4UrI58sFictYdIKBVHA0fHoV/bN33h8pdtYOT7/xAk9YtWf/Hcn1C7JLRxZOOTj2hRlS81NRUXn/9dT777DOsVisB8TGED+pKQM9ETLHlFzvurFxsq3ZiX74d+56jmMz+jBo9mmcef4LOnTtX4BXoVBepqamMGzeOxYsXE9G9JS3+NQxDVOX2DhMRsv7czeHJCxGPRswdlxNyYZc6P3K8fdM+kl6fQYPYGNb9sVyfw/Hv6OJJR6eeUK0VLz09nTfeeIPJ779PQUEBYRd0oMHQXhgSG1f4i8hxJIXcRevJXroZrcDJwKFDePWFF+nZs2eF5qNTdaxcuZIxY8aQkp5GszsvJuLyTlUqYBxpVg6+Phfb9mOEXtiJmLuvqNYxq6qC/N1HSXp5OgFBQSxbvISu+kdIUXTxpKNTT6iWipeZmclbb73FpPcmYbfnEd6/Ew3GXIQxtvKngfHY88n5ZS1ZP6/Ck5tP74sG8OZLL3PBBRdUet46FYOIMGnSJJ544gksDcM5799X49e8eppjxaOR9N1Kkqb/iSWhIbFPjsWvjk9n5DiczImXvoYCF9Onf82Yq0ZVd5FqCrp40tGpJ1RpxcvOzuadd97h7Xfexmazey1NYy7C1LjqfUa0fAc5i9aRNXcl7hw7fQcO4M2Jr9KnT/XMKq9TNpxOJ3fffTdTp04l6oI2JDwyDBVU/dae7HUHOPjaHDAYiH1sNIEd6/YUL64MK8mvf0f+gSSeef4/THxufJ1vtiwDunjS0aknVEnFs1qtTJo0iTffegtrTg6hfdoTNeYiTE2r3+lUczjJWbSOzNkr8OTYGTB4EK9PfJlevXpVd9F0ipGdnc0111zDkiVLaHLjABpe37dGvbALTmSy74UfKDiRScxtQwm/rHd1F6lS0RwuUj6cQ+7ybVw0bCiz/vsNERER1V2s6kQXTzo69YRKrXg2m43JkyfzxptvkpWZSWjPtkSNHYSpWfWLpuJoBU5yFq4lc84KPNY8Bg25hFdfmsj5559f3UXTAY4cOcKwYcPYvWcPLf81jLDB7aq7SCXisTs4+OY8slfvI/KKXjQYN7RSev3VFESErLkrSZ/+KxHRUcz+/gcG9O9f3cWqLnTxpKNTT6iUime32/nwww95/fXXSU9PJ7RHIjFjB2No3rAysqtQtHwH1oXryJi9HI8tn0svv4yJE16ke/fu1V20esv69esZfsUVZNlySHzuGiyd4qu7SGdEPBrHPv+NlNnrCOnZmoYPj8Zgqf6mxcqkYP8Jkt/+AVdaFg899iivTngJi+Wss0vVNXTxpKNTT6jQipebm8sHH3zAW2+95RVNXVsTc91gDC0bVWQ2VYKW78D6yzoy5nhF1OXDh/PShAl07dq1uotWr5g3bx5jx46FUDOJE67F1KT2NAulzFnP0U9/JaBFI2Kfvh5TRGh1F6lS8eQVkD5lITm/byI2oSlff/ElgwaVaZrNuoIunnR06gkVUvGys7OZPHky77zzDllZWYR1SyR6zEUYWsVVRPLViievANsv60ifsxyPvYBhV17BxAkv6uNEVQHvv/8+Dz/8MMGtYjlv/DUYI2rflDvZq/dx4NU5GMMCiXvmBsxNa7719VzJ23qQ1E/m4UzOZPioq3j3tTdo2bJuO9D70MWTjk494Zwq3p49e3jvvfeYNm0adrudsJ5tiRk9ENWi7r0gPPYCchesIX3uSrS8AoaNuJIXnvuP3pxXCXg8Hp544gneeecdGvRJJOHJ4bWy2Utzecjdcpj033aQ9ecuEDAEmjEGB2CMCMbcPJaAdgkEdW2FwexX3cWtUDSHi6xZf5I5byXKrXHLHbfx0vgXiI2t0xMr6+JJR6ee8I8rnsPhYMGCBXz66acsXLgQo5+J0H4dibqiL6oGOoJXNB57Ptaf15Dx80q0PAftunTiX/c9wNixY/VJUyuAvLw8brzxRn766SfiRvYi7o6Lap3DtTPTRsqc9aQt2IjH5sDgbySkRRQBjUIwWkx4HB4K0mzk7k/DU+DGEOBP6IWdiLiyH34Na0+zZFlwZ+WSPXMZmf9bj9FgYPTYa3m67o7wr4snHZ16QpkqnqZprFmzhq+//prvvvuOzMxMLA3CCL2kB+FDekBY7WtOOVc89nxsS7eR87/1FBxNwRIUyMiRI7n+2rEMGTIEs9lc3UWsdaSkpHDllVeybt06mt4xmJira1dPR0+Bi5PfryT5hzWIR6NR/5bEDW1DdPcmGM2mv8XX3BqZW05wfNFuTi7Zi2hC5LCeRIwehDGobjlbO5MzsS5YS/aSDWgFTrr36c09t93O6NGj69JEw7p40tGpJ5Ra8Ww2G7/++ivz5s1j/vz5pKSkYDT7E9KzDQ0GdcPQvmm9mFH+bIgIBXuPY1+yiZw1O/HY8gkMCeaK4cMZdtnlDB48mLi42u/7VZmcPHmS6dOnM2HCBGz5eTR/fDgNLqyZQxGUhnXrUQ69NQ9nqpW4ixM575aeBDcJL/P5Bek29k1dx7Gft+MXHkT0vSMI7p5YiSWuHjy2fHJ/3UDOb5twnEjHz9+fSy4dwlVXjuCyyy6jcePG1V3Ec6HmiSellAfYBpiAXcDNIpJ3hvh/AI+LyPpzKphS0cDPgD/wkIj86QsfAdwqIiN9+88At4vIeb79K4A7ReTKc8zfJiLB55JGGfLoD3wMuIA+IpJf5Fg88AHQDjDgvRdPiIhTKdUFiBORBb64zwM2EXmzgso1FbgQyPEFTQGigGUi8qtS6jDQQ0TSKyK/f1i2w8AxEelfJGwzYBKRDmc4LwHoKyLflCPPlSLS9yxx/unzIuAVAEePHmX9+vUsX76c5cuXs2nTJjweD35BAQR2OY/wnm3x69YSQ2Dd+iKuSMTlJm/7IfJX7yZn7U48Vu9PVMvEVlwycDA9e/akR48etG3bFpPp75aIuo7H4+HEiRNs27aNzZs3n1r2798PgDHYQqvnryGkfZNqLmnZ8U7PsoKkb1YQGBdGh8cHEdW1/AIge3cKW19bgu1gBg2u7E3kDUNQprr3kSIiOA4kYV+6FevaXbjSvT/zie3bMbD/APr27UufPn1o2bJljRoI9SzUSPF06qWglJoObBCRt88Q/w8qRjyNBS4TkZuLhUcD20WkoW9/LhAPDBWRVKXUK0C2iLx2jvmXSzwp79OmREQrQ9yPgTUi8mUJaawBPhKRL5VSRuBTIFNEnlBK3YJXvDzgi/885yCelFJGEfEU2Z8K/CwiP5QS/zBnEU9KKZOIuMtTnrOU9TCQDVwhIseUUm2Bbzm7eLoI73M5/B/kddp9OUvcf/S83HXXXbJt2za279iBLTcXAKO/HwGtmxDYpgnBnc7DmNi4xv14aw4XnhwbWoET5e+HMTQQYw0TdaJpOI6k4Nx2GPvWA9h3H0XLdwBgtlho3SaRdoltaN26Na1atSIhIYFGjRoRGxtLcHClfi9VOCKC3W4nLS2N1NTU05Zjx45x8OBBDh48yOHDh3G5XKfOC4iNQrP44TicjKVJA1pNGIOlYe1pwvHkOzn42hyy1+yn8aVtaPfwhfhVwFQxHoebXR8u5+jsbYR0TiDmsbEYgwIqoMQ1ExHBeSyVgk0HsG/eT96+46fqSkBQEG3atKFThw60bduWhIQE4uPjadKkCXFxcTXtI6TGi6d7gE7A9xR5ESml3gfWi8jUouJJKWUDPgEGAlnAWBFJK5Z+M7yWjWggDbgViATmAgHACf5uldkLXC4i+5VSG4BZwA4Rma2UWgo8Cxwtnq6IHC0pP194c+AbvBa2hcAjJb0MlVKPArf5dj8XkXd9Vo1fgN+BPsBIETlS5JzBwJu+tNcB9wLjgNfxWndWisgNxeKPF5EBRcJCgUNAc2B7kXvzCtAWaAq08K3fFZH3fOfdCDyE14K3BrhPRDy+v83bwKXAYyKyvEheUykmnoqG+QTMDLx/V4DrfX+LqUAm0BXYCPwXr2UtEDgA3CYiWcWekSi8z06CUqo98KWvrAZglIjsK3b/D+MVkk4ReVMpNQGwA+NEpIPPw0UsAAAgAElEQVTvb/FfIMh3ygMislIptdp3nw4B04D3gFeBiwAz8IGIfOITWeOBk0AXEWlXWAeUUsHAHCAC8AOeFZE5vnL9I/FkCQsRU5NozE1jCEqIw69ZDMaEGJRfjfpBQnO6yNtyANv6PeTvOIwrOfNvDY6m6DACWscTdH5bgrq1qnE+I6JpuE5m4jyQhPtgMnnHU3EkpeNKywbt9IsJCAokpmFDIiMiCA8NIzQ0lNDQUEJCQggJCcHf3x8/P7+/Lf7+/hgMBgp/T0XkjNsejwen04nL5cLlcp3aLinM4XBgt9ux2WzYbDasuVZyc23Y7TbsNjseT8n63hQcgH+jSIwx4VgaNsDSMBJTkyhUfBRZs/4ka84KQru3oOUzIzEF1R4/MWdGLvuen0newVTaPTiAhKs7VXgexxfuYtsbv2GJi6DRMzfW+QmHCxGPhvN4Gs59J3AfTSPvWAqO42m4M62nxTMYDIRHRhARGUmDiEiiGjQgIiKC8PBwAgMDCQgIwGKxEBAQcGqxWCyYTCaMRiNGoxGDwXBqu/hiMBgwGLydFZRSpyxgRddFtzt16lTl4qnMv9RKKRNwGV5hUVaCgI0i8phS6j94X0oPFIvzPvCViExTSt0GvCciI33xT1lXirES6OuzyOwDVgOXKqV+xivu1gEzi6cLjCwpP1/4JLyWnq+UUveXcg+64xV3vfAq3TU+sZYFJOIVYvcVO8cCTAUGi8hepdRXwL0+0dWPki087YENRQNExKqUOgokAKfdG5/lqQ1eMRMC7FFKfQScB1wLXCAiLqXUh8ANwFd4/zbbReQ/JV0r8IZS6lnf9rgSjltFpKdS6ibgXaDQotMauNgn0LYCD4rIUp/IGQ/8q5T8AO4BJonIdKWUP1Ca2eUHvPf0TeAK3zUVljEVuERECpRSrfBapXoAT3O64L8LyBGR85VSZmCFUmqxL42eQAcROVQs3wLgKt/fIgpYrZSaK+VwHGw65fEabRJ3Z+WSvWANOb9uwGPN8/ZK6pJA4KB2+EWHYQzwQ3O4cGbYyD+cSu7Ww+Su2IEy+xF6YWcihvfBvxomHS4JZTDg3zjKW54BnSj0hhGXG1dKFq4MK54sG+7sXNxZNjKzbaTZc5HkdDwHHWj5DrR8J5LvQNxlMkSWD6MBZTKijEaUyQCnto0YLP4YAvwxWPxRDfwxNG6IIaApYRZ/bxf80CCMYUGYwrxrY2hQiV3wtXwHyZN/wrZmF9HDutL0niEYTLWnR50jJZs9T3+DOyeP7i8Pp2GfhErJJ35oWwJiQtjw3AJOPPcFceNvxT+uZjzPlYkyGjA3a4i5mXfIk8L+h568AtzpVtwZObjSc3CnW/FY7aTY8jlpS8Oz+yiarQBPXgHidCHOCm90OCOtf3yh656r/7OpKvMsi3gK8PmUAPwJfAGc0f+jCBpeCwXA13gtRMXpA1zt2/4vXmvM2VjhK4MRWAWsxSsougJ7fC/O0tItLfwCYFSR8JKa/foBP4mIHUApNQvoj9dKdkREVpdwTiJwSET2+vanAffjFRyloSjZobi0cID5IuIAHEqpVKAhMBjoDqzzvagD8IoLAA/w4xnK8EQxy1Px498WWb9TJHymTziFAeEistQXPg2voD0Tq4B/+/y9ZhW3OhUhE8jyNe3uAor64PkB7/v8wjx4xVxJDAE6KaWu8e2HAa0AJ7C2BOEE3vv/slJqAN5nuzHe+5x8luv6G/FBETg8LqrB2nxG3HkFJP34O0mzl6K53IT3PI+Yy7sS0iUBg1/pTYiiCbbdJ0hftIWM3zeR8+sGYob0pOkNQ/GvqaM7m4HgcCh1DEHBI4JHNDQRNNHwiIZ4NDxuD5rbjXg0xO1Gc3lAQJC//qRKndpWGP7aVgplNGIwGTAYjSg/E8powKAMvlO8/wyF20phUAoD3nV5n5n846nsnvgl+SfSaHLXYBqOPL9GC/jiFJzMYs/T36DlOej5zlVEtK3cMc0adIun93tXs+aRnzj5/Je0m3gfAfF1bxy1MmEOhogo7y/k3xA0Ob2ueDxuPC43HocTj9OFx+lCc7pAE0TTfGsBTTu1PnVMfMdECj1DC7PxreWvl+CpOFT5WC1lEU/5ItKlaIBSyo23WaWQstrpy/KFXpY4K4EH8Yqnz0Qk12fhuQivsPon6UoZ4hRypl8aeznOKY0d/CXkvIl4m+2a4G3+Kml0QEeRbQ/ev60CponIMyXELyirP08plHbfSrsPRSn6/Jx6dkTkG6XUGmAYsEgpdYeI/FZKGjPwOtTfUiz8ESAF6OzLo6CU8xVeq9ii0wK9zXalXcMNeJt7u/sseYcp+7N/Gr8Nfag8p1Uqs2bN4v6H7ic5OZmoC9vT5OYLMcWWzQ9GGRQh7eIJaRdP/K0XkfzdKlJ+Xkf20i28OPElHn/4kVNmeJ2qZ+7cuYx78gUwCB1fubHGz1FXnIKkLHY/OR1xuej5zlWEt46uknxDW0bR+92rWfvobPY++zGrl62gQ9tSXSt1qo9FZ49SsZT31+wI0E4pZfZZGAafIf3CL/vrgeUlxFkJjPVt31BKnOLsBOLwWn0KTXWb8Tb7rDxLuqWFrygWXhLLgJFKqUClVBBwFV5r3JnYDSQopc7z7Y8Dlp4hPsASINDXJIavefItYKp4ezrm4m2eOxtLgGuUUjG+dCJ9Pl8VwbVF1quKHxSRHLzWocJecUWv+zB/CcDC5wOlVAvgoM9fay7eJtjS+Amv1bB4pQkDTvoc9sfxV9Nf8Xu2CLhXKeXny7u17296JsKAVJ9wGghU1L2sVlJTUxkzZgyjRo0iL8RAl0m30/zpK8ssnIrjFx5Ek3supsMndxLUIZ6nHn2czn16sG9faYZEncrC7Xbz3HPPMWLECAyxobSffGutE05uax57/zMDcbro9fbIKhNOhYS0aECvd6/C7XFzweABHD1+tErz16mZlEs8icgxvE7jW4Hp/CVgimMH2vucugcBE0qI8xBwq88/ZhzwcBnyF7zOz+kiUtiFZBVeh+lC8VRauqWFPwzcr5Rah/clWVK+G/H62qz15f+5iJyxnVVECvD6Sc1USm3D29zzcRmu7ypgtFJqH7AXrwXl/3xRfscrXjcrpa4tJRlEZCde5/nFvuv9H1BRY/SbfVaih/Fae0riZry+U1uBLvz1938Tr3BZiXcIhEKuBbb7monb4PXNKhERyRWR10TEWezQh8DNPgfx1vxlRdoKuJVSW5RSjwCf4xXhG5VS2/F2bDibJXY60EMptR6vwN59lvg1nqVLl9K5c2dmzf6JZrcOotXbN+LXumIs4JbGkbR84RqaPzqM3Tt30a5jBz78/JMKSVvn7Bw5coSBAwfy0ksv0fDSLrR6/XpU1Nm+D2oWmtPNvhd/xJlqpfvEYYS1qlrhVEhwQiQ9Xr+SvBw75w/sQ3pGlY/SolPDqNRBMv9pDyQdnXpEtY5Oq2kar732Gs8++yyBjRvQ6v+uxpRQeT2KnBm5HHpjHtYtRxh+7dV8+/m0WjcsQG3i+++/56677qLA7STh/ksJHdi2uov0jxERDr4xj8zfd9DpuUuJv7g098WqI2PjcdY9OZeEDi3ZtnwTgYH1b4T/GkrNG6rgnBLXxZOOTmlUm3jKzMzkpptuYv78+URd2J5mDw3FEFj5k7+eGtRw+nIaNW/Kwp/m0rlTnZxnq9rIzMzkkUce4auvviKibVNaPjUC1bB2/gSf+O8ykr5ZQavbe9PqppozXUzysv1sHL+Qnpf0ZdWCZbovX82gboknHR2dUqmWird27VpGjx7NiaQkEu6+hIhhnau8x5V1yxEOvj4XsTt574PJ3Hv7XVWaf11ERJg5cyYPPvgg6ZkZNB7Tl5jr+mCoYYOslpX0/23l0NvzaXxZWzo9NbjG9Qo8/MMWdk5exg0P3sLX73159hN0Kpsqf0B0yayjUw8QESZPnky/fv3IcObS4e2biRzepVpeSqGdm9H+/dsIahvHfXfczahxY8nLK3XGJ52zcOjQIUaOHMm1116LM8KfzpNvp9G4frVWOFm3HOHwe7/QoFs8HR8bWOOEE0CzUZ1oOqIj0ydP5eUP36ju4uhUA7rlSUeneqiyime1WrnjjjuYOXMmDXq3pvljw1HB1T+itHg0kqYvJ+m7FTRLPI9Fs38mMbHuTchaWeTm5vLKK6/w9ttvoylofGN/okZ2Rxlr7zdx/tF0dj32FZYGgfT9YDR+IdX/nJaG5tZY//Q8MjYeZ9aC2YwcckV1F6k+ozfb6ejUE6qk4m3evJnRo0dz8NBBmt58EVGjeqIMNetLPmfDQQ6+MQ+DS+OLzz/nxutKGylEB8DpdDJ16lTGjx9PcnIyDS/uRJNbBqIa1G7nZVe2nV2PTEMcTvp8OIaguBo6uGoRXLkOVt0/E2dWAetXr6WjPgZUdaGLJx2dekKlVjwR4dNPP+Xhhx/GFBZIy6dHYG5bUaNUVDzONCsHX51D7s7j3Hz37Xwy6QPM5pprdagOXC4XU6dOZeLEiRw5coTwdk1JuPti/FrX/lGvNYeL3U99Q/7hVHq9exUR7RpVd5HKTF5SDivu+Z6A4ED2b95NdFT1DKdQz9HFk45OPaHSKl5WVhb33Xcf3333HQ3Ob0XLx4cjoTVrst6S0NweTny5lORZa2jduR2/zJpHixYtqrtY1Y7VauXLL7/k3Xff5fDhw4S3bUL8jQOwdG1SI/2B/imiCQde/omslXvoOuFyYgeUOl9OjSVzaxJrHv2J0MaR/DTlewYOHHj2k3QqEl086ejUEyql4v3yyy/ccccdJKem0OTGAUSP7lXjmunORtbKvRx6+2cMGrz66qv864GH6mV38P379zN58mS+/PJLcnNzCW/flPjr+mHp1rROiKZCjn3xO8k/rKbNvRfQYmy36i5OuTm+cBdbX/mVgNhQenU8n0lvvE2nTmeaJEGnAtHFk45OPaFCK15mZiZPP/00n332GaEJjWjx+HD8Wtbe5gNHmpWjkxaSveEA3fr25LupX9OqVYmzktYprFYrM2fOZNq0afz5558YTSYaXNiWuJE98Tuvyuc+rXRSF2ziyOSFNB3RkfaPXFjrReHuT1dycPoGAuLCyD9pZciwy3jh38/Ru3fv6i5aXUcXTzo69YQKqXiapvHFF1/wzDPPkJWdRexVvYgd1x/lXzu7qRdFREhfvJVjny5BnG7uf+gBXho/gdDQmu9I/E+w2+0sWrSIH374gdmzZ5Ofn09Ik2giB3egwSUdMUbWrilVykrO+gPsHT+TqPOb0uPl4RhMtd+6KJqw8bkFpKw8RMzFHchcuQ+3rYCe/fow/plnGTp0aL20olYBunjS0aknnFPFExEWL17Ms88+y/r164nsmEDCfZdirMQpVqoLZ6aNk9OWkfq/LYRGRvDi889z1x13YbHUfD+u0khOTuaXX35h9uzZLF68mIKCAsyhQYT3TyR2SFdMraJrvRXmTOQdSmXXY/8lKC6U3pNH4RdU+SPcVxXuPCerHvyRvCQrrSeOxb4rieRZa3Cm5xLbNJ4H7r6X22+/nYYNa7+jfw1CF086OvWEclU8TdNYvHgxL774IitXriS4USSNb76QkAsT6/TLFsC+7yTHP/0N6/ajRMQ04JknnuKuO+8iLKzEebxrFFarlaVLl7JkyRJ+/fVXduzYAUBgwwjCep9H9AVt8W8XW6vHaCorzoxcdv5rGgbR6PPRGAJr6fQxZyI/1cbKu2eg/E20eecWjEEWslbsIWPhFnK2HMZoMjLksqHcfMM4hg8fTlBQ3bQuViG6eNLRqSf8o4qXnp7O9OnT+eCDD9i3bx+BMeHEXduX8Es6oPxqfxNdWRERcrceJWXGKrI3HcLfYuaa0aO5+4476devX41oEtE0jd27d7N69WrWrFnDmjVr2LZtG5qmYTT7Edq+CeHdWhDSNQH/5lF1XvQWxZPnYPeT03GcyKTX5FGEt669fnlnI3tXMqsfmkVwq4a0evkGDP4mAPKPZZC5cAtpf+zAlWnD32Lm8mHDGDXyKoYMGUJMTN3zbasC6rd4Ukp5gG2ACTgEjBOR7ApM/7SJipVStwA9ROQBpdQ9QJ6IfFXsnATgZxGpsNHPlFK9gUmA2bfMEJHnlVLPAzYRebNY/AnAMhH5tQLLcBjvtaefQxpdgDgRWeDbf54Syl8TOMO9fR64E0jzBS0UkaeroEhnrXgnTpxg8eLFfP/99/zvf//D4/EQ3q4psSN6ENjnPAz1SDSVhH3fSTIXbiPtj2148pxERDVg5JVXMuzyYfTt25fY2Mod10pESEtLY8eOHWzfvv3Ueuu2beRarQD4BwcQ2DqW0LaNCeuUgH+bRqdeovUNze1h3/MzsW46TPdXhtOwd0J1FwkRIS/JSubm41j3pZF30oozOx9EMPibsEQHExQfTkSHWMI7xP7j5sWk3/ay+YVFRF/cnmaPXnGaUBaPRu6O41j/3EP68l24su0AtO/ckcuHDKV///706tVLF1Nlo96Lp1PiRik1DdgrIhMrI33f/i34xNMZzkmg4sXTHmCMiGxRShmBRBHZWZXio4LE0y0UuX/nWn6llFFEPOUtz1nSfp7SxVO5ynyO5T2t4rlcLnbt2sWmTZtYt24dv/32G7t27QIgKDaS8P5tiL6oPX7No8qZXd3FU+Ake/U+clcfIHPdfjx5DgAaN21Cn569aNOmDYmJibRo0YKYmBiio6MJDQ09o8XH5XKRkZFBenr6/7N33uFRVOsf/5wt6b0nJJAACQmEGghNEaRIBwUUVBAVu3KxYPfKtYKiYkHFwgX8CXJBUJqK0kE6RCC0hCQEkpBCerLZen5/7AYREkwwJBsyn+fZZ2dnzsy8MzvvzHfe855zyM3NJTc3l6ysLFJTU0lLSyM1NZXUtLQLIgnAwd0F53A/nFr44x0ThmNkINpm3o2uq4hrgZSStDnryFt/iNhnbqb5iHYNak9Fbilnfz5GxvrjlKVb38+1rlrcm7nh4uOMUAtMFWbKsssoySpFmiUqrYqAHi0IGRRDYO+IGlexJi3YTdJ/99D8vj4EjutdZRlpkZSfOkfZgdMU7D9FydGzSLMFgNAWzekR3532sbG0bduWmJgYIiMjcXC4fvLE6gBFPF0knh4GOkgpHxVCxANzAGdAB9wrpTwhhFgHPC+lPCSEOAislFK+JoR4HTgtpfyquu3bfk/mz8jTDGwPUSFEHDAfKAe2A0OklLE2oTMT6Is1YjRXSjlPCBEMLAU8sEbNHpFSbrvCcRZgFUw5l8y/2IYHgNtsn8+wCrjlNtGzEBgBaIFxUsrjQoibsEazwPpg7iOlLLmCDWlcIp6EEP7A50Bz26xpUsodVZ1/rJHBZNu8DOBtIMa2bkvb9xwp5Ue2bd8NTAUcgN3Ao1JKsxCiFHgfuAV4Wkq5vRp7RwAv29Y/D9wlpcy2nbPq9vkSMAk4gzWytL8m4qkKUbgGmC2l3HypvcBwYCRgAtZLKZ+p7pxfzOzZs2VaWhqVn+TkZPR660Nf4+SAe2wYXp1b4tE5HG24b5Oq2vknWIxmypPPUXE8i5KjZyk5dQ59diFY/nqf02i1ODk74aB1QOugRaVSYdAb0Osr0FfoMRqNVW5f4+yAU6AXmkAPnIO8cQnxwTnMD3ULH7Tersr/VA0Z324n8/+20WpSN9rc33DN9svOFnLq2/1krD+ONFkI6hxIxMAWNOsajFd41YLaqDOScziP09vPkrI+Dd15Ha7NPIiYEEfokLZ/20pQSknCa7+QtTGJyJdH49U75m/tNFcYKU8+h/7EOUqOZ1CSlIk+pxhsz2shBP5BgTQPCyO8eQvCwsIIDg7G29sbHx+fC99eXl64uLjg7OyMs7MzavV1G61WxJOU0s0mUr4DvpZS/iyE8MBapWYSQgzAKk7GCCGeB0qAb4ANQL6U8hYhxCbgYSnliUu2X1ktWIkPsKoK8XQIeEJKuUUI8S5/iqcHgQAp5RtCCEdgBzAOq8BxklK+abPd5W+Ey7+BJ4HNwM/AQillRaUNQAUwCKsw0gshFvBX8fSelPJjIcSjQBcp5RQhxGpgpk3suAEVUkrTFWxI43LxtBj4VEq5XQjRHPhFShlzhfM/mcsjT4OAfoA7cAIIAloD7wC3SSmNQohPgV1SykVCCAncIaX8X3W22rbtDRRKKaUQYgoQI6V8+gr77AAsALpjFbQHgM9rUG33HBBM9eLpgr1CCB9gJxBts8urptXMQgipcXPCIdAThwBPnJv54NIyEOdWATg182kSicP1hcVgQn+uEH12EeaickyF5RiLdUijCYvJjDRZwGxBOGhQXfTReDij8XRB4+GM2tMFrZcrGk9nRSDVktz1h0j7YC0ht0TT8YUBDXL+TOUGkhftJXVZAiqVoM2o1sTe2RbPUPdabcditnB6yxkSFhwh79h5PFr6EPNEH3y7hF1xPbPexK5/raDkVB5Rb9yBe/sWtT4Gc4WRirPnqUjPQ59RgCG3GH1eMYbcYgy5JVj0VQv+i1Fp1KgdtKgdrR+VSoVQqxAqFSq1CoRApVYhVOKyeVXpk2r/yqoWVFO4yrnVla1mf2d2H633i8reKt+dhRAJQDiwH/jVNt8TWCiEiMQaVdHa5m/DGs1IBdYCA4UQLkD4pcLJhk5K2anyR+XD/+ICQghPwEtKucU26xtgiG16ENBBCDH2Irsigb3AfCGEFvhBSplwpYO0Rce+tW3vTmAC1mgWwETgLDBaSlmdN6ywfe/HKtzAKuTet213hZTy7JVsqIYBQNuLbm4eQgh3qj//VbFWSqkH9EKIHCAQ6A/EAXtt23YGKqNuZuD7GtgWCiy1RfkcsP7nV9rnjVgjkeUAQohVV9j2B1VEnqrjYnuLsQrdr4QQa4E1NTgOADovexKNW+Ntat+YUDlocG7uh3Nzpcqzvsnfdpy0D9fh26057aff3CDCKWdXGoff2YD+fDmRw1vR7dHOuPpf3SDKKrWKiJtbEN6vOWmb0tk1Zx+7n/yBsMFtiH7iJrRuVY/HqHbU0G3mCHY+vpzk/yynzay7cGlVu/H71E5aXFsH4dr68vWklFgqjJhKKzCX6DCVVmAqqcBcWoFFb8RiMGHRm6wvDHqT7bcRaZFgsdi+JdIiMdt+S4vlz2WmKoIs1QReqpxbXZCm6sJVF71CnCf+5xef3TP4rXeqL1H32Jt40kkpO9kEzBrgMeAj4HVgk5TyVlsO0mZb+b1YxU8KVqHlhzWKsP8f2CCoPplXYI1I/XLZAiH6AMOAb4QQ716aeH4pUspTwGdCiC+BXCGEr23REaATVrGQWs3qetu3Gdt/KKWcaXuADwV2CSEGSCmPX8mGKlABPaWUukuO7WOqPv9Xsu1i+wTW6NoLVZSvqGHe0MfA+1LKVUKIvsCMv9knXH1fSias56KSi1XOBXttkbh4rOJwPPA4cHNNdrB3zGws0nKV5jUMUkqKi4vJzs7GZDKhUqnw9fXF19fXLlq5KdgX69auY+w77xIQG0qX14fXewMHk87I8c92kP7jYbxaeTHo3ZsIal83rfuEEETc3IKwXs048PVhDi06wvmEDDq8OAifjs2qXMfBy5n490az6/HlpL26nD2/7yKydVSd2FMfSKz3gMrpi2+vVQkbeW3HPv8LfX/7T703UrI38QSAlLJICDEV+FEI8RnWyEeGbfHki8oZhBBngNuxCix/YLbtc7X7LhRCFAkhbrDl39x10eJfgEeEEBtt1U9RNrv8gAwp5ZdCCFegC7BICLEI+ERKuefifQghhgHrpPVKjMT6wK+s7jmINcdplRDiFillZk3sFkK0klIeBg4LIXoC0cBxIcRxKWV0DQ9/PVYB8K5tm51sUbQqzz/WKtOaxL03YP0vP5BS5tiqu9yllKerOI63gT1SypWXLLrYhntqsM+twAIhxEys1/kIYF4N1gNIAx4VQqiAZkB8VYVs1aMuUsp1QohdWHPAaoRaqFAL+xYc+fn5/Pzzz+zYsYO9e/dyJDERXXn5ZeW0DlpaR0US3zWeG3r3ZujQoYSEhDSAxQr2wsaNG7lj3O14RQYSN3M4wrl+hVPpmQIOvLSW0vQCYu9qS9eHO6N1qnsbNE4a4h/rTIsbQ9n06nZ2P7mSto/0pvnYTlVG2ZwD3en27ih2Tf2eG/rfxKFdBwltFlrndjU19gx+q97fRO1SPAFIKQ8KIf7A+kb/DtZqo6eAjZcU3Qb0l1KWCyG2YY3YVJusXUPuxVoNV45VMFXyFdYqxQPC6hm5wGisVW7ThRBGrDlLk2zlOwBZVWx/IvCBbfsmrMnP5kpns+UcPQOsFUIMrKHN04QQ/bAKsaPAT0IIP66cSHdICFF50f0PaxXoXFvOlwarAHmY6s//JuB5W1Xr29XtRFpbEr4MrLcJEiPWqOJl4gloD1RVxTYDWCaEyAB2ARFXOC6klAeEEEuBBNt+anNN7MAa9TuMNRJ4oJpy7lhFoRPW8/xkLfZhl+h0OpYtW8aCBQvYunUrZrMZB1dHPKL8CRkWjYu/O44+LqAWSIvEVFyBLreU/ORclqxcysIFCwCI7dyBBybfz8SJE/H29m7Yg1KoVzZt2sTIkSNxDfWi6zvDEa71+5jJ2ZlKwuvrUWtVDPl4IKHdr22XFQCBHfy57ZthbJ6xg8RPtlN8Moe2z/RH7Xj5sbuF+9B11kj2PLmSLjd048C2vYSGKgKqsWFXCePXE7Yk66+llOMa0IbhQMvK1meNASHEL1LKWxrajnrArhzvzJkzvP/++yxYsIDCwkI8Qn0I6teawN4tcYvyrVECu5SS0tR8cn9P49yWZApP5qB1dGDMuDG8/PxLtGvXsM3TFa4969atY8yYMTiHeBD/3mjUPlXnAF0LpJSkLN7PiS934hPlw8B3+uIRUr+9l0uL5OD8w+z/IgGfmAC6vD0SBy/nKsvmH85k3/RVeAf4sn/bHsLCrpx0rnBFmnZrO22iXMgAACAASURBVAWFJoRdOF5qaiozZ87kv//9L2ZpIfim1kSM6oh7h4B/nNxbdDKXjLVHOfPzUcwVJm4ZMYQ3X32duLi4OrJewZ5Yvnw5d955J56t/Il7ZwRqz/rrh0iaLSR+uJX0Hw/TclA4fV7uhda54SpWUjels+mVbbgEuhH3zihcgqseQqjgSBZ7n12Fp48X+7ftoUWL2rfCUwAU8aSg0GRoUMc7f/48M2bM4LPPPgOVoPmwdrSa0AWHoLp/UzcU6jj9/SHSVvyBsVTPsNtG8NG7c2jZsmWd70uhYfj000954okn8G0XQtdZI+q1qs6sN5Hwxnqyt56iw6R2xD/exS66kzj3Rw6/PLURlVZN11kj8YisuqfwwmPn2PvMKlzd3dj662bat6uz/pibEop4UlBoIjSI4xmNRj799FNmzJhBUXEx4SPb03piN7R+VVct1Om+ywykfneQ1P8dAJNkysMP8OaMN/D19f37lRXsErPZzPTp0/nggw8I6d2KDi8PQuVSf8LJWKJn/0tryP8jk+5PdaPDhL/vgLI+KUgp5Kepv2EsN9Ht3VF4xlTdPUHRyVz2PbcaYbSw+sfVDOjXv54tbfQo4klBoYlQr44npWTdunU8/fTTnDhxgoBuLWj3WB+cI7zq0wwAKvJKSZ6/h/SfjuLi5sK/X/k3T06dpgw30cgoKSlh4sSJ/Pjjj7Qa25moR3vVa+euhiIde57+kdLU8/SZ0ZvIW67YhqTBKMkqZe3D66ko0tPtnZF4xVbdErU8q5h9z62mPLOIr+Z/xb13T65fQxs3inhSUGgi1JvjJSYm8tRTT7F+/Xo8mvvS7rE+eHVv1uBVGyUp5znx2Q5y9pymWUQYH7/3IaNHj25wuxT+nsOHDzN27FiSkpNpP/UmQm+t36omQ6GO3U//QFl6AQPf7UvzXlX3rWQvlGaXsfaR9ZSf19Ft1ki8O1Rtr6G4ggMvrSP/UAYP/esRPpn9ERqN3TaKtycU8aSg0ES45o6Xl5fHq6++yrx589C6OBA5uTvNRrWt984K/46cXWmc+HQHJafz6dGnF599OJdOnTr9/YoK9Y6Ukv/+9788/vjjqF21dP73YNw7BtarDfpCHXueXEn52UIGzO5H856No0+xstxy1j6ynrKccrq+PRyfzlW3rjMbzByfu43TPxymS+9urPt+NYGB9XuOGyGKeFJQaCJcM8czGAx88sknvPbaa5SUltBiVHsiJ3dH41l/zcZri8Vk5szqRJL+uxtjsZ677rmbd96aRXDwte+jR6FmZGZm8tBDD7FmzRoC41rQ6ZVbUHvX7zWlLyhn95Mr0WUWMfC9foR1bxzCqZLy8zrWPforJZmldJ01Ap9O1ffvlPHLcY68twlXDzcWfb2QUSNG1qOljQ5FPCkoNBHq3PGklPz4449Mnz6d5ORkgnq0pN2jN+LYwqOud3XNMJZUkLJoPykrEnB0cOCFF15k+tPP4Ox87RPaFarGYrGwYMECnn76acp05bR5oCdht8XW++DV+nybcMoqYtD7NxMa3ziFtS5fx5qH11OaVfa3Aqr4VB6H3viV4pQ8xt9zJ/M++gwPj8bjz/WIIp4UFJoIdep427dv5+WXX2bLli14RwQQ89gNeHWz7zyQK1F2tpCT83aStTWZwNBg3p81mwkTJij5UPXMzp07mTp1Kvv27cO/QygdnxuIQ2j9djwJUHG+jN3TVlKRU8Itc26mWVztBtW1N8rP61j7iE1AvTMCn47VCyizwUzygj2cWrIfbz9v5syew8S771Z84a8o4klBoYlQJ463e/du/v3vf7N+/Xpcfd1pfU83gofFoNLY97h5NeX8wbMcn7uDoqQcYuM68PaMNxk2bJjy4LjGHDx4kNdff52VK1fi5u9Jm4d6EtC/NUJV/+e9Iq+U3dNWos8r5ZY5/Qnpcn3k/1wQUOfKrEnk1QwoXEnhsXMcnbOVwuPZdO7ehbkffELPnj3ryVq7RxFPCgpNhKt2PCklv/76K++99x7r16/HxduNiAldCBvVDpXT9dcyR5otnP3lOKcW7qX8XDFR7dow46VXuf3221Gr7Sv5vTEjpWTbtm3Mnj2b1atX4+TuTIuxHYm4vRMqF22D2FSRW8quaSsw5Jcz+MP+BHequqPJxkp5no41j6ynLLuMru+MxKeaVniVSIvk7LqjnPhyJ4ZCHX0G9GXW62/To0ePerLYblHEk4JCE6HWjldSUsLSpUuZM2cOiYmJuPp50GJMB5qPjm2wh1t9YjGZyfztJKmLD1ByOp+gsGAee+gxptx/P0FBjbsapyHJz89n8eLFfP755yQmJuLk4UL4uI6Ej+mIyrXhritdTgm7p63EUFDO4I/6E9zx+hJOlZTnlbPm4fWU5ZbT9Z1R+LT/+yR4U7mB9B8Ok/LdAQxFFXTrFc/TU5/i1ltvbar9pSniSUGhiVAjxzObzWzdupUFCxawfPlyysvL8YkMJOL2zvj1bYnaoelFXqRFkr39FGd+SCR3fzpqjZqhI4Yx+e57GDJkiJJcXgPy8vL48ccfWbZsGRs2bMBkMuEbE0KLUbEE9GuJyqlhxbguu4Td01ZgLNIx+KMBBHXwb1B7rjVXI6DAKqLOrErk9A+HKc8qwifAj8kTJzFh/ATi4uKaUvW2Ip4UFJoI1TpeWVkZv/32G6tWrWLNmjXk5OTg6O5MUN/WtBjSDte2fk3ppnhFStMLyFh9jDO/HMVQpMPJxZnhI4Zz68jR9O/fX+kfx0ZBQQF79uxhw4YNbNiwgYMHDyKlxKOZDwF9WhLavw0ukT4NbSYAunPF7Jq2ElNJBUM+HkBgrF9Dm1QrLGYLQiVq7aPleeWseWg9ZXnldHt3FN7V9EReFdJsIXdvOmd/TCR7dxrSbCEsojm3jbqNWwYNok+fPri6utb2UBoTiniyd4QQLwF3AmbAAjwkpdwthJgGfCGlLK9HWyKBD4AYoBAoBl6VUm4VQkwGukopH68ve64GIcQCYI2UcnkVy54BpgAmrOf7PSnlonq07SvgfSnl0WuweQnWPJOMjAz27dvH9u3b2bZtGwcOHMBkMuHo7ox/9+aE3BiJd88w1I7XXz5TXWExWchPOEvullQytiRhKNIBEB3bloH9+hMfH0/Xrl2JiopCpbo+kumrwmAwkJKSQlJSEseOHWP//v3s27ePlJQUANQaNT6xIfh1CSOwZwTOkd52JcTLs4rYPW0lpjK9VTi1s1/hJKUk/2QBZ3ZmkHfsPPnJhejO6zCUGREqgcZJjXuIG54tPAjqGEhIfDDeLT2veL7LcstZ+/B6yvJ0dHt3ZK0EVCWG4gpytqWQvfkUuQlnsBjMaLQa4rp1pXePXnTt2pWuXbvSqlWr68kXFPFkzwghegLvA32llHohhB/gIKXMFEKkYRUrefVkixNwCHhGSrnKNi/WZsOCxi6ehBAPA7cC46SUxUIIT2C0lHJhDberkVKa6tzgOuLhhx+WR44c4ciRIxQVFQGgdtDgExOEd/sQ/OOa494hAJWm6VXL/VOk2UJRUi6F+zPJ3ZdOfmImZr31UnBxdSGmXVuiI9sQGRlJZGQkzZs3JygoiMDAQNzc3OxKTIC1n6WSkhIKCwspKiqioKCArKysyz4pqSmcTjuNxWK5sK5bsBfukX74xATj1SYA17b+aJztMz+uPLOIXdNWYinXM2TuQAJi7HPA6PLzOo6vOMmJNcmUZpYB4B3mQlAbT9wDnHD21GIxSwxlJgrOlpOTXEJhhvWd2qelB62Ht6bNyEicqum0tiy3nDUP/UL5+YqrFlCVmPUmCg5nWn3hj7MUJ+ViNlh9wdHZiVatWxHTJpo2UW0IDw8nJCSE4OBggoODCQgIaEwNMhTxZM8IIW4D7pVSjrhk/lRgNnACyJNS9hNCTABexPqnrpVSPmcrWwp8CAwHdMAoKWW2EMIf+BxobtvsNCnljivYcj/QR0p5TzXLJ2MTT0KIEcDLgANwHrjLts+bbLaANRLSB3ADlgIegAZ4REq57Qp2PAA8aNt2MjBRSlluE0XFQFcgCHhWSrlcWJ9MHwM3A6m28zO/CvGUDvSTUp6qYp9xWEWsG5AHTJZSZgkhNgO/A72BVcDJao57BhABBANRwFNAD2AIkAGMkFIabdt7Rkq5TwgxGHgLUGP9j/tXdf6klCXVnauLcfR0lm4RPrhF+OIR7ot7pB8eUQFNMofpWmMxWShLL6DoZA7Fx3MoSc+nPKMIXXbJZZWnGkctLr5uOLq74OjiiIOLI1oXRxxcHXFwdkSlUaFSq1GpVQi1CpXGOn1B5EqJlBJpsX2kRFosF6axSMxGM2ajCZPeiMlg/bb+NmE2WOcZKwzoSyrQl+owlOmhmvu0SqvGydcVB18XnAPdcQv1xjXUE+dQL1zDvHDwcLrGZ7duKD1TwJ6nfsBSYWTI3AEERNufcCrNLuPAl3+QtC4Fi9FCy55+tLulGW1uCsTd78o9rRdmlnNyWw5/rD7L2T8K0LpoaDs2ig4TY3Hyuvw/KsspZ83DNgE1exTe7eqmQ1CLyUxpWj5Fx3MoTcun7GwhZWcLKc8sRpotfykrVAJHd2cc3JxwcnPG0c0JR9u3xlGL2kGD2kGDRqv5c9pBg1qrQahU1qpLW/Wldbqqebb5Qlwmf8TlMy75/eeMZY99rogne0YI4QZsB1yA34ClUsottmVp2CJPQogQYBcQBxQA64GPpJQ/CCEkMFJKuVoI8Q5QLKV8QwixGPhUSrldCNEc+EVKGXMFW94HTkspP6xm+WT+FE/eQKGUUgohpgAxUsqnhRCrgZlSyh22Y6sA/gU4SSnfFEKoAZcrCQIhhK+U8rxt+g0gW0r5sU08uQJ3ANHAKilla5sAfQQYDAQCR4EpF4snIYQ7kC6l9K5if1pgC1bRmSuEuAO4RUp5n03sHJVSPmorW91xzwAGAP2AtsBOYIyU8ichxEpgoe2/2gw8A5wGDmAVR6lCCB8pZX5V56+m0a6hW56Q9hbhaGqY9SbKs4qpyC1Ff74MQ4EOfUE5+vxyTGUGzDojpnIDJp3ROq0zIs2Wiz61vHeqBEKA0KhRO6hROWhQOahRaS/57aC2PojcHNC6OaJxdUDj6midts1z9HHB0dcVrbuj3UXKaktxUi57pv+IQDLk4wH4t7GP3KtKjDojB78+zJHvjoFF0mVMc7pPiMC/5dV1Fpp9spitXyWT+EsGju4OdH2kM21GR6K6pMf20uwy1jy8nooCq4DyanvtelS3mMzoz5ejP19Gxfky9Hll6PPLMZZUYCw1YCozYCrTYywzYCo1YDGYsBjNFz619oU6ZuiWJ25e2+ejTfW5TyWJohZIKUttUY8bsT54lwohnpdSLrikaDdgs5QyF0AI8S3WqM4PgAFYYyu3Hxhomx4AtL3oRughhHCvaSTD9tCPBE5KKW+7ZHGozdZgrFGYVNv8HcD7NvtWSCnPCiH2AvNtIuUHKWXC3+w61iaavLBGgn65aNkPUkoLcFQIUZm52wdYIqU0A5lCiI1VHQ7VJ1S3AWKBX23nSg1kXbR8aQ2OG+AnW3TpsG0bP9vmHwbCL9lnD2CrlDIVQEqZb5t/2fmrxubLeDp6Iuf1hTUtrnCtaFP9IglUmA1UmPVUWPQYzEYM0oTRYsIszRjNJkwmEyazCbPRhETa3qpVoBKoVCpUKhVqlRq1SoVKqFALFWqhRiPUaFTWb61Kg4NKi1alxVGlRavSoKr/WogG4fjeI8x88mscXTUM/XggHuH133v5lcjYm8W2N3dSklFKh+HN6PdYND6hLv9om4FRHox7pwt9HmjNurePsH3mbk6uSuKm/9yAV7jXhXJuga4M/3wQax9ez/7pq3nl/2YR2bna9+l/TusrL7YgqTDr0ZkN6M169BYjeosBo8WE3qC3fioM6A0GLBYzJrMJi8Vi9Q+LBWmxYLFILNKCxWzBYptnjdJaLtzwZeXUxU8AedF8rPlmlTirncBai1OvKOKpltge+puBzbYH7z3AgkuKXenOZ5R//vNm/vwPVEBPKWVNL4JErEKk0q5bhRBdsVYfXsrHWBOfVwkh+gIzbOvMFEKsBYYCu4QQA2zJ5n2AYcA3Qoh3/yZJewHWXKQ/bNGuvhct0180ffE5ueJrii3HqUwI0VJKmXLJYgEkSimr61q37KLpKo/7YtuklBYhxMX/iYXL/aJKMVfN+Tt+pWOrpH9gfE2KKShct6xbt46ZE1/GNdCFIZ8MwCnQfgauNunN7PpgL8e+P4l3c1cmz+9FRLe6rUoMjPRg8tc9OfJzJmvfOszKiWvp/kQXYsZFX4gmugW6Muwzq4B6c+LzbPh1Iz27K72KV8Gu+t7hdZNqXx8IIdrYWrhV0glrlQ5ACeBum94N3CSE8LNVfU3AWtV0JdYDF5K7hRCdbN/xQoiqxMtioLcQ4uKhtqt7JfLEmssDVrFXuY9WUsrDUspZwD4gWgjRAsiRUn4JfA10sZVdJISo6onvDmTZIlV3/c0xAmwFxgsh1LaIUL9qyr0NzBVCeNj27yGEeBBrXpm/LXkfIYRWCNGuNsd9FezE+n9G2PbpY/u+7Pz9g300GqSUmM3mhjZDoRGzaNEiRo0ahWe4B8O+GGRXwqnoTDGr7lvHse9P0mNSSx5Z1qfOhVMlQgjaD2nGYyv6Eh7nw45397Ll5S0YdcYLZdyCXBn2+UC0HlpuHngzW7b/3aNEoT5QIk+1ww34WAjhhbX5fDLWZGmAL4CfhBBZtoTxF4BNWKMW66SUP/7NtqdiFQuHsP4vW4GHsSaQXxaNklLqhBDDsVYbzQGysQq4N6rY9gxgmRAiA6tCj7DNnyaE6Ic1AnYU+AkYD0wXQhiBUmCSrWwH/lo9VskrWMXiaaxVXu5VlLmYlViTxQ9jTeiu7k7wGdbzvddmixFrVwUGIcRY4CNbCzwNMAdrJK6mx10rbLlVDwIrhBAqIAdrdWtV5++64fz582zfvp2dO3dy/PhxTiadJDv7HCXFpRiNRjQaDU4uTgQGBdIqoiVtY9oRHx9Pz549CQ8Pb2jzFewQKSWvvvoqr7/+Os3jQ+n/zk1oXO2nkUTqpnS2/GcHajVM+CSe6Jvqp58wd38n7v6sO9vnn2LDR8coSCmi/7v98Aj1AMAtyI1hnw9k3aO/MWDAABZ9s5AJ4+6sF9sUqkZJGLdzhBDvAt9IKQ81oA0ewNdSynENZcN1iN05npSSxMREvv/+e1auXMkff/wBgFqrxjPMA48wN9z83XB0d0TjqMFsMGPSGSnJKaMoo5jCtCJMFdZ8+YjICEaPGM1tt95G7969G31Ss8I/p6Kigvvvv5/FixfTdlQbej7XDZXWPio/pJQkLDjCvk8PEhLrxbjZcfg0+2e5TVdL8u85LJt+AIRg0Hv9COz4p4DTFVTw69ObyD6Sy1vvvsULT7/QIDbaIUprOwWFJoLdOF5xcTH/93//x7x58zh06BBCCII7BdK8VxhBnf3xjvZG4/j30QGLyUL+qQKyD+ZydkcmZ/dnYjFaCIsI5YH7HuTeyfcSGhpaD0ekYG+cO3eOsWPHsmPHDro/1pX298TYjaA2G81sf3sXJ1efov3QZox6rSPaGlzv15L8M2V888huis/puPmNG2nRt8WFZaYKE5te2U7a5nTuf+w+5n34RWPqj+laoYgnBYUmQoM7XkpKCrNmzeLbb7+lrKyMgBh/YkZGEda3Gc5+/7x/IEOZkdNb0klalULG/ixUahWjx4zmxWdfJC4urg6OQKExsG3bNm6//XbyC/Pp++oNtBhgPwJaX2Lg12c3k7XvHH0eiuLmx6LsRtSV5ev59vE9ZCYWcsOz3Yge82dLO4vZwq4P9pG49Dg9+nZnzfK1+PraX99Y9YginhQUmggN5nhJSUm89dZbfPPNN6g0KloPjqDdmGi8Y7z+fuWrpPhsCcdXJHF0xQmMZUbib4hnxoszGDx4sN08rBTqFiklc+bMYfr06Xg182TgO31xb2U/XRHo8nX89MRvFKQUMnJGRzqPCmtoky7DoDOxbPoBTm7JpucTnYid1OEvy4//kMSOd3bjF+THuh/WEdelyb6UKOJJQaGJUO+Od/z4cd58800WL16M2kFN29uiaD+xXZ1EmWqKodTA8R+TSVxyjNLsMtrHtWfmazMZMmSIIqKuI3JycnjggQdYtWoVLfuGc9OrvdG42U/VUum5UtY99htlOWXc8X5Xom4MaGiTqsVstLDixYMc+TmT+Ifa0+H+Tn/xlZzEPDY8t4WKQj1zPpzDow8+2hR9SRFPCgpNhHpzvKNHj/LGG2/w3XffoXHS0G5sNLF3xeDs23BDd5iNZpLWppAw/zAlWaV06Nqema/NUiJR1wGrV69mypQp5BfmE/9oHG0nRCFU9vOfFp4uZt1j6zGWGbjrk3jC4+y/ustilvz47wQSVp0l7t62dH4k7i9+osvXsemV7WTsyWLg8IEs/u9i/Pzsd1Dla4AinhQUmgjX3PEOHz7M66+/zvLly9E6a2k3ziqanLztp08ds9FM0ppTJMw/Qsm5Ujp268is12cxaNAgRUQ1MvLz85k+fTrz588nsE0A/f5zg11V0wGcP5HPT1N/Q0gLd3/eg2ZtPRvapBpjsUjWvHaI/d+n0+nuaLpO7fYXH5EWyeElx9g79wCe3h4s/HoRI4aPuMIWrysU8aSg0ES4Zo6XkJDA66+/zooVK3B0daTd7dHE3hmNo5f9iKZLMRvNnFx9ioT5hynNLqNDXAfe+s9bDB06VBFRdo6UkoULFzJ9+nTyC/LpOLE9XR5oj8rBProhqCTnSC4/Td2Ak6uaifN6EHCVY9M1JFJKfpqZyO7FqXSYEEX8k90v84/zSQVsfmU7+acKGD5mOPM+mkdISEgDWVxvKOJJQaGJUOeOt3PnTt58803Wrl2Lk5sTseOjaTs+GkdPh7re1TWjUkT9seAIJVmlxHZux5sz3mLEiBGKiLJDdu7cyfTp09mxYwfNOgVzw/M98Gj1d/3k1j/nErL5edpGXL213PNVzwbrw6kukFLy8zuJ7Pq/6gWU2WDmj28SSZh/GAcHB177z2tMfXwqDg6N515QSxTxpKDQRKgTx5NSsnnzZt588002bNiAq5cr7SZE03ZcFFp3bV3sokGwmCwkrbNW5xVnlBDTPprX/v06t956q9KnjR1w7NgxXnrpJVauXIm7nxtdH+lMq+HhdpXbVEnm/nP88uRGPAIcueernngFOTe0Sf+YvwqoNsQ/GV/ly0XRmWJ2vruPMzvP0iw8hJlvzOLOCXeiUtlXVLAOUMSTgkIT4R85XkVFBUuWLOHjjz/m4MGDuPu70/6uGNrc2hqNy/Uz6pLFZCH551QS5h+m6EwxIc1DeGrqU0yZMgVPz8aTr3K9sGfPHmbNmsXKlStxdHWkw91tiZ0Qg9rFPgXt2d2ZrH96E97NXLjnqx54+DdcI4m6RkrJL+8eZec3KbQfH0X3py6PQFWWO7szk31zD5J3Mp+odlG8+uKr3H777Wg01829QhFPCgpNhKtyvJSUFL7++mu++OIL8vLy8GvlS7s7Ymg5pDkap+vmRngZFpOF01vPcPS7E2QePIezqzOT7pnEg/c/SOfOnZUqvWtIRUUFK1asYN68eWzduhVnD2fajo2i3fgYHL3ttxoofcdZfnt2M77hbtzzRQ/cfO035+9qkVLyy+yj7FyUQvs7ouj+dNUCCqwJ5ad+SSVh/hEK0goJDgtm+pPTueeee/Dx8alny+scRTwpKDQRaux4BQUFLFu2jEWLFrFjxw6EEIT3aU7H8bH4xfk0OeGQd/w8R787SdL6U1iMFtq0a8OUyVO46667CA4ObmjzrgssFgt79uxhyZIlfPPNNxQUFOAd6kXM2CiiRrdG62rfQj1tSzobnt9KQKQ7k+b1wNWORd4/RUrJ+veO8vvCFGJvj6LHM9ULKLCKqPRtZzn8f8fISjiH1kHDiFEjeWjKQ/Tv37+xVosr4klBoYlwRcdLS0tj9erVrF69ms2bN2M0GvFr6UurIRG0HhyBy3WQt/FP0RfrSfn1NElrUsg+kgNAXHwcY28dy6hRo4iOjm5ywvKfUF5ezvbt21m9ejUrV64kIyMDjYOGiH7NaTs6Bv8uPnaZ03QpKb+lsenlbQS39eLuz7rj4tl4c/9qysURqNhxUfSYfmUBVcn5E/kkrUnl5E/J6Iv0ePl6MXL4SG4dfSsDBw7E1dW1HqyvExTxpKBQU4QQvsAG288gwAzk2n7HSykNNdjGi1LKty76/buUspcQIhxYI6WMrVurL/AXxzt9+jTbtm1j27ZtbN26lePHjwPgG+5D6I0hRA5siVe0pyIGqqEgtZD0jWdJ3ZJO7rE8AIJDg+l3Uz/63tSXPn36EBkZeT0myl41OTk5HDx4kJ07d7Jx40Z27dqF0WhE66QlrGcIrW5uSUjvIBwaUcOD5J9T2PzqDkI7enPX3Hic69B2i1miLzWCEGgcVQ0+ePClWCNQx/h94SnajYuk5/QeNb5fmA1m0ref5czmDFK3pWMoNaDRaujStQv9+/anT58+dO/eHW9v72t8FFeNIp4UFK4GIcQMoFRKObuW65VKKS/r8OVai6eFCxfKQ4cOUfnJybFGTpzcHAno6E9YfChhN4bgHtb4+qJpaEqzyzizLYNz+3PIOJCJLr8CABc3Fzp06EBc5zg6duxIZGQkERERhIaGNtaqir/FYrGQmZlJcnIyycnJnDp1isTERA4cOEBGRgYAQiUIiPYnuGsgYd2a4dvRG61z4xFMlZxYlcTWN3YS3tWPCR93w+kfVC1KKck+WUzSthzO/FHAuRPFlORWYDH9+bx09XHAJ8yFsE4+RMT70bKHHxqHhr2OpJSsf/8Yvy84RduxkfSa3qPW0UKLyULWgWzO7bH6T+6x81hMFgBCQkPo1LETnTp2IiYmhoiICFq2bElQUFBDv9gpggvZowAAIABJREFU4klB4WqoFE/AJuB9wA3IAyYD5cAeYKSU8oQQYgmwEWgFTAcOA4lSyrsqxdTF4kkIoQZmAn0BR2CulHKeECIYWAp4ABrgESnlthraK7VOWnxaeuPd2pOA6AACOvnh2dIdlVqJjtQVUkqKTheTnZBLQVIRuSdyyU8uwFBmvFBGo9UQGhZK87DmBAUG4e/vT0BAAP7+/vj4+ODm5nbZx9nZGa1Wi1arRaPRoFar6/ThYTabMRqNGAwGjEbjhWmDwUBJScmFT3Fx8YXpgoICsrOzOXfuHNnZ2WSdyyInOweD4c8ArFqrxivME+8oL4JiAvBr44NnGw8c3Bp3TtCh/0tk94f7adnLn/EfdMXxKluc6oqN7F9+mgMr0zmfVgZAUIQz4bGu+DZzxN1biwQMOjPnMw1knSon9VApJqPE2UNDu4HBxN/ZksAojzo8utohpeTXD46x479XL6AuxqgzknMol4LjRZxPLiD3ZB6Fp4uQ5j+1g6OTI2HNwwgOCiYwIJCAgAACAgLw8/PDw8PjL77j7u6Om5sbTk5OODg4oNVqL3z/g8iwIp4UFK4Gm3gqA24FRkkpc4UQdwC3SCnvE0IMBF4DPgQmSykH29b7S+SpGvH0IBAgpXxDCOEI7ADGAbcBTlLKN20Cy0VKWVITe29fPlp6hClCqSGQFklJViklZ0soySylJKOU4owSyvJ0VORXUFFYgb74b2t8L0OlUaHWqlGpVag1KrhYTF1yn73stislZpMFs8mMxWRBWmp/XxYqgbO3E86+Tjj7OOPs64yzrxMeIe54hLrhHuqOW6ArKs31c81JKdn36UESFhyh3S0h3PpWZ7RX0bO5rtjItq+S2Ls0DUO5mahuHvQY7kfcQB88/a4chTPoLRzfXcTO1XnsX5+PQWehTR9/bp4aQ1CbhulOQ0rJr3OOs2N+Mm3HRNLr2X8moC7FpDdTkmn1n9KMMuv0uTIqCirQFVSgy69AX6Sv9XaFWqDWqFFpVGi0aoRKhRDWa9tqv7gwLQQIYZ2+bflw5y+6LqyoswOsAfbdZEJBoXY4ArHAr7YogBrIApBS/iqEGAfMBTrWcruDgA5CiLG2355AJLAXmC+E0AI/SCkTarpBvwg/TNKIqP8XpiaPUAk8m3ng2ezy6IC0paKZjWYqCvXoiw2YKkwYy42Yyk0YdUZMOhOmCqvIsZgsWMzywrQ0W7CY5IVqjr/u+Mq/VRqVVYDZvlUaFSrtX6fVWhUaZy0Orlq0rlq0LhocXB3QumjQumj/8oC83q8ti9nCjnd2c2zFSeLGtWDYi+1Ra2pZRWWW7Ft+mk2fHEdXZKT7MD9uuT+EiHY1T5R2cFTRoY83Hfp4U/qSkQ3fZrN+YRaf376VrmPC6PtYTL13kyCEYOC0aAB2zE8CCb2f61lnAkrrqMEnwhufiMtzoCp9yGKyUFGkx6QzYSwzYtQZMZZbfclYbsRssGAxWi74jrnSn4x/fksprS8SkiqmASmxBYAeA96rk4OrIUrkSeG6wBZ5MgNDpZQ9q1iuArYAEbYyh2zzaxJ5+h74Qkr5SxXbDQGGAVOBd6WUi2posuJ4CgpXSUVFBZMmTWLZsmX0fSCavk+0rnW16fn0Mla+dJAzCQW0ifdgwovhhLetm9ZlZUUmfvzkLBu+PYeTu4bhL7en7aBmdbLt2iCl5LcPj7P962Qm3n8nC7745nptNFHvbwrX5VlUaLLoAX8hRE8AIYRWCNHOtuxJ4BgwgT+jRQDGi6ar4xfgkcpyQogoIYSrEKIFkCOl/BL4GuhSx8ejoKBwCbm5ufTv359ly5YxZHp7+k2NrJVwklKyZ2kan43dQl5KCQ+805rnv2lbZ8IJwNVTw50vhfPajx3wb+bA0qcPsOK5fejLTHW2j5oghGDAv6K5cUok33y9mElT7sRiqSIqqlBrlGo7hesJCzAW+EgI4Yn1+p4jhDACU7B2X1AihNgKvAy8CnwBHBJCHJBS3lXNdr8CwoEDwnqXzgVGY00gn27bfikw6ZodmYKCAidOnGDo0KGczTzDhPd7ED3Qv1brG8pNrJpxiMM/ZRB7gxf3vdUSn6BrV6XWLNKFl5fGsvaLTH785AxZx4oY90E3AlrVX0K5EIL+U9uAkHz75VJMFiPffv2/67aFaX2hVNspKDQMiuMpKNSCTZs2MWbMGCxqA3d+FE9Q+9p145F/pozv/rWXnOQSbnuyOcMeDEFVj51+Ht9TxKf/SkKvMzPqPx1pNzi03vYN1ojbxk9OsPWLJPoO7s3qZT/j5nbddIWitLZTUGgi2L3j6XQ6EhMTOXToEKmpqWRmZnLu3Dl0Oh0Go7U1mpenJ97ePgQHBxMVFUVUVBQdO3ZUBu1VqDOklLz//vs899xzBER4cNfc7riH1K4fqrS9eSz51z5UKsnD70XSoY/XNbL2yhRkG5g79STJB0sYNC2KXvdF1Xv/SLuXpPLTzCO0iW3Fxp+3XS9DGiniSUGhiWB3jldeXs7WrVvZsGEDGzduJCEh4UJ+hFAJ3P2ccfNzQONka4oPVJQYqCg2UZJbgclgKysEbdpG0ad3HwYMGMgtt9yCh0fD9Xuj0HgpKSnh/vvvZ9myZcQOCmPUfzrg4Fa7VN0jP2ew4sUE/MMcmfZFNEHNna6RtTXDoLfw9QvJ7F5znvhxoQx+seMFf6ovTmzJZvn0/Xh6e/DbT5vo0KG2DZDtDkU8KSg0EezC8crKyli3bh3Lli1j7dq1lJeXo3FQE9bBm/A4f4KjvfCLcsYrxPmKN3iLWVJ0TkdeailZiSWkH8wn/Y889KUmNFoNvW/syfhxd3L77bdfDyO4K9QDhw4dYvz48Zw4cYKB09rSc3J4raM0vy88xS+zjxIZ584Tn7bBw9s+ek63WCQrPzzD6s8yiL7RlzHvxePgXL8pyJlHC1n8+F4MZWa++uor7p7QqFM2FfGkoNBEaFDHO3DgAHPnzuW7776jvLwcd19nYgYE0e7mZoR0dq+TG7nZZOHsHwUkbcnl2OYs8lJL0TpoGDz0Fu67ZwrDhg1Dq7WPh5mC/WCxWJgzZw4vvPACzh5axszsQovutatmu7iX7bhbfHjo3UgcnOyvcfnm77JZ+GoKLbt6ccfHPXH8B0PKXA3FORUse3o/6Qn5PPTE/Xz83meN1ScV8aSg0ESod8erqKhg2bJlfPrpXHbt2o2Ds5YOw5rRaWhzmnXxQKW+dvcfKSXnjhdzaHUmf6w9Q1m+Hv8gXx5+8BEeevBhmjWr/z5wFOyPM2fOcO+997Jhwwba3RzKyFc74ORTu1ZhFovkp5lH2LMkjX4TApn4akS9JobXll1r8vjy2WRCY9wZ/1kPXDzrt0NNk9HC+veOsvvbVDp3b8/Kpatp0aJFvdpQByjiSUGhiVBvjnf69Gk+//xzvvzqS87nncc/woPu41vSfkQQTnU46nxNMZssJO/IZd/SdJK2n0OoVAwfNZRpjz9F3759G3qAUYUGwGQy8cknn/DKK69gNBsY8lwsnW4LqfW1YDFLVr9+iAPfp3PLfcGMf65Fo7ieDm7IZ+7UkwREuHDXvF64+dV/XtbhdRms+s8hNGoNH334MfdNvr9RnDsbinhSUGgiXFPHs1gs/Prrr8ydO5e1a9cikUT3DaLHhFa06O5lNzfF/DNl7PtfOgdWpqMrMtA6uiXTHn+KSZMm4e7u3tDmKdQDe/fu5aGHHuLgwYNE3xjCsJfa49Gs9gMVm00WfnglgUNrMhj+SDPGTAuzm+u8JiTuKOTDR0/gFejIxK974xHgXO82FJwt54eX/yBtfx6DRw5k/ucLG0trPEU8KSg0Ea6J4xUUFLBgwQI+/fRTkpOTcfd1Jm5MC+LGheER1LCtjK6EscLMkZ8z2fvdaTISC3B1c2bSPfcw9fF/ER0d3dDmKVwDUlNTeemll1iyZAme/m4MfT6WNgP9rkrwmIwWvn/uAEd/zeLWaWGMerR++1CqK07uK+a9KcfwDHBk0vzeuPvXv4CymCU7v0lh48fH0To48NprrzHtiSfRaOy6T21FPCkoNBHqzPGklOzbt4958+axePFidDodLTr70WN8K6IG+KJxaDw9CUspyThcyL7vznDo5zOYjRb63tyHfz3xJMOHD7f3G7hCDcjKymLWrFl8+umnqNTQ4+6W9L6vFY7uV3edmgxm/vf0fk5szuaO51sw5L6QOra4fqkUUJURqIYQUGAd+++ntxJJ2pFNm9jWfDj7EwYNGmSv0TxFPCkoNBH+seOVlpayZMkSPv/8cw4cOICjs5b2Q5vRfUIrAtq41IWNDUrpeT0JK8+yZ2kqRed0hIQF8fgjU5kyZQr+/rUblkOh4Tlx4gSzZ89m0aJFmExGutwazs2PRuMacPWC2Kg3s/TJfSRty+Guf0cw8O6gOrS44bggoIKcmPhVrwYTUFJKjv2WxS+zj1GYWU7PG+N5b9Yceva8bOz1hkYRTwoKTYSrcjyLxcL27dv59ttvWbJkCSUlJYRE+dD19hbEDg2+6rd3e8ZssnBySzZ7v0vn1K4ctA4ahg0fyr333M/gwYNxcKh9foxC/WAymVi3bh1ffvkla9euReOgpvOoMHpPjsQr7J+1KjPqzXz3r70k78hl0mstuXl8YB1ZbR/8RUB93Qt3v4YRUGCN7u1bls7WL5Ioy9fT+6YePP/MSwwdOhSVyi66gFDEk4JCE6HGjiel5PDhwyxevJglS5aQnp6Oo4sDbQcEET+uFcEdXe01lF7n5KaUcGDZWf5YZ+3uwNPbg/F3jOeuO++mV69eymCndoCUkoMHD/K///2PRYsWkZWVhae/K51vC6P7+Ahc/P551auxwsySqXtI2ZXHPa+3pO/t15dwquTE3mLef8A+BBRYB1be+7/T7P6/VIqydUS0bsEjDz7G3Xff3dCJ5Yp4UlBoIlzR8QwGA1u2bGHNmjWsXr2a1NRUVGoVkb0D6TSsOa37+uLg0nSFgtlo4dTOXI6sPcfRjRkYK8x4+XgyYvgIRo+6lYEDByqt9eoRnU7H77//zrp161ixYgVpaWmo1Cra3BhE1zERRPT2Qq2tmwiFQWdiyRN7Sd2Tx+Q3W3HT2IA62a69UimgvIOduPurhhdQYPW/o79lsfvbNM78kY9KJeg/6GYm3TWZIUOG4OvrW98mKeJJwb4RQvgCG2w/gwAzkGv7HS+lNDSIYVUghOgEhEgp19WmnBBiJNBWSjnzGpr3F8czGAzs27ePLVu2sHXrVrZv305paSlaRw0te/gT0zeEqH7+uPo2yt5/ryn6MhPJ23M4uSWPE1sy0RUbUWvUdInrRP9+A+nbty+9evVSxFQdkp+fz4EDB9i1axcbN27k999/R6/Xo3FQ06pnALEDmtH6Jj9c6ng4FEO5iW8f38Ppfee5b2Zrbry1aeS+XRBQQU5M/Lp3g/QDVR25KSUcXpNFwup0is7pUKlUdO8Vz6jho+nTpw9xcXH1UbWuiCeFxoMQYgZQKqWcfdE8jZTS1HBW/WkHcDfQVUr5+N+UnVyTcnXJzp07ZUJCApWfQ4cOUVFRAUBQay+ad/GmzY0hNO/uUe9jXjVmzEYL6QfzSd2ZT+reXM4mFmAxSYQQtIqMoGtcPF06d6Fjx45ERUURFhamVPVdgaKiIk6ePMnJkydJSkri6NGj7N+/n5SUlAtlmsX4EB7vQ+sewTTr7HbNhhjRl5v49tHdpB/MZ8qs1vQe1TSEUyUn9lpzoHwqI1ANlEReHRaLJDOxkOSt5zm+JZOsY0UAODo5ENc1jt49b6B9+/bExsYSExODk1OdCkBFPCk0HirFExAL5AOdgQPAUmAO4AzogHullCdsImUk4AK0AlZKKZ8VQqiBr4GuWCMy86WUHwghNgMJQDzgAdwnpdwjhPAB5gMtgXLgQSnlIZs9IUA4kAfcYLMhA3gbSL3ULtu85EvKOWMTU0KIFrZ9+WONsN0rpUwXQiwAim02BwHPSimX1+LcSQAXTyeC2ngQHO1BeJcAmnV2x9VHSYCuKwzlJs4kFJDxRzFZx/+fvfMOjKJo4/Azd5dcGmmENCCEQOgoVQWkigiKiiCKqKAIqICAvaCin4pKE0WxoAjCJ6IU5bOBUkWqBKQ36RBIIb1de78/7tCAAZKQcCnz4Lq7s7uz79xmbn/3zjszqZzYnUJafM7fxz08PagdE0292PrUrFGTiIiIc5bg4GACAgLw9/cv9yJLRMjNzSUtLY3U1NRz1snJyZw8eZKTJ08SHx/PyZMnOX7iOMlJyX9fr5QiuIYf4Q2qULNJVSIbBxLawAfvgNL/e83NtPLf4Rs5/mcKQybUpU3PkFK/Z1nkrAfKv5qZ+z9tS0B42e1Vm5mUx9GtZzixNZ3DcYnE707DbnMAYDAYqFU7ipjoGKKja1OrVi1q1apFeHg4ISEhfy8+PoUunxZPmvLDeeIpBLhdROxKKX8gW0RsSqmuwKMi0sclnl7GKbLygL04BU4o8JaI3OjKN1BEUl3iab+IDFFKdQCmiUgTpdRUIElEXlVKdQEmi0gzlz23AteLSM75HqVL2JX/vL/3lVL/A+aLyCyl1CDgNhHp5RJPvsDdQANgsYjULexn1/+9ayS8oT8B4d6VJti7rJCVkkfCgQySj2Rz5mgWZ45kknw0i4yEXHLSrRe8zuzjgXcVT7z8zHiaTZg8TXh4GjF5GDF5GjF5mjB5GDB5GFEG5Xyuyik6nAuudCB/mlI4HIKIIA7n8q/9fNvi4Nx9EexWO9Y8O1aLDZvFjjXPds62zWLHkmfDbnVcsHzKoPCraqZKNTNVQr3wC/GiapQvVWv5UTXah6AaPm4ZMyzrTB6zH9nA6f3pDJ1Ql+tuqZzC6Sz74zKYPHg33gEeDPi0LUE1fN1tUqGwWx2cOZZFwv4MEg5kknQog9T4bFJP5JCZnFfgNR5eJnz8zZi9PTD7eLrWHnh6/bM2eRpZNnvzFf8S1e0BmpLiGxGxu7YDgFlKqVicnqT8gQ/LRCQNQCm1C6gF7ARiXKLoB2BpvvPnAojIaqWUv1IqEKfg6uNKX66UqqqUCnCdv1hEciiYi9l1IdoAvV3bs4Hx+Y59KyIOYJdSqkjdfRp0CQfUlf+5pMEvyAu/1l7EtD43XQCbxUZmUh4ZiXlkJuWSm24lN9NGbqaVvEyba7FisziwW63kWfLIznS49v9ZREAcAs7//tkWQQRwrcXhvLMyqL+F1b+3XQLsnO18aQoMJoXJbMTkYcDTz4C3pwmTpxmTpwGT2YDRw4DJbMTLz4SXvwdefh6Y8217B3jgG2x2TQ5ddv4u007lMGvoOtJOZjNyWn2adQpyt0luJ7ZFFZ6Z1YiJg3Yx88HfGTC9LSHRZT+ez+RhJDTGn9AYf7jpn3QBrHk20uJzyE6xkJ1iISvVQk6qhexUCznpVqzZdiw5Nqw5eaSlZ2M9bcOSY3fWO4ud/+y4bdTLTRa/e0XLcyVvpqnQZOXbfg1YISJ3KKWigZX5juX/iWEHTCKSopS6GmeVGg7cBQxynXO+a1Qo2EV79rysAo4Vxq7Ckt+e/GUp0vvm3lqvkmlLKcbtNaVO7cKfKjiwiRW7w4odOw6x4RA7DnHgwIGIHTn7z6maLtrNUrn+f9Ybqc7+UwbXlgGlDBjyrQ3K+PdixLl2QytGiXP4wDGGDniKzPQ87n+pDlUjPEk4mktgqAeeXuW7CfVyqd3Uj2e/aMyEB3cze9B6pn/7HnUbxrjbrMujUOYLNrFideRhEys2hwW72Pg9af6S0jbvfLR40pQGATjjhwAeuNTJSqkQwCIiC5RSfwEz8x2+G1ihlLoeSBORNKXUauBe4DWlVCecTXjpBTR/ZQD5f5JdyK7zz8vPWqAfTq/TvcCaS5WnMNSp0rwkstFoKgxWq5VVq1axbNkyfvr5J7Zv34bD7pSaM17cf865weEe1Ij1oV7rAOpf40+dq/1cXrPKQ1RDX56b04gJD+zmoVtH8vOPv3Ddte3cbZZbuCF8wJ4rfU8tnjSlwXiczWNPAMsLcX514HOl1NmBYJ7PdyxFKbUWV8C4K+0V1/nbcAaMD7xAviuA55RSW3EGgl/IrvPPy89IYIZS6mlcAeOFKI9GoykkO3bs4JNPPuGrr+aSmJiE0aSIbeRJjzurULOOmeAQA96+Buw2ISdbSDhp4/hhC/t35jB/srNHV2A1E61uqsr1vUOJbuLn5hJdOarX9eG5OY2YNGgPnTp3Yt68r7j91j7uNqtSoAPGNWUWV8D4UyLyh7ttKQXKRcVLT09n9+7d7N69m4MHD5KUlERKSgoOhwOj0Yivry/h4eFERkbSuHFjmjZtSlCQjkvRXJq1a9cybtw4fvjhBzzNRtp08aVLT39adzTj41u4ATVTz9jZ/Hs2q37MZP2KLCx5QmxzX264P4LW3UMwmiqHNyo10cKUoXs5uieL96dN4dGhI91t0pVG97bTaM6ixdOVJycnh6VLl7Js2TJWrVrJ9u07OPsdoRT4BXri42/CYASHXcjNspN+xuIKfHYSFV2drl1upGvXbtx0000EBwe7qTSassjBgwd55plnWLBgAYFBZvo8GMDt9/vjH3h577/MdDs/L8hg0axUThyxEhFt5rbHanLtzSGVokkvJ9POByP3sWNNKs+9NJpxr06uTD15tXjSaCoJZabiWSwWFi9ezNdff80PP/xAdnY2Zm8TdZv70bB1MDUb+hIWY6RaDa8Cf8k77EJKgoUT+7I5sTePv/7MZNf6M2Rn2DGZjHS+oQP9+w3gjjvuICAgoAALNJUBq9XK22+/zWuvvYbR6KD/o8Hc+ZA/3j4l+95zOITff83i83eSObjHQs1YL/o+U4urOlZ8EW+zOvh8zEF+/zaRO/rexJyZC4syVlJ5RosnjaaS4PaKt3//fqZPn87MmZ+TmJhEYDUvWnQNovVNocS28sLkWfy5yBx24fCOTDYvTWPDT4kkHc/F28fM3f3u4rHho2nRokUJlkRT1tm+fTsPPPAAcXFxdLklgGEvhhISXrr3dDiE1T9l8umkZI4fstKiSwD9XoghNKrsTG1SGogIP3x8kgXvHKVh09r8uHgFtWrVcrdZpY0WTxpNJcEtFU9EWL58OePHj2fp0qUYjQaa3xBMl37VadDGu1SaN0SEg9syWf11Euv+l4Al10Gzlo15+okXuOuuuzCZdL+VioqI8NFHHzF69Gj8/A2Mfi2MDt2v7Aj6Vouw4PNUZk1NxmaFW4ZG0vORGpf146A8sHVFCh8/uR+zp5mv5y3kxq43Xfqi8osWTxpNJeGKVjy73c6CBQsYP348mzdvJrCaNzfcG0aHO0MJCL1yY+ZkpdtY+20SK748zcmD2dSICuOZp57noYeGVJbmhUpDZmYmQ4cOZe7cuVzXyZ/nJ4UTEOy+903SaRsfjkti2eIMoup58cC4usRcVfYHl7wc4g/mMHX4PuIPZvPE04/x5uuT8PCokJOLa/Gk0VQSrkjFy8nJYebMmUycOJGDBw8SEe3LzYNrcO3tgXiai/bLOyfTxqqvE9i2KpXUhDyqBHnQ4Dp/Ot0dTlBY0bwJDofw54oUfpx+iv1xaQQG+/HYY6MYOWI0ISGVe/qNisDevXu544472Lt3D4OeCKX/o1UwGMpG8PL6FVlMGpNA8mkbPQaFc/vIqAo96GZetp0v3zjCqm9O06xVQxbM+56YmHI+oOa/0eJJo6kklGrFS01NZdq0abz77rskJCRQ5+oAeg6pydU3FG8wwbhfzzDjhb/ITLVRv6GJ6GgjCacdbN1ixdOs6PtkTW4YEFms3j37N6fz4/RTbFmejJePJ4MGPcgzTz1fGeI0KiRr167l1ltvRVQ2L78XQfO2Za9ZNjPdzkdvJfH93HQiY8wMnRhLdJOK7YXa+FMyM188iDgMvPHGG4wc8Xi5n+w6H1o8aTSVhFKpeCdPnmTKlCl89NFHZGRkcFWHqvQcWpPY1l7F7rb83QfHWfTuMRo18WDcWwFcffU/L8OjR2y8MjaDFcvy6HR7EPe/Wb/YY+ucOJDNz5+eZu3i0yCKvnf15vnnXuKqq64qVn6aK893331Hv379CAlXjJ9Zg8gyrn83/57NW0+f5kyijd4ja9BjSI0KPaxB8sk8Zr50iO2/pdC8dWNmfTaXpk2butuskkCLJ42mklCiFW///v1MmDCBWbNmYbNZufbmUG4ZWpMaDS4vvmHxtOMsnHKMXr29efNtf7y8ChiqwCG8/14W70zKpHOvAO5/q+FlNdGcOZXH0s9Ps2JePHnZDm7s3oUXnx9L+/btK9O4NeWOjz/+mGHDhlG/qRfjPo0gKKR8BGRnpNmZNCaBlT9k0rCVLw9NqE9IdbO7zSo1RIR1/0ti7htHyEq3MXjog7z+6ltUq1bN3aZdDlo8aTSVhMuueCLCypUrmTp1Kt9++y0enkba9wnl5odqULXm5bvjN/2czAcj99GrtzcTJ/tjvMQv8vffy2TShEz6jQij+8jLj6nITLWy/MtEfvniJBlnrLS65mrGPP8Kt956a0Vqbij3iAgvv/wyr7/+Otd1rsLY90Px9ikfwuksIsLShRm8+0oiAPe/Ups2t4W62arSJeOMlW/fO8GKeafw8THz/PMvMPKxx/HzK5fT22jxpNFUEopd8TIzM5kzZw7vv/8+O3fuxD/Ii453V+PGAZH4l9Cv/RMHsvnPndtp2MDI3HnBBXqczkdEeObJdOZ/k8OzH9ehYeeSeflYcu38tiCRnz+LJ/F4LtVrhvHwkGEMHjyEiIiIErmHpnhYrVYeeeQRZsyYQfc7A3jqzWqYyvGUKPHHrLzx+Cl2bM6lzS3B3PdqHXz9y17MVkly8kA230w8zpblyQQE+TF61OOMGvl4eZtmSYsnjaaSUKSK53A4+O2335g9ezbffPMN6enpxDQJpOt9EbS62R9Pr5L7pW+zOvjPndvJTMzlfz9WJTKi8F6e3Bz6J9t2AAAgAElEQVShd69kEhIcvPp9M/yCS675w24T4n49w8qvEtm5NgWTycgtt3Zn6OBh3HjjjRW1C3aZJSUlha5duxIXF8e9jwYx+OmqFaJZ1WYTvvwwhZnvJlM1zIPBE2Kp37rij4x/YGsGP358irhlSfj4etH/3v4Me2QEzZs3d7dphUGLJ42mknDJiicixMXFsWjRIubMmcORI0fw9vWkZbcgOverTkwzz1J5WZ2Nc5r2SRA9ehRd/OzebeX2W5LpcJMf908unWDUU4dzWD0vidULT5GZYiMwqAp39unLPffcS8eOHXWzXimRlZXFkiVL+PLLL/n2229xOOw8NrYavQcGutu0EmfXllxef/wU8Uet3PpwBLc9FoXJo3w1RxaHY3uyWDozgQ0/Oge0bd6yKYMeGErv3r2JjIx0t3kXQosnjaaSUGDFS0tLY82aNfzwww8sXryYEydOYDAomrQLpt3t4TTr6oe5FONJTh7I5qXbt9G9u5n3pxX/hfjelEzemZTJ8x/XoX4JNd8VhNXiYMeaVDb9kMrmZYnkZTsICvanW7fu3NzjFrp160Z4eCnPA1KByc3NZePGjSxfvpwVK1awfv16LBYLBoPCaIKX3gunw03lMkamUGRnOpj6n0R++iadOlf5MGRiPcKjvd1t1hUhK83Guu+SWfn1aY7vy0IpxbVtWnFn77vp2rUrTZs2xWAoM2JSiyfN5aGUWgm8KSJL8qWNBuqJyLASukczIFJEfrzEeQ8ArURkRAHHMkWk0N+6SqnDQAbgAE4DA0TkVFHszpfXTOB7EZlfjGtfEJFxxbnveYiIcOjQIeLi4li/fj0rV65ky5YtOBwOvHw8aHJ9AC1vCKVxR1/8g69M3MWkh3ZzaGs6y1ZVJbRa8b03VqvQo1sSVpvi5e9bYPIsfU9QXo6dbatS2bYinW2/JZOWZAWgXoM6tL2uPW3btqVNmzY0bNhQe6bOQ0SIj4/nwIEDbNu2jbi4OOLi4ti5cyc2mw2lFNGN/ImoY2bryjOYjMIb0yNo2rJyCImVP2Yw6YUErFboPyaa9neGVogmysJy4kA2m5eksWlJIsf2ZAEQHBJIl0430L59B1q2bEmzZs3w9fV1l4laPGkuD6XUw8B1IvJgvrT1wNMi8lsJ3eMBLiCKCnteMcVTKxFJUkqNA/xEZGS+4wrn37OjEHnNpPjiqUh2X4jOnTvLli1bSEtLA8DD00jdZv7Uv8afRtcGEd3MXOQRwC+XP1em8M7QPbzwchWGDLn8L8FVK/N44P4UBj8XyvWD6pSAhYXH4RCO7clmx5oM9v+RzoE/08hMsQFgNntSr35dmjZpRqNGjahbty5RUVHUrFmTiIiICiesbDYbqampnDp1ivj4eOLj4//ePnbsGPv37+fAgQNkZ2f/fU1AVS9qNfYhunEV6lwVQN1WZv7amsEHo/YRGGzk7ZmRRNe5snPUuZuEeCvjnjzN1nU5tO4WxMDX6uAXVPni7JLj89i9LoO9GzLZsTaZlNMWAAwGA/Xq16FRo6bUi61HbGwssbGxxMTEEBYWVtpzWGrxpLk8lFJVgT1ADRHJU0pFA6uBWsCNwKuAGfgLeFBEMpVSNwOTgSQgDogRkZ5KKV9gKtAUMAGvAD8BBwBv4ATwJnAImOJKy3Hlu9clnu5w3a828KWIvOqy828RopR6GrjLdd4iERlbQLkO84946g6MBIa57FkBtAF6ASOAHjibxV4XkXkuYTUV6OKyVQEzRGT+efm2AiaKSCellJ/rmlauvF4FWgNPA9uBncBQ4GugBmAEXhOReYV5TvWaV5UaDT2JaRxEzYZeRNbzvOJiKT82q4MXe/6Jl7Kx5JeqeHqWzHfRQw+msGG9hbeXNsMvxH2z2YsIp4/k8teWLE7us3D8QAYnDmSRdCLvnPOMRiPhEaGEhYVRNTiEoKBggoOdi7+/P97e3nh7e+Pl5XXOtoeHBwaD4e9FKfWvfXDOMehwOLDb7ecsF0qz2Wzk5eWRm5t7wfXZ7ezsbNLS0lxLKmnpaaSnpZOVlV3QR4KXj4mgMDOhtTwJj/YlvJYvYbW8CK9rJCjs3Hi63xYm8PmYv6hd38zbMyIJCavYPdAuhMMhzJueymeTkvAPNjH47Vgata148V6FRURIPW3h8M5sju7M4/DOdE4eyibpeC522z/aQilF1ZAgIsIjiIisTlhoGAEBAQQEBODv7//32t/fH7PZfM7i5eV1zr7RaMRkMmE0Gv9eDG6Y+0eLpwqIUuoH4BMR+U4p9RxQFXgbWAj0EJEspdSzOMXKeGA/0EFEDiml5gJVXOJpHLBLROYopQKBjUBzoC/5PEpKKX8gW0RsSqmuwKMi0sclnt4EmgDZwCbgARH546x4Ukp1A+4EHsYpahYD40Vk9XllOsw/Iud9IAv4EDgItBWR9UqpPsAjQHcgxHW/a3EKq0dd6WHALmDwJcTT24BZREa77h8kIinnib4+QHcRGeLaDxCRtMI8o1n725apirfyq9PMfPkgH30WxE3dSq6H3MGDNrp1SaLXfYHcOqZhieVbUuRm2Uk6kceZ+DyS4y2cic/jTLyFjBQr2ek2MlNtZKU5F4fd3daei4fZgMlT4WE24OFa+1Qx4V3FiHcVIz5+zm2fKkZ8/E0EhHgQUM2TgGoeBIR44u13aQ+biPC/D0+wcMoxWrTz4T/TwvHzr1ieueKwb0cur406xfFDVno8FM4do2vh4Vlm4n/cjt0mJJ/M49ThHJJO5JGWaCUt0UKqa51+xkZupo3sDDuXbiu4NDP3tYkcGLs2/vJzKjyV8+dDxWcu0A/4zrUeBFwHNAJ+d/2i9ATWAQ2AgyJyKN+1Q13b3YDblFJPufa9gKgC7hcAzFJKxeL00uT3Zf8iIskASqmFwPXAH/mOd3MtW1z7fkAsTm/Z+axQStmBbcCLQCBwRETWu45fD8wVETtwWim1Cqe3qEO+9JNKqeUF5H0+XXF+dgCISEoB52wHJrqE1vdFaRb1MPhhd+ThBm/zv7BZHXz/8Qmubu5BtxtLtikmJsZE37u9WTA3lc4PWvCPLFvBxT6+EFXPm6h6BR0VBAeCHRHBkuPAmufAkuda5zqw5gnWPAd2qyAiiDi9E+IAEaf4EAeIw6mVDUaFMigMBue2waBQRjC40pQrzXA2zajyCSQDHmaFh6cBo4cqIOZGoTCgMFASf1c2q4NZr+xn1TenuPGOKjz9ZhieZvf/vZYF6jXxYvr3UUx7PYnFn55i99p0hk5sRPW6bov5KVMYTBAeZSY8yr+Ao+KsUzgQEfKyHeRk2snJsJGbZcdqEWwWB1aLYLU4sFkc2P7eFhx2weEQHDZnXXPYBZytDh9eyTJq8VQx+RaYrJRqAXiLSJxSqjpOIXNP/hOVUhcbxEMBfURk73nXXHveea8BK0TkDlcz4cp8x873sJy/r3AGuH98ETvO0llEkvLZEYjTA5U/rwtxIU+PDTj7kzF/u5K6yDXODEX2KaVaAjcDbyqllorIfy52zVn611lamNOuCDNmzCDpxG9MGBdOacTAPjbKj4Xzc1j3aQ5zZv9x6Qs0bicjI4O77rqLVT+fYuDIUB4Y7V+pAqQLg5e3gSfeCOXaTj6Mfy6BV/tsZcKE8QwfNlp/VleeKyqc4J+XhqYCISKZOAXMDJyeJID1QDulVF0ApZSPUqoezvioGJfoAbg7X1ZLgMdcMUP5hVYGkH8K8gCc8U8AD5xnzo1KqWCllDfOXwe/n3d8CTDIFWOEUqq6Uqq4fdtXA3crpYxKqWo4PU4bXen9XOkRQOd81xwGWrq2++RLX4ozfgqXXWeH27UqpTxcaZE4myvnABOBFsW0223YbDbeeON1ml5lpmPn0mlJjIw00v8+H76au4tdu1eVyj00JcfJkyfp0KEDv/yylGfeqs6DjwdoMXAR2t3ox4yfomjaysxjI57ghm7XceTIEXebpSlltHiquMwFrga+AhCRRJzCZq5SahtOMdVARHJwBl7/rJRag3MYgLNxO6/hbILbppTa4doHZ4B2I6XUVqXU3Tjjpt5USv2OM3A6P2uA2cBWYIGInON6EJGlwJfAOqXUdmA+5wqzorAIZ5Pen8By4BnXcAaLcMZ1bcf5CyX/G/xV4F2l1G9A/qiW14EgpdQOpdSf/CO4PsH5efwXZyD9RqXUVmCM65pyxZdffsnBg4cY/liVUn1BDhvhi6en4uWXh5TaPTSXzx9//MG1117Lvv27eOuzWtx8t4+7TSoXVA018fbMCB5/rRrr1/1Bo8b1+OCDd3E4SiCgR1Mm0QHjGpRSfq5edwr4ANgvIu+4264Kjtsrnt1uJzq6Fr5+p/lpaelPrfHmGxl8+kkW23esoFHDTqV6L03RmTNnDkOGDCEoxMjrH0dSp5G7LSqfxB+3Mun5RP5Yk0X7ji2ZOeNrYmIuf6JszUW54q5R7XnSAAxxeU924myCK0z8kaYck5ycTJcuXTh+/ASPDve9Is0yg4f44OEBw4ffxoEDB0r9fprCYbPZePLJJ7n//vtp2MyTj76toYXTZRBRw4MJX0Tw1JuhxMVtoUnTBkye8jZ2exnrrqm5LLTnSaNxD26peCLCV199xciRI0lOTqJurImff6nKlRom5ZWX0/nv7GzCw008OvwFnnnqpdIePE9zEU6cOMG9997LqlWr6D2wKsPGBGOqfOM+lhoJJ61MGpPEhpWZXNWsLtM//i/XXHONu82qiGjPk0ajKR2OHj1Kz5496d+/P2bfDETgsVG+V0w4AQx9xBeloF4DI2Oe/w/NW9UjLi7uit1f8w8//PADzZo1Y+OmtTw/sQYjX9HCqaQJjfTgrRnhjJ0azomTh7nuumsZMvR+UlIKGvlEU57Q4kmjqeDY7Xbee+89GjVqxIqVvzDipXA8zUKduiZuvuXKjvodGWmkT19v1vyWx5iJ1Th54hjXXNOKp54ZQU5OzhW1pbKSnZ3N448/Ts+ePQkKzWP6/2pzU5/KMUedO1BK0blnFb74NYo7BwXz+Yw5xNaLYsbnn+qA8nKMFk8aTQVm165dtG/fnlGjRtGklYmZS6IJjVQc2mdhxEhfjMYr3wX90WG+2G1wdE8Os36N4qY+/kya8AGNmtRm+fLCjF+qKS6rV6/m6quvZsqUKfQeWJX3F4ZTI0aHblwJfKsYGf5iVT5eHEV4lIOHBg2hecuGrFixwt2maYqBFk8aTQXEYrHw+uuv07x5c3bv3cKL79Tkrc+rEVpdmPVeMrVjjNx6m3vmmouqZeK2Xl7M/28WYhOeeTuUyf+tjtWewg033MADg/rpZo0SJi0tjREjRtCxY0dyrfFM+TKGka8EYy65mXg0haRuIzNTv4lkzDthnE48RJcuXbil5w3s3r3b3aZpioAWTxpNBWPTpk20bt2al156ifY3+TJzSS269vJCKcXaX7P4a7eFYSP83OJ1OsvwEX7k5grffe4cML5FWx9m/FyTex4JZs4X86jfIJpvvpmH7tByedjtdj799FPq1avHtGnT6DuoKtN/rE6zNnp+OndiMChu7OXPF79GMfTZEFatXknTpo0ZPOR+PcBmOUH3ttNo3EOJV7ykpCTGjBnD9OnTCQnz4vHXQmnb9Z+56kSEh28/Rk6ajeWrQjCZ3Dtq9IhHU1m1Mo+v1kTjF/BPj7v9O3OZ8FwS+3bkcHPPTrz/3gxq167tRkvLHyLCkiVLeOGFF9iyZQtXtfLnsbGhxDbRI4WXRVKTbcx6L5X/zU0FUQwY2J8Xx/xH/90XHt3bTqPRFA2bzcYHH3xAvXr1+OyzT+k7KJjPl9Q4RzgBbFiZzb7teQx/zNftwglg+EhfMjOF72edOSc9trEX0xZV59EXQlj26yoaNIzl6WdGk56e7iZLyw8iwk8//USbNm3o0aMH8Ql7GDs1ine/1sKpLBNY1cSoV0P4cmUtbr0nkNmz/0tsbF0GPnAPO3fudLd5mgLQnieNxj1cdsVzOBwsWLCAsWPHsnv3blq182fkK+FE1f131iLCsN7HSU+ysmJ1CB4eZeNFOmRQChs3WJj7WzS+/v8e7ykh3spnE1NYsjCNqiFVePXVNxgy+GE8PT0LyK3ykpOTw7x585g6dSpxcXGEV/fhvuFB3NTHGw/PsvGsNYUn8ZSNeZ+ksfjLFCx5QqfObXni8ee4+eabMRp1k2sBXPE/ci2eNBr3UOyK53A4+P777xk7dixbt26ldj0/HnoihHbdTBccKXzDyiyeffAkb7zlT/97y858ZTt3WOnZI5mHHw/gnpEXng96z7Zcpr2ezLZN2URWr8pzz77M4MFD8Pau3F3sd+zYwezZs/nss89ITk4mOtaXOx8MLFA02e1CRpqD9BQ7eXmC0QgeHorgakZ8q+gXclkk9YydH77K4NvZKSSeshFdO4KHBj3KgAEDiYqKcrd5ZQktnjSaSkKRK15WVhazZs3i3XffZd++fdSI9uWBUcF0vtV80eBvEWHYHcdIS7axfGUIZnPZ8kQ8PDiFdesszF19buzT+YgIm1ZnM/v9VLb/kU1oWCDDHh3J4MFDqV69+hW02H2ICPv27WPhwoXMnTuX7du3YzQqru/mT+/7Q7jqOoVSCrtd2L8zj63rcti7PZfDBywcO2jBZi04Xx8/Rc3antRrYqb+VV5c08GH0Eg9YmZZwWYV1izNZNEXGfy5MQuAjp3a8MDAofTq1YvAwEA3W+h2tHjSaCoJhap4IsLvv//O7NmzmTdvHmlpaTS8qgp9HwqiQw9PTIVoflu/IovnBpU9r9NZdu2ycstNyQwe6c99j4dd8nwRYeuGHOZ+mM7G1RkYjQZ63noTAwcMoXv37hXOG5WSksKaNWv4+eef+emnnzh06BAAV7WqQpfb/OnYw5ugEIXVImz+PZvl/8tg7bIsMtOdAzDWjDJSr56JOnVNhEcYCAw04OWtcNghL09ISHBwKt7O/n02du6wkpbm/NOMqe9Buxv9uKmPPzWidTNpWSH+mJVfFmWxZFEaJw5bMJmMtO/Qljt69eW2226jVq1a7jbRHWjxVBFQSr0DHBGRKa79JcAxERns2p8EnBCRyZdxj07AUyLSswRMvmS+SqktwIMislUpZQLSgIdFZI7r+GZgiIgUe64NpdQrQKaITCwgfQiQCJiAF0RkcTHv0Ylifm5KqV7APhHZVZx7n8cFK15ubi6rVq3ixx9/ZPHixRw+fBhvbxPtu/ty+73VaNSCQk/kKyI82usYGWdsLCuDXqezDHskhd9WOWOfqgQWfq67E0csfD83k5/mp5KabMfXz4uet9xCz5696NKlC5GRkaVodcmTlZXFrl27+PPPP1m3bh1r165lz549AHj7mGjR1ofrOvlzTSczYdWd/X2OH7bw7ew0li5MJz3Vgb+/4sabvLi+gyft2npSLbTwTXIiwoH9dlauyGP58jw2rrfgcMDVrby4fWAAHbpXKROdDTTOZ7Vray6/L81jzS9pHP3LAkDtmJp07nQjnTt3pmPHjtSoUeOKTPztZrR4qggopfoCfUXkLqWUAdgEWESkjev4OmC0iGy4jHt04sqKpw+AnSIyTSnVEpgOrBeRYUopX+A4ECIixZ46/BLiKVNEJiqlGgK/AaEi4sh3jklEbMUtXyHtmwl8LyLzi3ptAQg4vwATEhLYtGkT69evZ/369axbt47s7Gy8vE00b+NNl55BtOvmiY9v0b8f1i3P4vmHTjLubX/u6V/2vE5n2bvHSo9uyTw4zJ8BT13a+3Q+NquwdX02q37KY/WSVNLOOP8MY+vVpmOHG2jRogXNmzenadOm+Pr6lrT5RSI9PZ0jR46cs+zZs4edO3dw6NDhv8e2CgjypHELM41b+NKkhTcNmxvwNDsFk4iw+fcc5n+ewoYV2RhNcFN3L3rd4UWHjmY8SyhI/FS8nUULc/h6Xg6HD9mJrGnizocCufmuALy8dWftssSxgxbWr8jhzw25bN2Q+bfnMTQsmObNWtKyZWuaN29O/fr1qVOnDj4+Zff7oBho8VQRUEpFAhtFpIZSqinwFBAB3A1kA6eBUKA9MBGnN2UT8KiI5CmlbrhAendgCpAExAExBYicaGA2cPYNMUJE1rpEwyuua5sAm4H7REQKmW9/4GYRuU8p9RiQBzwgIm2VUp2BF0XkBqXUE8Ag12Wf5vO+XSh9DDAAOIbTs7T5YuLJtX8KuAr4GlgLtAMWA1uL8rkVkO8OoKeIHFZKDXA9NwG2AR8C3+P0uKUBfYBbgEcAG7BLRPpRSB566CHZvXs3e/bsJiUlFQCjUVG3oQ+NW5pp0ymQq65TmL2K/4JyOIRHeh0jK9UZ61RSL9TS4rFhqSxflseXq2oRGFL8eBu7XTi4J48tay3Erc1m55ZsMtL+0fQRkaHUrh1DTO26REVFUbVq1XMWHx8fzGbzOYszX/u/ltzcXLKyssjMzCQzM/Pv7fT0dJKSkkhMTPx7nZiYQEJCAqmpaefY62k2EBllpnY9EzH1fYmp50WtelA9+t8dAESEzWuymfnuGXZsziWkmoH+93rT/14fwsJLL+jb4RB+/SWPjz7MYstmK9XCjAwcFUz3vgHaE1UGsduFg3stbN9oYf9OC/t3ZnFovwW77Z/3fWT1MGJj6xFdK4aIiIhzlmrVqhEQEEBAQABeXl7lwXOlxVNFQSl1GOgA9MD5YKsD63C+eN8EugH7gRtEZJ9S6gucL/aPLpHeBTgAzAN8ChA5PoBDRHKVUrHAXBFp5RJP3wGNgZPA78DTwB+FzDcaWC4iMUqpucCrOAXFbcBIwOzKfyZwnavMG4D7cI4ndrH0a3EKnjjgo0t4nq4FFrk+zxU4RcswpZRXUT+3C4knnMJzIdBORJKUUsEicuZ8z5NS6iRQ2yXQAkUklUISXM1Doup4EFXHk6g6ntRrbKb+VeYS/TW/bHEGr406xYTJAdzZt+zHAf11wMZNXZPo09+PYf+JKLF8RYSEkzYO7Mrjr90WTh6zcuq4lfhjVpJO2bAX21d6cYwmCAgyERhsJCDY4FqbCIv0IKyGibDqRsJreBBU1YjBcOnv/j/WZDNzSjI7NucSEWlk2Ahf+t7lfcWbYtevszD+7Qy2bLZSK8bE4GdDuP5Gv/Lwgq3U5OU5OHrAwrFDVo4fsnHiiIUThy2cPmnjTKIN+wX89iYPha+fB37+Hvj6euBpNuLhacDT87y12YjJpDAYFMqgMCic63OW/GnO8IOC/m7OT/rXKeclfDjhzyv+x1f44AJNUfkdaOtaJuN82bfFKZ7WAvWBQyKyz3X+LGA4TkFQUPpKV/p+AKXUHGBoAff1AN5XSjUD7EC9fMc2ishx1/VbgWggszD5urwxnkqpcKABsBend+daV7mmAtcDi0Qky5XXQpzeNXWBdIMrPduVfrE4pseVUvcBGcDdLo8ZOMUQF/k8C/u55acLMF9EklxlP3OB87YB/1VKfQt8e4k8z2HRpto4P5bSafqw5DmYPiGZBo1M9O7jnjnsikqduibuudeHuf/N5NYBFmrWLRnBpxSEVTcRVt2LdjfmP+LA4XCQlensvp+e4iA9zU5ejmC1CBaLc23Nc/7ANBidi9GgXNsKT7PC28eAl49z7e1rwNtb4e1nwK+KwfViyL8UnUP78vhwXAIbV2UREWnktXH+bhFNZ7mujScLFgXzy5I8JrydwUsPn+LaDj6MGBtOzRgdWF5WMZuNxDb2ILbx+Uec9SA9xU5ygp3kBBtpKXayMx1kZjjIynCQneHczsm2YrVYsFqErGzBkvpPHbFaBJtNEAFxgN0hiAMcDhBxei//2RccDnCU0A+XfsPrDegYve+LksmtcGjxVHqsxSkqmgI7cDZLPQmkAzO48Dfpxb4RC+MmfBxns+DVON/MufmO5eXbtvPP8y+s+3EdcCcQ7xIv63E2mV0DrMcpqgricssE8M75HikXWZdxDxvnqpezKkMV0q5bcHoXbwNeUko1LkzcFUDLyO+w2ktv8ttpU7/i1PGpjP9vWKG8GmWFUY/78u3CHGaNt/D1d1+62xy3knD6DG+9/ilffL6YKlWMjHkpiPsHepaJoH+lFN26e9Glq5k5s7OZPCGTh3ocZvjIPjz53CP4+JQPwa7JRwTQqHCnCoKIBYdYELHiwIKIzblgQ8SBYEdwgDica8R1pUtNIfm+ZOUCa86Z39J53/O+msXIicyPfi1iaS8bLZ5Kj99xiqWDriDqM0qpQJzNZkNwenyilVJ1ReQAcD+wCthzkfTaSqk6IvIXcM8F7hsAHBcRh1JqIHCpQIjC5nu2TI/jbGoDp5iaAJwSkVSl1GpgplLqLZwC5A6X/aoQ6SbgVuDjS9h7sXIU9XM7jLOZDqVUC+DsRFLLgEVKqXdEJPlssx1Or1cV1/kGoKaIrFBKrQH6A35AoZru/DwbFrOYlyYlJYVJb82hQ0df2ndw/4u2KISEOJujxr8Vz4ZVe+jefdClL6pg5ObmMmXKFMaNG0dOThYDHvBj5GhfgoLcbdm/MZkUDzzoyy23ePHmuCzemfgN38z7lfenfsbtt9/hbvM0lYS6IU+cvNL31N0lSo/tQAhOj0z+tDQRSRKRXOBB4Bul1HbAgTPe52LpQ4EfXC/rC029PQ0Y6PIK1eMfz0yBFCFfcIqnGJyiCRGJxynO1rr243AKq40445o+FZEtl0ifhzPQewHOXnTFopif2wIg2NWE+Siwz5XXTuANYJVS6k+cza4AXwFPu4ZtiAXmuO61BadnrNAxT6XJmDFjSEtL5bkXAtxtSrEY9JAvNWoaGTlyJLm5uZe+oIIgIsybN48GDRrw/PPPc20bBz//Gs7YV8umcMpPtVAjk6f4M29+ML4+mfTq1ZvbbuvM0aNH3W2aRlMq6IBxjcY9lErF++OPP7jmmmsY+KAfY191b5f8y2HF8jwGDUxhzIt38/prX7nbnFInLi6OUaNGsWbNGho18ubFsYG0aVPHem4AAA9eSURBVFs+v5utVmHGZ9m8OzkTpUy88sorjB79NB4eesRyTamhe9tpNJWEEq94drudNm3acOTIdn5ZEYS/f/mu2yMeTeWXpXls2bqBRg1bu9ucUuH06dOMGTOGGTNmEFzVk6ee9qPv3aaLTrdTXjh+3M6rL2fy6y85NG5Sm08+nkPbtm3dbZamYnLFK4xuttNoKghTp05l06ZNvPBilXIvnADGvloFsxcMGdwLh8Nx6QvKEXl5eUyYMIHY2FhmzfqcwUOqsHxVVfr196gQwgmgRg0j02cE8PGngaScOUq7du0YMmQAZ85cqPOqRlN+0J4njcY9lGjF27NnD82bN6fd9Samz/CtMGPufP1VNs8+nc5/XhvMSy9Od7c5l42I8P333/PEE09w4MAButzgy5iXA4mJKaXBpsoIWVkO3n0nhxmfZhAYWIVJk95jwICBFebvVON2dLOdRlNJKLGKZ7PZaNeuHfv3/8nPv4QQGlZxXsQiwvBHU/llSR6rVy+hTZtu7jap2Pzxxx88++yzLF++nLp1fXhxrD8dO7nbqivL7t1WXnw+k7jNeXTo0JqPPppFw4al1/NUU2nQzXYajaZovPjii2zcuJH/vOFfoYQTOMcTevOtAELDjPTrdwdJSYnuNqnI7N+/n7vvvpvWrVuz9c/fGftqMD8urVLphBNAw4YefLMwkHFvB/Dnn5u5+uomvPDCU2RnZ7vbNI2mSGjPk0bjHkqk4i1cuJA+ffpwz71VGPdW+e1ddym2xFnod1cKrVtFs3z5Hjw9y/5I1qdOneK1117jk08+wdMTBg/xZfDDPlSpor9zAZKS7Lz5RjYL52cRFRXCK6+8zf33D8Bk0sMPaoqMbrbTaCoJl13xdu3axXXXXUedug6++sYfs7li1+XvFuUwemQa997Xhdlf/Fpm42WOHz/O+PHjmT59OjabhX79fRk5yp9qoRXLK1hSrF+Xx7jXs9i+zUL9+jV57bVJ9OnTB4NBN4xoCo0WTxpNJeGyKt7Ro87eSxZLEov+V5XIyMrxYp4yOYN338ni4Yd78+GH88uUgDpy5AhvvfUWM2bMwOGwcUcfH4YN9ye6dsXqKVgaiAhLfs5j8sQs9u+z0rhJbZ584iX69++P2Wx2t3maso8WTxpNJaHYFS8hIYEOHToQH3+YefNDaNCwcggncL5kx72ewaefZDN48O18+OF8tzbziAhr167lvffeY8GCBRgMQt+7fXh0WAA1alae51JS2O3C4u9y+eTDHPbssRAeHsTw4aMZNGgwkZGR7jZPU3bR4kmjqSQUq+IdPnyYbt26cfz4IWbNqUbraypf/RURJrydyYcfZNG1a0u++eZXAgMDr6gN2dnZzJ8/n/fee4/NmzcTEODJXf28ePAhXyIiKt8zKWlEhN9WW/h0ei6/rcrBYFB069aJBx98hJ49e+Lj4+NuEzVlCy2eNJpKQpErXlxcHD179iQ7+wwzZgXTomXlrrtfzc3mpRfSCQ8PZPbsBXTq1KVU73fWyzRz5ky+/vpr0tPTiY31ZuAgH+7o7YF+n5cOhw7ZWPCNhYXzs4iPt+Pt7UnXrl24/fY76dGjh/ZIaUCLJ42m0lDoiiciTJs2jSeeeIKqIQZmflGVevV1kxDA1i0WHh+ZzuHDNvr378Wbb75LVFRUieVvt9tZu3Yt3377LYsWLeLQoUP4+Jro0cNMn77+XNfGUabirioydruwYb2FX5Y4+OWXTE4cd9aBmJiatG/fmfbtO9C6dWsaNGhQLnpjakoULZ40mkpCoSrevn37eOyxx1i6dCmdu/gx8Z0AgoO1cMpPdraDD97L5tNPM3HYDfTufSuPPDKK9u3bFzkeSkTYu3cvq1evZtWqVSxdupSkpCQ8PQ20befFLbf60eNmha+vFkzuRETYvdvG2jV2Nm208semHM6ccQbmm0xG6tWvw9VXtaB+/QbExMRQu3ZtYmJiCA8P1734KiZaPGk0lYSLVryjR48yceJEPvroI7y8FE8948d9AzwwGPRL+0KcOGFn5oxc5n2VSUa6EBTkR+fOXWnZsjUNGzYkNDSUqlWropTCbreTlpbGqVOniI+PZ/fu3ezYsYPt27eRnOycey001JM2bU106+5Ph46Cn5/+7MsqIsLBg3Z27bCzdy/s2Z3Hnj15nDxhJ/8rzmz2oGbNSKpXjyIysgaRkZFERkZSvXr1v7cjIyPx9vZ2X2E0xUGLJ03FQSn1DnBERKa49pcAx0RksGt/EnBCRCYXMr+VwFMi8kcJ2VcN+B7wBEaKyG8FHD8JjBCRjy+Sz2jgExEpyjDJ/6p4VquVn3/+mdmzZ7No0SLAQe8+Pjz1TIAeI6gIZGc7WLXSwrJf7WzakM3Ro5f+7Hx9jdSr70m9+gZatPCl9bWK6Gh0k1w5Jy9POHHCzrEjdo4dN3DsiJ2T8TZOxVtISHBw+rSdvNx/vwODgvwJjwgjIrw6ERHVCQ8P/9cSERFBcHCw/hspG2jxpKk4KKX6An1F5C6llAHYBFhEpI3r+DpgtIhsKEReRmAZJSue+gE9RGTgBY4PA+4B7CLS6SJ2/QW0EpGkItxeMjIy2LVrFxs2bGDZsmWsWrWKtLQ0gqt60quXmUFD/KleXYumyyU93cGxo3aSk4WUMwaUMmAwgp8fVKvmICREERpm0C/BSoiIkJ4mnDpl5/RpBwmnDSQkuPZPWUlKspKYKCQkFCyyPDxMhIVVIzw8gvDwyHOEVX6hFRISgp+fn24yLD20eNJUHJRSkcBGEamhlGoKPAVEAHcD2cBpIBRoD0wETDgF1qMikqeUOgzMALoB7wOPuPKIAz4HjgFjgc+AVji9OTNE5J3z7KjlyqcakAg8CAQDiwFv4ATQRkRyzrvuN+BJ4Eugo4iccKVnApOBm4AfgBeBvUCSiHQuzGdTu3a0HD585O/9WtFetGlrpOuN/nTo6MDDQ7/INZqygoiQkSEkJjpITHCQlGggMRESE+0kJlpJTHCKrMREB8lJNhwFjIuqlCIgwI+AgAACAwMJDAwmICCQwMBAqlSpgpeXF97e3hdczGYzRqMRk8l0znJ+2tn9s0JNKfX3kn//YscKc25ZwtcNQYhaPGlKFZcA6gD0wPnroDqwDkgD3sQpjPYDN4jIPqXUF0CciExxXTtNRMa78loJPAeMAnaIyBtKqZbAWyJyo+ucQBFJPc+G/wHzRWSWUmoQcJuI9FJKPYDTYzSiALtrAstFJFYpNQ6nMJrsOibA3SLydb4yFsnzdHsvb4mtZ6JefRONGntQo4axsJdqNJoyjN0unEl2/C20EhLspKYKGRkO0tNd67T8+0JWpoPcXMjNFfQruegcOhZeK7pG/NEreU89A6OmtPkdaOtaJuMUT21xiqe1QH3gkIjsc50/CxgOTHHtzzsvv4+Br0XkDdf+QSBGKTUVpxdoaQE2tAF6u7ZnA+MLYXc/4GvX9lc4vVtnY7PswIJC5HFBpk6L5TxHl0ajqQCYTBAa5lwujQMRO+D4e9tiEfJyhdxzFrBaBZsNHA7n2m4Hm02w28DuALtNsNn/WYs4F86uyZeG05smnHvswue6lhL6jEoSlwPoepwtBFcMLZ40pc1anGKpKbADZ1Pbk0A6zqa0S7lbswrIr7NSapKI5IpIilLqapxNaMOBu4BBl8izMN8B9wBhSql7XfuRSqlYEdkP5IrzG6/YREVuu5zLNRqNRvMPV1Q4AejoNU1p8zvQEzgjInYROQME4vQGrQP2ANFKqbqu8+8HVl0kv8+AH4FvlFImpVQIYBCRBcBLQIsCrlmL05MEcC+w5mIGK6XqA74iUl1EokUkGmcTY78LXJIBVLlYnhqNRqOpOGjxpClttgMhwPrz0tJEJElEcnEGcH+jlNqO03/90cUydMUexeFsgqsOrFRKbQVmAs8XcMlI4EGl1Dac4mzUJWy+B1h0XtoCV3pBfAL8pJRacYl8NRqNRlMB0AHjGo170BVPo9FoSoYr3ttOe540Go1Go9FoioAWTxqNRqPRaDRFQIsnjUaj0Wg0miKgxZNGo9FoNBpNEdDiSaNxD6q8L0qph91tgy6TLpe7bdDlKhPluuJo8aTRaIrLUHcbUApUxDKBLld5Q5erjKPFk0aj0Wg0Gk0R0OJJo9FoNBqNpgho8aTRaIrLJ+42oBSoiGUCXa7yhi5XGUePMK7RaDQajUZTBLTnSaPRaDQajaYIaPGk0WiKhFKqu1Jqr1LqgFLqOXfbU1IopQ4rpbYrpbYqpf5wtz3FRSk1QymVoJTakS8tWCn1i1Jqv2sd5E4bi8MFyvWKUuqE65ltVUrd7E4bi4pSqqZSaoVSardSaqdSapQrvVw/r4uUq1w/r/zoZjuNRlNolFJGYB9wI3Ac2ATcIyK73GpYCaCUOgy0EpEkd9tyOSilOgCZwBci0sSVNh44IyJvuQRvkIg86047i8oFyvUKkCkiE91pW3FRSkUAESISp5SqAmwGegEPUI6f10XKdRfl+HnlR3ueNBpNUbgGOCAiB0XEAnwF3O5mmzT5EJHVwJnzkm8HZrm2Z+F8kZUrLlCuco2IxItInGs7A9gNVKecP6+LlKvCoMWTRqMpCtWBY/n2j1NxvhQFWKqU2qyUqjCD+bkIE5F4cL7YgFA321OSjFBKbXM165Wr5q38KKWigebABirQ8zqvXFBBnpcWTxqNpigUNBVCRWn7byciLYAewHBXM5GmbPMhUAdoBsQDk9xrTvFQSvkBC4DRIpLubntKigLKVSGeF2jxpNFoisZxoGa+/RrASTfZUqKIyEnXOgFYhLOJsqJw2hWHcjYeJcHN9pQIInJaROwi4gCmUw6fmVLKA6fA+K+ILHQll/vnVVC5KsLzOosWTxqNpihsAmKVUrWVUp5AP2Cxm226bJRSvq7AVpRSvkA3YMfFrypXLAYGurYHAt+50ZYS46zAcHEH5eyZKaUU8BmwW0Qm5ztUrp/XhcpV3p9XfnRvO41GUyRc3YunAEZghoi84WaTLhulVAxObxOACfiyvJZLKTUX6ASEAKeBscC3wNdAFHAU6Csi5Sr4+gLl6oSzCUiAw8DDZ2OFygNKqeuB34DtgMOV/ALO+KBy+7wuUq57KMfPKz9aPGk0Go1Go9EUAd1sp9FoNBqNRlMEtHjSaDQajUajKQJaPGk0Go1Go9EUAS2eNBqNRqPRaIqAFk8ajUaj0Wg0RUCLJ41Go9FoNJoioMWTRqPRaDSa/7dbxwIAAAAAg/ytx7C/KGKQJwCAIaclW7U8wb5TAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axes = joypy.joyplot(sector_features_log, colormap=plt.cm.viridis, figsize=(8,8),\n",
" title='Distribution of mis-invoicing across sectors (log transformation)');"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The Yeo-Johnson transformation is similar to a Box-Cox transformation, but allows for zero values. When $x=0$ and the tuning parameter $\\lambda=0$, it will apply the same modified log transformation, $log(x=1)$, as described above."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"sector_features_yeo = power_transform(sector_features, method='yeo-johnson', standardize=True)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAI1CAYAAACJyL1jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydeXxVxfmHn/duWchGEpYQICHsi7KDgmwCbli1Ki51X2ht3Vq1LrX9VetarVaxahe11mrRuuMKakVFkEVWQUDZEwIEQsh+1/f3xzmBS8wKSe5NmCef+8m958yZeWfOzJzveWfOHFFVDAaDwWAwGAzRiSPSBhgMBoPBYDAYaseINYPBYDAYDIYoxog1g8FgMBgMhijGiDWDwWAwGAyGKMaINYPBYDAYDIYoxog1g8FgMBgMhijGiDVDm0RE/ioiv2uiuLqLSKmIOO3f80Tk6qaI247vAxG5rKnia0S694rIHhHZ2QRx/UZEnjmM4y4SkblHmn4D0ikVkZx6whxyng2tExEZICJLI21HXYjI8yJyb6TtiFZEZKyIfGe3x7MibU91mqrPFpEbROTBBoU166wZWhsisgXoBASAILAWeAH4u6qGDiOuq1X140YcMw94UVUPR5zcBfRS1Ysbe2xTIiLdgA1AlqrujqQthrbNkbSXw0zvdeBVVX1ZRF4CvKp6Zdj+CcAbwCBVzW/CdC/H6ktOaEDY54FcVf1tU6XflIjIRKxz1jVC6X8CzFbVxyORfjVb7qKZ+mwRiQW+B4bV1w8bz5qhtfIjVU0EsoAHgduAZ5s6ERFxNXWcUUIWsNcItdbF0eb1E4sGX6dEJAOYBLxlb7oBOE1Eptr7Y4F/ADc3pVA7GmnmvjELWHM4B7amPltVK4EPgEsbEth8zKdVfYAtwJRq20YBIay7ZYDngXvt7+nAu0ARUAh8gXWj8m/7mAqgFLgVyAYUuArYBnwets1lxzcPeABYDOwH3gZS7X0Tse6Yf2AvcArgA/x2eivD4rva/u4AfgtsBXZjeQyT7X1Vdlxm27YHuLOOckq2jy+w4/utHf8UO88h247nazh2IpBrl8luIB84CzgNyyNXCPwmLPxdWHfiALHAi8Beu8yXAJ1qsfFyYH7YbwWuAb4D9gFPAgLE2HENCgvbwc5HR/v3DKy71EJgNtClWry97O9xwCN2mewH5tvbajrP9wBfAiXAXCA9LM5L7Tj2Ar+jhnoZFnYasBwoBrYDd1XbfwKwwM7jduDysHr8NPA+UGafu/62bUVYF7QzwuI5DcvTXALkAbfU1QZqsFOAP9vnfD+wioNtKgb4E1bd2wX8FYgLO/ZMYIWdx41Y9f0+LO93JVZd+4sddoxdL/bb/8eExTPPPu5L+/z2wqonm+x8bQYuqqWcLwU+rrZtun1MO6x2+4G9/biwMl8JTAw7pgtWHSrEqlMzGtAvXc6hdbmu8/Q8Vt1+z87TIqBnfe3A3tcL+Mwuuz3AK2HH1VeutdbnsHDtOLR/KLXL4y7gNay2XQxcjdXvLrTzmA/8BfAcST7suhPeL8fUdT5qsWsecK99fkuBd4A04CU7zBIgOyyOx7HaXTHwNTDO3t7sfTZwEfBpvfWrvgDmYz7R9qGWi6LdGH5uf3+eg2LtAawLi9v+jAvrMA6JK6xxvWB3WrVdxPOAQXaY1zkoVCZSi1izv99VFTZsf3jDv9LujHKABKzhmn9Xs+0ftl2DAS/Qv5ZyegFLSCbax24ArqrNzmrHTsQaZv4/u8xmYIm+/9jxDcS6AOdUzxfwM6zOMR5wAsOBpFrSuZwfirV3gRSgu53mKfa+54D7wsJeC3xofz8RqyMchtW5PwF8Xi3eKrH2pF3mmbZ9Y+xjajrPG4E+dnnPAx609w3A6rxPADxYIsZP7WJtInAMVsd+LJbYOcve1x3r4nmhXdZpwJCwerwfGGsfm2jXj9/Y6Z5oH9vXDp/PwQtNe6zhFaijDVSz82Ssi1UKlnDrD2TY+x7DumCm2na8Azxg7xtl2znVtjMT6Fe9ftu/U7Eu3JcALjvf+4C0sPDbsOqYC+umozgsjxnAwFrK+WHgyRq2v2bbvtcu70z7+2m2vVPt3x3s8J8BT2HdeAzBqoeT6+mXLseuy3YZ13WenscSHqPsPL4EvNzAdjALuNO2OxY4oRHlWmN9rqW+Vu/H7sKq42fZacdhte3j7PSygW+BXx5JPmrpl2s9H7XYNc8u/55Y9WctVv83xbb1BeCfYfFfjNXuXMDNwE4gtiX6bKw+q7CuuqWqZhjU0KbYgdVhVceP1cFnqapfVb9Qu5XUwV2qWqaqFbXs/7eqfqOqZVhelfOaaIjqIuBRVd2kqqXAHcAF1Vz7d6tqhaquxPIIDK4eiW3L+cAdqlqiqluwvEmXNMIWP5Y48gMvY3lnHrfjW4PlLTi2luPSsMRRUFW/VtXiRqT7oKoWqeo24FOszhksoXhhWLif2NvAKrfnVHWZqnqxyu14EckOj9geUrsSuFFV82z7FtjH1MQ/VXWDXQ/+G2bLucA7qjpfVX1YorbWOqWq81R1taqGVHUV1oVqQpjtH6vqLLt+7lXVFWGHv62qX6o1H3MI1gXhQVX1qer/sC6GVeXiBwaISJKq7lPVZWHbG9IG/FhCrB+WmPtWVfNFRLAE+69UtVBVS4D7gQvs467CKv+P7Dzmqeq6WopjGvCdqv5bVQOqOgtYB/woLMzzqrpGVQNYNw0hYJCIxKlqvl3/aiIFSxRV51oswfQHu15dDLyvqu/b9n4ELMUaMu2GJcJvU9VK+1w8Q+PaznHUfZ4A3lDVxXYeX+Jg3aqitnbgxxom7GLbN9/e3pByra0+N5SFqvqWXWYVdtv+yk5vC/A3Dtbrw83HITTwfBxiV1heN6rqfqyhxo2q+rFd3q8CQ6sOVtUX7XYXUNVHsG7e+jawTI60zy7BEpR1YsSaoS2RiXW3Wp2Hse585orIJhG5vQFxbW/E/q1Yd9LpDbKybrrY8YXH7cJ6oKKK8Kc3y7EuCtVJx7qjrx5XZiNs2auqQft7VQe4K2x/RS1p/xuYA7wsIjtE5CERcYvIOPvprlIRqWs+Sm35+x8QJyKjRSQLq9N/0953SLnZneZefpjfdKy78411pN8QW7oQVgdUtdxOr0Zsmz8VkQIR2Y81NFRVX7rVY094XesCbNdDH6QJP6/nYHmLtorIZyJyvL29QW3AFhV/wfI+7hKRv4tIEtaQczzwtYgUiUgR8KG9vSF5CKd6Ha+eh0PybN8QnY9VZvki8p6I9Ksl7n1YYrN6vnZheV6r6l0WML0qL3Z+TsAStF2wPB3hom8rkCkiMWF1uOrzeS15rOs8Qf3tuLb9t2J5PReLyBoRqXp4oiHl2pC+oy4O6RdFpI+IvCsiO0WkGEvAV+8HG5uP6tR6Pmqzy6Z6X1Vr3yUiN4vItyKy364LyTXkozaOtM9OxPJK14kRa4Y2gYiMxGq8P7g7sz1BN6tqDtZd5k0iMrlqdy1R1ud56xb2vTvWXeIerHlF8WF2OTl4QWtIvDuwLiThcQc4tKNpCHs4eOcaHldeI+NpNLbn5m5VHYA1xHg6cKntzUmwPwMPI94QljfgQiyv2rthHfgh5SYi7bC8e9Xzuwdr+LZnY9OvRj5w4Ek5EYmz06uN/2ANw3VT1WSsIUmx922vx57wOrMD6FZt0v2B86qqS1T1TKAj1iT7/9rb62oDhyamOlNVh2MNQ/YBfo1VbhVYw48p9idZVasuOnXloXqdr17HD8lDTceo6hxVnYolptZhDSvVxCrb5vrYjuUdTwn7tFPVB237UkUkXPR1B/JU1RtWh6s+42uIv87zdCSo6k5VnaGqXbCmHDwlIr1oWLk2OJkGbn8a63z0VtUkrGFf+cFRNUVUez6qU+v5aIC99SIi47AeUDsPaK+qKVjiqSofzd1n98fyttWJEWuGVo2IJInI6VjDdC+q6uoawpwuIr3soZxirAnPVR6jXVhzDRrLxfZ6TvHAH4DXbC/UBiBWRKaJiBtr4mlM2HG7gOw6nnCbBfxKRHqISALWneortuu+wdi2/Be4T0QSbU/UTViTcJsVEZkkIsfYQrUYSzQG6zmsofwHy8tyEQeHQKu2XyEiQ0QkBqvcFtlDMwewBd9zwKMi0kVEnCJyvH1MY3gN+JGIjBERD3A3dV+kErG8A5UiMgpLbFbxEjBFRM4TEZeIpIlIbcNTi7BuCG61vZUTscTXyyLiEWvdumS1hq6r6np9beAAIjLS9gK67XQqgaBdbv8A/iwiHe2wmSJysn3os1jlP1lEHPa+Ku9X9Tb2PtBHRH5i5/d8rDmA79aUYRHpJCJn2ALcizVXsLb69BEwTKynPuviRazzd7JdB2JFZKKIdFXV7VgT0x+wtx+LNcz7Uj1xhlPreWpEHDUiItNFpOpGYR+WmAjSyHKth11AmojUNzyXiFWfSu3z/fOGJlBHPg6hic5HXSRiiasCwCUi/wckhe1v7j57AtYwbZ0YsWZorbwjIiVYd8h3Ao8CV9QStjfwMVYnvxB4SlXn2fseAH5rD4Xc0oj0/401SXgn1rDaDQD2/IhfYM2pyMPqsHPDjnvV/r9XRJbxQ56z4/4c6wm2SuD6RtgVzvV2+puwPI7/seNvbjpjiZlirAnHn9FEIlFVqy6CXQjr4FT1E6y5g69jeb16cnA+VXVuAVZjPRFWCPyRRvaF9pyp67EuvvlY8052Y4mJmvgF8Ae7zv4ftsfLjmsb1tDlzbY9K6hhHqId1gecAZyK5e16CstrWTU/7BJgiz0kdQ3W3Cyouw2Ek4QlyvZx8EnXP9n7bsMaSv3Kjv9j7Hk9qroYq/39Gcsr8RkHvQ2PA+eKyD4Rmamqe7G8rTfb8d8KnK6qe2opO4cddoddPhOwyrOm8tmFNVx+Zi1xVYXbbof5DdZFejuWB7GqHlyINTl8B9ZQ++/teW31oXb89Z2nI2EksEhESrG8tTeq6ubDKNfaM2HZOQvYZPeNXWoJegvWjUcJVr155UjzUUvYwz0fDWEOVl+yAavOV3LosGqz9dn2TcVpwL/qDav1zrM2GAwGQ13Yd9RFWMNBtV1wDC2AiAzAuviN0ha8wInIDcCJqhp1K+4bohMRuR5rasSt9YY1Ys1gMBgaj4j8CPgEa/jzEWA01lIZplM9yrA9JO9hrZdlXiNlaHLMMKjBYDAcHmdiDcvswBpmvMAItaMPETkGazpEMdaTtAZDk2M8awaDwWAwGAxRjPGsGQwGg8FgMEQxRqwZDAaDwWAwRDGt5u30BkMbw8w/MBgMhqahQQvxtmaMZ81gMBgMBoMhijFizWAwGAwGgyGKMWLNYDAYDAaDIYoxYs1gMBgMBoMhijFizWAwGAwGgyGKMWLNYDAYDAaDIYoxYs1gMBgMBoMhijFizWAwGAwGgyGKMWLNYDAYDAaDIYoxYs1gMBgMBoMhijFizWAwGAwGgyGKMWLNYDAYDAaDIYoxYs1gMBgMBoMhijFizWAwGAwGgyGKMWLNYDAYDAaDIYoxYs1gMBgMBoMhijFizWAwGAwGgyGKMWLNYDAYDAaDIYoxYs1gMBgMBoMhijFizWAwGAwGgyGKMWLNYDAYDAaDIYoxYs1gMBgMBoMhinFF2gCDwWAwNC+qSmlpKWVlZQe2ud1uUlJScDqdEbTMYDA0BCPWDAaDoY0QCARYvnw58+fPZ+3ataxbt47vv9/I3j178Af8PwgvIiQmJNIhvQM9e/ekd+/e9OrVi2OPPZZhw4aRkpISgVwYDIbqiKpG2gaD4WjENDxDk1BUVMTs2bN59dVX+fTTeZSVlQIQ64wjLpRAO0cisa44YiQWB84DNS9EiAA+fOqlMlRBaaCYCsoIcFDUde+axQnjxjL1pKlMnjyZbt26RSKLBkN9SKQNaG6MWDMYIoNpeIbDRlVZsGABM2fO5M0338Tv99POlUiadqKDJ4P4iiRiJO6w4vXjpYQiylwllLCPvYFd+PAClnj78Tlncd5553HcccfhcJhpz4aowIg1g8HQLJiGZ2g0qsrbb7/NPffcw7Jly4hxxZKhWXRxdSfOm4RI01+zVJVS9lPkKGCfo4A9gZ2ECJHePp3pF5zH1VdfxbBhw5o8XYOhERixZjAYmgXT8AyNYu7cudx5550sXbqUJHcKWY6+pHszcErLTj0OqJ8C8tnrymd3II8QIfr26sd1N17LRRddRPv27VvUHoMBI9YMBkMzYRqeoUFs3bqVX/7yl7z11lskepLIkYGkeTNwSOSHIP3qY5dsZ4dsoTi0D4/bw8UXXcJtd9xKnz59Im2e4ejBiDWDwdAsmIZnqJNAIMDDDz/MPffcQ8AXpKdjAF38OVEh0mqiWPexw7mZHcEthAgxecIUfnvXnUyYMKFZhmcNhjDafAUzYs1giAym4RlqZf369VxyySUsWbKEzq5u9HUMwe2PibRZDcKrleTJJnJ1Iz68HNP/WO5/6D6mTZtmRJuhuWjzFcuINYMhMpiGZ/gBoVCIJ598kttuuw0NwADHcFJ9nSNt1mER1CD5bGGrbKBCy+jbsx8PPHw/Z555pnmK1NDUGLFmMBiahTbX8Px+P9u3b6e8vJyUlBQyMjLM6viNoKioiEsvvZR33nmHTq5M+jtG4PK7I23WERPSEPlsZausp1xL6ZXdi/v+eB/nnnuuEW2GpsKINYPB0Cy0iYZXVFTEiy++yGuvvcbCBQvx+X0H9sXGxHL8cWO44qrLOffcc4mLa/y6X0cLq1at4uyzz2bz5i30cw4hw5/d5oYMQxpiF9vZ4lhPWaiY7K7Z3PPAPVxwwQW4XOZlOoYjom01lhowYs1giAytuuGVlZXx4IMPMvPxmRSXFJPsak+adCbJmQJBBwF8lEoxu/15lGspSQlJ3HX33Vx3/bW43a3fW9SUvPjii/x0xk+RgJPBruNp502OtEnNiqqyi1y2OtZREtpP14yu3HXPXVx66aWmbhgOFyPWDAZDs9BqG95HH33EjBkz2Lp1KxnO7uS4BxDnTagxrKqyjwK2OtezN7iL7K45vPXuGwwePLiFrY4+fD4fN910E08++SRpzk4MYhTuUOt4iKApUFUK2MEWxzqKQ/vo3KEzv7vrd1x11VXExBw95WBoEoxYMxgMzUKra3jBYJDf//733HfffSR72jPQOYL4yoZ5gawLcz7rZRl+/Nz9+z9w5//d0eaG+hpKXl4e06dPZ+HChfRw9aNHYEDULsnR3Kgqe9nJVsd69oX2kNY+nTt/+xt+ds3PiI+Pj7R5htZBm+9IjFgzGCJDq2p4ZWVlnHPOOcyZM4durp70Dg7GQePFhU+9rJNl7NY8zjj5TP779itHnRdl3rx5nHfe+RQVFnGMexSp3tb5tGdTY3lhd9te2N0kJyRz7fXXcv0N19O5sykjQ50YsWYwGJqFVtPwioqKmDZtGgsXLmSQeySd/N2PKD5VZTPfsom19M8ZwPwlX5CamtpE1kYvqsojjzzC7bffTjtHIkMcY/D4jOeoJvZpAbnO79kVzMPldDH93PO49fZfM2TIkEibZohOjFgzGAzNQqtoeAUFBUydOpVvVn/DYPcYUn2dmizuXZrLGhbTKS2DJSsXkZmZ2WRxRxslJSVcccUVvP7662S4utMvNAynmicg66NcS8hzbiI3uJkgAUaPOI5bbruZM844A4/HE2nzDNGDEWsGg6FZiPqGl5uby5QpU9j43SaGuseS7Etv8jQKdTcrWUBSuyS++nohffq2vfdJrl27lnPOOYf169fT1zWETH/OUTtX73Dxq498xxa26/dUaDntk9pz5Ywr+dnPfkbv3r0jbZ4h8rT5BmXEmsEQGaK64W3atIkTTzyRHbn5DHeNJ8GX0mxp7ddCVjAfT4yHzxd8xrBhw5otrZZm1qxZzJgxA/XDsY7jSPC2j7RJrZqqhxF2uraxK5CLohw/egzX33gdZ511llnL7+jFiDWDwdAsRG3DW7t2LZMnT2ZfQRHDXeOJ9yU1e5qlWsxy+QJxKnM/nsu4CeOaPc3mxOv1ctNNN/HUU0/RwdOZQTIap8+sIdaUeLWCnc5t5IY2UaFltItrx3nnn8eVV13J2LFjjffy6KLNn2wj1gyGyBCVDW/ZsmWcNPUkKoorGe4cT4yvXYulXaFlLJcv8IuX2e+8wymnndxiaTclW7du5bzzzmPx4sX0cPUnJ9gfOYwnZw0No+op0t2uXPID2wkSIDOjK1fNuJLLLruMnJycSJtoaH6MWDMYDM1C1DW8+fPnM23aNEIVMEzG4/HHtrgNXq1gucynglL+859ZnHfB9Ba34Uh44403mDFjBmUl5Qx0jGzSBzIM9RPQAAWSxy7HdvYEdwIwcvgofnrNDKZPn05yctt+O8RRjBFrBoOhWYiqhjd37lzOOussPMFYhso4XL7IPWnnUy8rZQHFWsjfnv47M665OmK2NJTS0lJuvPFGnnvuOdJiOjJIRuH2trzYbSxeraCYfZRTQjll+PESwE+IEA4cOHERQywxxNGOJBJJIZb4VjHEWKnl7HJuZ0doK2VajMft4fRpP2LGz65mypQp5n2kbYvor5BHiBFrBkNkiJqG98orr3DJJZeQ4EhmiJ6A0x/5i1hA/ayShRTqbv5430Pc+ptfH1Y8lZWVuFyuZr0wf/XVV1x88cVs2rSJHNcAsgN9o3bYM6RB9rKLAvIpooBySg/sc0sMHonD5fDgwEFIQwTx4w2V41fvwXB4aE9H0uhEGp2IleheK05VKWYfu13b2RHYih8f7ZNTufiSi7j8issZOnRoqxCfhjpp8yfQiDWDITJERcN78sknuf7660n3dOKY0PE4As5Im3SAoAb5RhZRoDv4+VW/4C9/fwKHo34RVFZWxmOPPcbz/3ye7zd+j8PhYMjgYdzy65s4//zzGxRHQygpKeHOO+/kL3/5CwmeJAY5RtGuga/faklUlf3sJY/N7CaPIAFceGjv7kx7V2dSXJ1o50rB46jdExhQP6WBQooDe9gfKGCvPw+vlgOQTBqd6EYnuhIj0e1NDGmIPeSz25XH7kAuIULkZPfkyquv4OKLLyYrKyvSJhoODyPWDAZDsxDRhhcKhfjd737H/fffT4anGwOCI5FQ9HmDQhpiPcvJYzPjjpvAu3Nmk5RU+9OpK1eu5Oyzz2bTpk10SOhBertuBDVA/v71lHj3Mmb0eN794C3atz+yJTRmz57NtddeS15eHt2dvempA3GEokfogiV289lCLpsoZT8u3HTy9KCTpwdpnkwccvj2qiqlwX0U+Lax07eRkmAhIKTRmW7kkEbnqPdW+dVHgeSx07GdwuBuAI4bdTxXXn0F55577hHXEUOLEt2VrQkwYs1giAwRa3jFxcVccsklzJ49m27uXvQJHBu1w3ZgCYNcNrKBlXTpmMl7c99l8ODBPwi3YMECTjvtNII+YUjn00lwdD4kju3FK1i3dx6ZnbNYtmoR6emNX+R39erV3HLLLcydO5f2MWkMcIwgrjLxiPLX1AQ0QB4b2coGfHhJdKbRLaY/GbG9cEnzLB9SGtjHDu935Hk34NMKYmlHV3rQhR54JPrf/VqhZRS4cskLWvPbXC43006bxuVXXMapp5561L2/thVixJrBYGgWItLw1q9fz9lnn826devo5xxKhj876j0gVRTqbtbIYgL4ueeee7jtjtsODGl+9913jB49mpDXyYgu03FrzUuOFJRvZvnOt+iWkcO3369s8CKqW7Zs4d577+Wf//wnMc4YsulHhr8HDokekRvQANv5jm18hx8fqa4u5MQNIdXdpcXOcUhD7PZtYVvlWvYF8nHgpAvZdKc38ZLQIjYcCapKCUUUuPPI82+2xG5CEhdceD6XXXYZY8aMaTXt5SijzZ8UI9YMhsjQog1PVfnrX//KzTffDEFhsOP4Vrmavk+9rHMsY3cojwF9BvLcC88ycOBARowYwbYteYzpdjFurVsU7CzdwIpds5k87jQ+/vy9OsOuWbOGBx98kFmzZoEK3R29yJZ+OAORfwijClVlB1vYyBp8VJLu7kZO7BDaezrXf3AzUhrYx5bKVezwfo+idJKuZGkfkqR11LuQhihkNwXuPHb6txEkSGZGVy69/BLOOecchg0bZoRb9NDmT4QRawZDZGixhrdhwwZuuOEG5syZQydPJgMdI3B4W+9q+qrKTrbxvXyDVyvIzspm69atjMn+CYnOjAbFsWHvF2wqWsRjDz3Fjb/++SH7KisreeONN3jmmWf49NNP8bg8ZNKDbEdfnP7oeXl41auXvmM1ZRST4uxIn/jRERdp1akMlbG14htyvd8SUD+p0ols7UuqdIy0aQ0moH4KJJ/dju0UBHcCSqcOnTj7nLM586wzmTRpknmxfGQxYs1gMDQLzd7wCgsLeeihh3j00Udx4KQXA+ncioY96yOgftaxjJ1sp3vSUAZ0mNzgY0Ma4qu8l/AGS9jw/XoSEuOZO3cub7/9Nu+//z7FxcUkepLJ0GwyNRtnMLrEbYkW8R2rKGQ3cY5E+sSPopOnR1Sf20DIx/bKb9lSuRqfVpAiHcjR/rSnQ1TbXR2fetkrO9nr3ElBYAdBgsTHxXPipBM56ZSTOPHEExkwYECrylMboM0XthFrBkNkaLaGl5eXx8yZM3nqqacoLS2lqyuHPs5jcLSxd1MGNchXzEVcbsZ0vRSXs3GejRLfHhZsf4H0xK4UlGwDIM7djrRgR7rG5NCuIiXqLriVWs5G1pDPVtwSQ07cULrHDjiiJztbmqAGyK1cx+aKlXi1nBRJp4f2J5WOUVfe9RHUIPvYzT73bnb7d1BBGQCp7VOZPHkyY8aOYdSoUQwdOtS8ZL55aV0V5zAwYq0BiMiPgTeA/qq6rgHhnwEeVdW1R5huNvCuqg46kngaG6+I/Ap4AOikqvsbEN/7wE9UtegI7ZoI3KKqp9ew/W1gExALvKyqdx9BOqWq9Uxsqvm4IUAXVX3/cNMOo0kb3r59+5gzZw4vvPACc+bMQVXJcGbRyz0QT2XzXyRUlXJK2U8hlZShKG48tCOJFNJxNoOY2Kzr2Mg3jOh8Luntsg8rjvV7P2Nz0RJ6xhxLRzoR702KSsEQUD9bWM82vkNRsmIH0vnN4fwAACAASURBVCN2CB5ndK9rVhdBDZDnXc+mipV4Q2UkSxo52p9UOkXlOWgIFVrGfuceihx72OPfSSUVADgcTvr368/o40YxcOBA+vfvT79+/cjKymqydf+OclpnhWkE0TNLNrq5EJgPXADcVV9gVY3+9+PUzYXAEuDHwPP1BVbV05rbIOALVT1dRNoBK0TkXVX9umqniLhUNdDMNgwBRgBNIdaOiB07drB06VKWLl3KvHnzWLBgAcFgkHbuRHpIfzJd2Xj8cRBsXjsC6ieXTeSxmYqw1fDDceAkXTPoTi+SSWuSC7FXK9jCOjrG9zxsoQbQs/1x5JWsYU9oF9n+3lEnEkIaYgeb2cRafHjp7OlJ77gRxLtqX2uuteAUF91jB9I1pp8t2lawXOeTJGnkaL9WsVZbdeKkHXGhdnQOZYHYr/OSIspd+9m1fg8vrn0JHwffBhETE0tOdg+yc7LJysqie/fudO/enczMTNLT00lPTyctLQ23u215xQ2Nx4i1ehCRBGAsMAmYjS3WbG/PXcAeYBDwNXCxqqqIzMPyEC0VkVLgSWAKsA/4DfAQ0B34parOtj1d/waq1hu4TlUX1GPT20B7wA38VlXftuP5AEtYjgHygDNVtUJEhgPPAeX2/tri7gkkAL+2bX3e3n45cAYQD/QE3lTVW+19W7BETALwoR3/ccBK4J/A3UBH4CJVXSwio4DHgDigArhCVdfXZlM4qlomIl8DPUXkR0AXIBvYIyJ32HnsABTY8W4TkR7Af7Dq+4dheZ1ImCdPRP4CLFXV50VkJPA41jnxAlOBPwBxInICludxpx0GLE/ZeFUtaUg+SkpK8Pl8NX68Xi8lJSUUFhayb98+CgsL2bt3L1u3bmXz5s1s3LiR/fsth6cgJLtSyZZ+dIrNJK4y0brAhRpixeFTtfbZRtYQwE97VwbZnmNJdXch3pmE4MCnlRQH9lDg20a+73t2ay6p0pk+egwJcmQr/W9mHSFC9E2dcETxuBwx9EkdxzcFcyjw7KGjv8MRxddUqCp7yOc7VlNOCe1dnRkaP5oUd+uZlN9QHOKkW+wAMmP6kufdwKaKFazQL23R1p+0Vuxpi5E4OhAH/gyyAMSa81ZOCZXuMioopfD7EnLXL+QT+R++sNd6hZOUmERaahpp6WkkpySTkJBQ4yc+Ph6Px4PH4yEmJubA95p+O51OnE4nDocDh8Nx4HtN26rvF5Eaz0lLbDtaMWKtfs4CPlTVDSJSKCLDVHWZvW8oMBDYAXyJJeqqC6F2wDxVvU1E3gTuxbrwDwD+hSUAdwNTVbVSRHoDs7DET21UAj9W1WIRSQe+EpHZ9r7ewIWqOkNE/gucA7yIJZquV9XPROThOuK+0E7/C6CviHRU1d32viF2nr3AehF5QlW3Vzu+FzAd+CmWd+4nwAlYQu83dnmuwxI2ARGZAtxv21kvIpKGJQTvwSrD4cAJtiB9B3hBVf8lIlcCM+30HgeeVtUXROTaBqThAV4BzlfVJSKShCVy/w8YoarX2eHeAa5V1S9tAV3ZkDwAda7CXxMOnMQSTxzxJJJOJ7JJoj2JpOAM2s04SIsMBpRpCWtYTDH7SHV1oU/8KJLdPxQ5MRJHB083Oni60UdHkVu5jo0Vy1nEx/RgANna97DWKfNqJTvYTJeEAbSLST3i/HRJHMjmoiVs0m/ooBMjfoEo1n18xyr2UUC8I5kh8VPp6MmKuF3NjSXa+pMZ0ydMtM1vE8Oj4XgkBg8xEAhblNnOVpAAlVTgpQI/Pnx48ePFX+KjvMRL8dbtBNhMkMCBT4AAoeZ2oUc5U+Tczh+FXt0ZaTuaEyPW6udCLC8QwMv27yqxtlhVcwFEZAWWh6e6WPNx0JuzGvCqql9EVtvhwfKO/cWeExUE+tRjkwD3i8h4LB9KJtDJ3rdZVVfY378GskUkGUhR1c/s7f8GTq0l7guwhGBIRN7AEl5P2vs+qZrDJiJrgSyguljbrKqr7TBr7GO0Wn6TgX/ZwlTt/NfHOBFZbuf3QVVdIyLTgdmqWmGHOR44OyyPD9nfx3JQDP4b+GM9afUF8lV1CYCqFtv5qR7uS+BREXkJeKOqLjSEgXHD8VcEcdh/csh/wYUbF27ceHDhwSlOHE4HLrf1P1Ls8G9llfcrRJwcGz+JzjE9G3QBdYmb7Lhj6BLTm3VlC9jkW0OhczfDY04gztG4F4Fv9q4l5Fdy2o863GwcgkMc9Eodw8pd77I3YS9dyWySeBtLeaiU9b6V5AW24JFY+seNoWtMPxyO1vPwQFNwiGirXM+mSmt4NMXRgb6eY0h3tr7h0YYTQztqXtC5ClUlFFI0GCIUUkKhEBpSW7wFUUKECB34X/171W9FAT3wR9gvathafdsP7KrZ2sMuCW3csafQgCk7rRkj1urA9uKcCAwSEQWcgIrIrXaQcJ91kJrL068Hn+IIVR1ji6Gq8L8CdgGDAQf1e2guwhrqG24Lvy1YE+9rsikOS9zVW/NF5Fgsz9xHdmfowZrUXyXWGpLf8DChsN+hsPD3AJ+q6o/todt59dmGPWethu1ldRyjtXyvIgCHvGepqgwbVF6q+qCIvAechuXdnNKQB1AAvilf2pBgUcUf//hHbr/9JdLjujA48URcwcY/uOBxxHJs4ol08GaxtuwLFuknzH77bSadOLFBxxcVFdGtWze6xPWjnefIvWpVdG7Xl42er9gYWM1XRXOIiWm5NbP279/PAw88wGOPPUaIEL0ShtEjbjCO0NHdPTvESbe4AWTG9iXPu57NlStZVPk/hg8ZwQMP3c+UKVPasGgzNJLnI21Ac2MeQ6mbc7GG1bJUNVtVuwGbsYb1mpJkLE9OCLgESxTWF363LdQmYXm4asV+SnO/PdcKLLFXExcCd9l5zVbVLkCmiNQZ/2GQjDWfDuDyJox3AZZnEKw8Vnk5v6y2vYqtwAARibG9j1ULda0Dutjz1hCRRFtYlwAHXgQpIj1VdbWq/hFYCvRrwrxEDarKHXfcwe23305mfG+GxZ9yWEItnIyYnoxOOhP1CVOmTObRh//coOOefPJJSktLyUlpGq9aFSJC79SxlFTu5Z47H2nSuGujoqKCRx55hJ49e/LQQw/R0ZnNhLQL6Bkz/KgXauFUzWk7Ifk8BiScwJrV33LSSScxeuRxfPzxx5gVDQxHA0as1c2FwJvVtr2ONQ+rKXkKuExEvsIaAq3LWwTwEjBCRJZiiY+GeHOuAJ4UkYVARS1hLuCH+X2Tg0KnqXgIeEBEvqR+YdoYbgCuEJFVWKL3Rnv7jcC1IrIESygCYM+3+y+wCqtMl9vbfcD5wBMishL4CMvr9imWuFshIucDvxSRb+wwFVgPd7QpgsEgv/jFL3jwwQfJajeQgbHjkSY6ZQmu9oxOOpM0dyY333oTV1xyNcFg7XNvysvLefTRP9MxoScJNcyRO1I6xvciwZ3GU399vE47jhSfz8fTTz9Nr169uOWWW3CVt2N8x+kMiBuPM9B6l+JobhzipFtMf8Yln8+AhBNYvXwNU6dO5bjRx/PJJ58Y0WZo05h11gyGyBD1Dc/v93PZZZcxa9YseiUOJcc9vFmGnUIaYn35IrZVfsPY0eP54KN3SUxM/EG4mTNncuONNzKm+0UkuRv2WqnGkleyhtW7P+BP9z7JzXf+oknjDgaDvPjii9x1111s2bKFDvGZ9EkYRUIwvf6DDT8gpEHy/OvZVLaCylAZx40+nvsfuI9JkyZF2jRDy9Pmx8ONWDMYIkNUN7yKigqmT5/Oe++9R/+k4+nubtJ1mWtke+Vavi1bQFa3Hsz74n9kZR0cfff5fPTokUNlkTAqo6kdvQcJaZDPtz1DckIa+YWbmkScBoNBXn31Ve6++27WrVtHWnxnercbSVKwbTzdGGmCGiDf/x0by5ZTGSpjzPFjue/+e5k4cWKkTTO0HG2+IZlhUIPBcAjFxcWccsopvP/e+xybMqFFhBpAt9gBDEs8hdzcXI4dOJiFCxce2Pfiiy+yY0cevdKOb1YbHOKkR8pIdhVt4V9//+8RxeXz+Xj22Wfp168fF154ITu37GFk+qkMjz2d5FBbfqKxZXGKi66e/pyQch4Dksby9aLlTJo0iXFjx/PZZ5/VH4HB0AownjWDITJEZcMrKCjglFNOYcWKlQxtP5n0up9daRZKg0WsKJ2DV8t5/vnnueDCC+jfrz+7c4s5rsvFzS5ygiE/87b+na6dcti045tGH19RUcEzzzzDww8/zPbt20mN60zPdkNpH8o0Aq0eVJX9gQL2+nMpDu7FGyonqH7cEkOsI4EUdyfS3V2Jd9a+TmFQA+QHNvB96XK8oXJOGDuO++6/l/Hjx7dgTgwtTJtvWEasGQyRIeoaXm5uLlOnTuX77zYyvP1JpGiXiNniC1WysuxjCn35/Piss3nzrTcY0e0s0j29WiT9jfsW8l3hl7z31kecduaUBh2zc+dOnn76aZ5++mkKCgpIj8ukd8IwEs1wZ70EQj5yvevYWrmGypD12rJ4Vwpx7mSc4sYfqqTcX4Q3aO1r7+5CduwgOri711q2QQ2wI7CBjWGi7f4H7mPcuHEtli9Di9HmG5gRawZDZIiqhrd+/XpOPvlkdu7YxYiUU0kIRX7Se0iDrC2fT17lBuLd7RnX7QrkMN54cDj4g5XM2/o3BvYawcoNtb75DYCvv/6axx9/nJdffhm/30+nuGx6JQ41Dw40ANUQud71fFe+BL96aR/blczEQXSM74nHFVctrFIR2E9+yTpyS1ZRESgmxd2ZAfFjSXTVvuZeUAPs8K9nY9lyvKEKxh5/Avfefw8TJkwwIrrt0OZPpBFrBkNkiJqGt2jRIqZNm0ZFqZcRyacSF0yJtEkHKPBuY1npHPqnTyYreWiLpr1uzzy27v+axV8tZ8TowYfsKysr47XXXuMf//gHX375JR53DJmePmQnHIMnUPcK9AaLsmARq0o+pTi4h/axmfRNnUhKXMOe8g1pkNzib/i+cD7+kJee8cPoETu4zteXBTVArm8dm8tX4A1V0LdXP359+y1cdNFFxMaaJVNaOUasGQyGZiEqGt6HH37IOeecg1tjGZ58Km5/41791Nws3v8OFVrK+KwZOKRlX7tUGSjhs63/YPyok5m36H1UlSVLlvDss88ya9YsSkpKSIpNpVvMADLcvXBqQ96aZlBV8rwbWFe2AIfDRf/0E8lI6H9YXi5fsJy1BZ+ws2w9aZ6uHNtuEh5H3cIrqAHyvd+zzbeGEn8hyYkpXPPzn3Hd9dfRtWvXw82WIbIYsWYwGJqFiDY8VWXmzJncfPPNJMekMyzxFJyBlnvFUkPY59/J4uJ36Jc2ieyU4RGxYfXuD8kvXce1P7+WOR9/wIYNG3C7PHTy9CA7YSDxgVQzlNYIQhrk27IF5HrXkRrbjWM6nkqcu/aHBRpKbvFq1hR8TKyzHcMSTiLB1b7eY1SVwkA+ef5vya/YhEMcTJ1yEj+/9hpOO+003G4jvlsRbb4RGrFmMESGiDW8yspKrrnmGv71r3+R0S6HQfETovL1RsuKP6QoWMCErJ/ickRGSJb69jJ/+z9JiemC2+EkM64X6WThFHMhbyy+UCUrSj5mXyCfnJTR9E4d26RzEIsqd7Bs51uohhieeArJroa/5aI8WMwO/3pyKzbgDZXTPjmVK668nCuvupKBAwc2mY2GZsOINYPB0CxEpOGtWbOGiy++mBUrVtAncQTZ7iFR6RkqDuxl4f436NV+LL1Sm3dttfpYvvNt9lZsY0LKBbgkuryPrYWKYClLi9+jIlTKoA4nk5nUPAKozL+PpTtexResYGjiVNLcmY06PqQh9vi3szPwPTsrtqCE6N2zDxdd8hPOP/98+vVrk6//bQtEXyfWxBixZjBEhhZteMFgkJkzZ3LHHXfgxM2gxPG018ZdyFqSlSX/o8C/nQndZ/zgqcCWpqgyn6/yXqJv4hiyPcbL0ljKg8UsKX6PgPoYlvFjUuO6NWt6lYFSlu54lfLAfoYnnUqqq/NhxeMNVbDbv5ld/s3s9e4AoHfPvlzwk/OYNm0aI0aMwOls2XmUhloxYs1gMDQLLdbwPv/8c2644QZWrlxJRnwOgxLH4Yiy+WnhlAX3M7/oVbKTR9AvfUKkzQFgcd4rlPn3MT75vBZ/0KE1UxYsYknx+4QIMjzjXFJiD084NRZvoIzFO16hMlDCiKRTSXF1OqL4KkNlFAS2ssu3mb3efEBJTkrhlFNP4fTTpzF58mQyMprnfbWGBmHEmsFgaBaaveEtWrSI++67j3feeYfEuBT6xo8mVbtF5bBnON+Ufka+dyPju88g1p0QaXMAKCjfzNf5rzMoaRKZ7pZZmLe1UxooZEnx+yAwImM6SbEdWzT9ykApi/NexhcsZ0TSaY2aw1YXvlAlhYE8CkN57KrYii9UCUBWt2wmTZ7I+PHjGT9+PDk5OVHf1toQbb6gW61YE5EfA28A/VV1XQPCPwM8qqprjzDdbOBdVT3iFyaKyPPAQlX9W9i2s4CfquppRxq/HV82MEZV/1NPuInALap6eg37tgAjVHVPA9OcB2QAFfame1X1tVrC/hL4u6qWNyTuI0VE7gJKVfVPNez7KXCT/bMYuElV59v7DtSfxpZHLTRLwysrK+P111/n2Wef5fPPPyfOE0/3mEFkxQxCNPo9QhXBEr4oeoVuSUMY0GFypM05gKqyIPffhDTA2MSzzUW4HooDe1la/D4Oh5MRGdNJjInMAsEVgWIW571MIORndNLptHM27RqCqkpxcA/FuptCfz57vfn4bfGWktye4cOHMXLUSIYOHcqwYcPIycnB4TCv5G4G2nyDjL5HwBrOhcB84ALgrvoCq+rVzW1QfYiIU1WDYZtmAbcDfwvbdoG9vanIBn4C1CnWmoGLVHVpA8L9EngRaBGxVhsicjrwM+AEVd0jIsOAt0RklKrujIb6UxOqyrZt2/joo494//33+eijjygtLSUpNpUByWPIdPfFoa4oWdWtfjZVrACEHikjI23KIYgIOSmjWLn7XXYHc+nkat55V62Z/YEClhZ/gMvhYUSX6SR4an+7QHMT50piRMZ0FuX9h69L5jA66UfEOJpuLUERIdnVgWQ60M09EI1TyoJFFOkuSoN7WfL5Sj7936eECAEQGxtLr569GThoAH379qVv37706dOH7t2706FDB3MTYKiVVulZE5EEYD0wCZitqv3s7ROxhNseYBDwNXCxqqrt7blFVZeKSCnwJDAF2Af8BngI6A78UlVn2x6pfwNVy5Ffp6oLavOsidXKHgJOxbo03quqr9g2/R7IB4ao6oCwY5xALjBMVfNFJB7YBvQA+gCPAgl2fi63w4wEngXKsMTqqao6yI7rQWAiEAM8qap/E5GvgP7AZuBfwJu15Gsi8AdgL9AX+Bz4haqGwj1JInIxcAPgARbZYcIFKOFlHbbtaWAkEAe8pqq/F5EbgD/Z53KPfT6eBUbYZficqv65Wtw/An5rp78XSxTusj1m3YEc+/9jqjrTPuZO4FJgO1AAfF3dsyYiXwC/V9X/hW27B0BVf1et/myxbawA/gt0BZzAPar6Cg2jwQ1PVSkvLyc/P5/NmzezZcsWNm3axIoVK/h66dcU7CkAICEmmVRnJt0T+rXK9b8qgqV8UfQKXZOOYWCHqZE25weENMT8bc/hcng4LuGMVle+LcE+/y6WlXyA2xnHyIzziPdEx9sw9lfuZPGOV4h3JTMyYRruFlwKJqRBSoP7KA0VUi77KfEWUhoooiJYgoZ1Ax6Phy4ZXcjKyqJ7VncyMzNJT08nLS3tkP+pqam0a9eOmJgYUwcP0uYLorV61s4CPlTVDSJSKCLDVHWZvW8oMBDYAXwJjMUSNeG0A+ap6m0i8iZwLzAVGIAlaGYDu4GpqlopIr2xvF0j6rDpbGAIMBhIB5aIyOf2vlHAIFXdHH6AqgZF5A3gPOBx4AzgU6ASeAI4U1ULROR84D7gSuCfWMOkC0TkwbDorgL2q+pIEYkBvhSRuVieuwPDm7YgrC1fo+wy2Ap8aOfpwPCliPQHzgfGqqpfRJ4CLgJeqKE8XhKRqmHQycCdqlpoi8pPRORYVZ0pIjcBk2whOBzIrBLCIlJTTz8fOM4W4FcDtwI32/v6YQn4RGC9LRCPxfJWDsWq78uwRHx1BtawfSlwWQ1hqzgF2KGq02x7k+sIewhDso8nGAoSCgUJqv0/FCSk1v9A0E+lvxyvv5JKfwWhQ/UwgoMEV3uSnGkMSOhDe1dn2jnaW513kFbZdW2pXAlAj+RREbakZhzioGfq8aze/QG7g9vo5MqKtElRRaE/n2XFHxLjSmBEl+nEuxvcHJqd5NjODO18Jl/nv8Hyso8ZkXByiz0o4hAnSa50krCHgu0l+oIaoDxYTHlwP5VajldLqdhZysq8dSyavxRvqAK1PXI1IQgupwe3043b6cHjisHldON0OHE4nDjEgcPhxClORBw4HWH/7Q7iULEnHPwpB8IgHPxu7+GQcJFnycbPIm1Cs9NaxdqFwGP295ft31VibbGq5gKIyAqsYcDqYs2HJUYAVgNeW3ystsOD1aT+IiJDsC5/feqx6QRglu1l2iUin2F5koptmzbXctws4GEssXYBlvDpi+UZ/MhuTE4g3xYviapa9Wbp/wBVc8xOAo4VkXPt38lAbzuv4dSVr8WquglARGbZeQqfazYZGI4lRMHyku2uJV+HDIOKyDX2nDAX1ny2AcCqasdsAnJE5AngPWBuDfF2BV4RkQws71p4ub6nql7AKyK7gU7AOODNqjlxIjK7FntrQqjbA7Ya+JOI/BHL2/pFQyNet32V3R06cOBAxGn/t347xEmMJNFO0nHHxOB2xOCROOKcicQ5EolxxNudsUAbuLuuCJaQW7mezMQBxHui5yJfnS4J/dm0bxHfly+lU0pWne+iPJrY48vl6+I5xLmTGJkxnVh3YqRN+gHp8dkc0/EUVu1+n9UVnzMkYVKTLsrbWBx4SHalk0z1+XyKhpRQSAmqH59W4lcvvlAlfq3EH/ISJEBQ/QQ1QFADBIJ+goEAPgKE1I8SQgkR0hCKhn0Pofa2H6QZ9v3Qb1pzOK2+L3Kckv7TGR/u+fs/Im1Hc9LqxJqIpAEnAoNERLGEjIrIrXYQb1jwIDXn0a8Hx39DVcfYQ35V4X8F7MLylDmwvF11mlbHvrI69n0JZIjIYGAMlmDrDaxR1UNWAxWRut6hIsD1qjqn2jETq4WrK18/bME/TONfqnpHHXb80DCRHsAtwEhV3Wc/WPGDF/jZ+wYDJwPXYnkcr6wW7Amsif6zw4a9q6jt3DekR1mLJUT/F7ZtmL29RmzP7nDgNOABEZmrqn9oQFp8s/xbtqzLw+lw4HA6cLqduFxO3DEuPDFuPLHuo2qI4/bf34LjfaFvxxMibUqdiDjonTqWFbveod8ZHfjFtTMibVLE+d9nH3PDrc+RHJ/G8IxzcRHZdfHqokviALzBMtbv/QwZPYg/P/Jom2tnqhDwBwj4AgQCQQL+IKFAiGAwSCioBIMhSwyq9V9Diqqiak25qOotqy6Rh0yVig5tdigCT9zy0huRNqO5aXViDTgXeEFVf1a1wfZiNXUvnwzk2gLuMixRWBefAz8TkX8BqcB44NdYQ3O1Yg/n/Rdr+PV9e3hyPdBBRI5X1YUi4gb6qOoaESkRkeNU9SssYVfFHODnIvI/20vYB8gDSrCGBRuSr1G2sNqKNdz592rmfgK8LSJ/VtXdIpKK5enbWk/ZJGEJ1v0i0glrXt88e1+VfXtEJB3wqerrIrIReL6GuJLtfEHdQ5RVfA48bw8Zu4AfcegDHVU8BPxRRE5R1b225/FyYHRtEYtIF6BQVV+050Fe3gB7AOh1bHd6Hdu9ocHbNKtWreKtd98gJ3UkbqJjqY666NSuD4meDjz30l958C+/Iza27heHt2VeeeUVrv/1z0mJ68ywzmfjCEXv+n1V9EgZiTdQxgfz3qLXP3KY+fQjkTbJcIRMu3zC3kjb0Ny0Rh/+hViT5MN5HeuJx6bkKeAye4J+H+r2jmHbtApYieWduVVVdzYwrVlYnq6XAVTVhyVK/ygiK4EVWF43sOam/V1EFmJ5uvbb25/B8gItE5FvsASJy7YpICIrReRX9eRrIdZDCt9gDS8eUs72sie/BeaKyCrgI6whzTpR1ZXAcmAN8ByWN7GKvwMfiMinQCYwzx6+fh6oyYN3F/Cq/UBAvUtn2HMZX8Eqw9eBGocqVXW2bdsCEVkH/APr4ZT8OqI/Blhs23sn1txHQyO5/fbbifHEkdO+Vl0cVYgIfVLHUVJZyI3X3B5pcyLGc889x4UXXkhqfFeGdTqnVQi1KvqmTaBLwgCe+Ouj/OH/7o+0OQZDvbTKp0GPZkQkQVVL7e+3AxmqemOEzTI0HtPwgE8++YQpU6YwoNMkuicMj7Q5jWJp/usUVe5g46bv6Z7VNdLmtChPPPEEN9xwA52TezK4wxmtYg2/6oQ0xIpds9ld9j1PPPY01914TaRNMhw+bWssuwZao2ftaGeaiKywvWfjMN4cQyvF5/Nx3XXXkRSfxv+zd95xUlXn/3+fadt777tsY+m9dxQQEDRBFMWaxEKipkhiorHFksTElnzzS6IxxG4kAlIUBQGlSZPOLgtb2N5n2+zUe35/zCwiLLDgzs7sct+v1+7O3HvuOc859z47n3lOSwwY5GlzLpm+EVNwKDZuu/HKGbemKAoPP/wwDzzwAPEh2QyK7JlCDZyzewdHzyXCL5kHfvpj3nnzPU+bpKJyXtTImoqKZ7jiHe+5557jN7/5DWNSFhKq65nj947VbqK4cS8fffgx114/y9PmXBSbzUZxcTGlpaWUl5djNpuxWq34+PgQGhpKVFQUWVlZHS7QajabufPOO3nvvfdICx9GZuiUXjEb1q5Y2VPxAU2WalauXMW1bpZz9wAAIABJREFU8+Z42iSVS6fXR9ZUsaai4hmuaMcrKiqiX79+hBmSGRR5rafNuWzsioWtJcvw9w+grKrQ6yYbtLS08Pnnn7N+/Xp27drFoYOHsFgtF70uKDCYQYMGM236FCZPnkxOTg433XQTX375JTkxU0kOGNarZlFaHW3sLn+fNkcjK1euYs7cazxtksql0XsexvOgijUVFc9wxTqeoihMnz6dHdt2MjHlLnSy67b/8QTtm7zfsuAu3vrgX542B7PZzOrVq1m2bBkbNmzAarWi1/kQ7B9PaGACwYEx6EUAem0gGo0ejdCgKA5sDjMWWzMWu5E2ax31TaU0tlYAEo1rIdXU0KGkh45HI3riQgIXxmJvZU/lB5hsRpZ/sJzrvjff0yapdB5VrKmoqLiFK9bx/vSnP7F06VKGxM8h1i/H0+Z0CQer1lHRcow1H33C7GtneMSGsrIyXnrpJV577TWMRiMBfqHEhPYjOiyLQEMCGs2ljy2zOyw0tBRT1XCMmqZ8bHYTBq0/8UH9SQoaRIDhQks/9jysDhN7KpbTYq3j7bfe4aabF3raJJXOoYo1FRUVt3BFOt7+/fsZNWoUUf59GBgxt9d0pdkcZnaUvYVGBycK84iJie62svPz83n22Wd5++23sdsdxIX3Izl2OEGGpC5doV+RCvVNBZTW7qOmMQ+JJDoggz6howj1je+ycjyNzWFmT+X/aDJX8ac/vsDPl6qT7XsAveMfyQVQxZqKime44hyvtraWkSNHUlvVwLiE29BIH0+b1KU0Wqr4quwd+mcP4evDX6HVuneWZFVVFU8++SSvvvoqQmhJiBhCaswYDFr3b9dlsTVTUrOXkprd2BxthPklkh46lkj/3rFfql2xcqBqNTWmQu754Y/52z9eQaPp+ZMpejGqWFNRUXELV5Tj2Ww2Zs6cyZdfbmV88s34iShPm+QWSpoOcKTmMxbMv5n/rnjLLZFDs9nM888/zx/+8Afa2swkRQ0nPW4SOk33j/2zO6yU1e6jqHonFlsT4X7JZIVPJNT3omtlez2KVDhWu5GSpgNMnjCdFR99QFhY7+r27UWoYk1FRcUtXDGO53A4uOWWW3j//fcZmjCXGN8L7sDW48mt3UxR4x5+9sAveeHlP3Rp3hs2bGDJkiXk5+cTF9Gf7MSruiWSdjEUxU5JzR4KqrZis5uIDsgkK3wCgYYIT5v2nZBSUty4j7y6LURGRLN67UpGj+4ZO21cYahiTUVFxS1cEY7ncDi4++67ef3113vkLgWXg5SSg9XOCQc/e2Apf37pD985wlZdXc3Pf/5z3n77bYIDouiXOptgH+/rcrQ7LBRX7aSoegeKYiMpZCgZYWMxaL13c/fO0GAu52D1GiyOVn7z60d47PFH0ev1njZL5RtUsaaiouIWer3jtbW1cfPNN7Ny5UqyoyaQFjzG0yZ1G4pUOFyznvLmI9x8420se/O1y/5w//jjj7njjjuor6snLW4CyZHj0Gq8e+kMq62VExWbKa3dh17rQ0bYeJKCB/foRXStjjaO1n1GZfNx0tOyePf9txg5cqSnzVJxooo1FRUVt9CrHa+goICFCxeyb98++sdMJzFgiKdN6naklOTVbaGocQ8D+w9l9doVpKR0PhpmNpt5+OGHefnllwkNjGVw+gJ8tOFutLjraTZVkVu6noaWIgJ9IukbPrXHT0Koas3nWO1GzPZWbvj+Qv74p9+TmprqabOudFSxpqKi4hZ6peMpisJrr73GL3/5S6xmGwNjriFcn+ZpszxKefMxjtR+ik6n5Zmnn+H+B3+CwWC44DXHjh3jpptu4uDBg6TGjiY9drrXR9POh5SSamMux8s+o81qJDogg74RU/DXh3ratMvG5rBQ2PgVRcZ9CAG33XY7v/zVQ/Tt27vHY3oxqlhTUVFxC73K8aSUbNy4kUceeYRdu3YRHZTKwNhr0CsBnjbNKzDZGjlWt4Ga1kJiomJ57InfsnjxYoKDg7+VTkrJP//5T37605+BomFQn+sJ9e/jIau7Fodip7hqB4VVW5FSITV0JH1CR6HTXFi4ejNmezOFjV9R0ngIRTqYMmkqP75/CXPmzMHPr2eP0+thqGJNxTMIIa4HPgRypJS5nrbnQgghUoE1UsoB5zn/M+A5IEZK2diNpp0XIcQI4DYp5QNCiCmAVUq53XXuXsAkpXzDjSb0CsczGo0sX76cf/zjH+zZs4cA3xCyIycRZcjqNQvedhVSSuraijlp3E5DWzkGgw/XXnstc+fOYcqUKQQGBnL33XezYsUKIkPSGZAyH4Mu0NNmdzlmaxP5ZRuoaDiMjy6I7PDJxAVm9+jnxWJvpaz1EMXG/VjsLfj6+nHt3GuZe+0cpk6dSlJSkqdN7O303Ienk6hizUsRQvwXiAM2Simf6OC8Vkrp6HbDOqATYm0XYAH+JaVc1n2WdQ4hxBNAi5TyT91YbI90vIaGBg4dOsS2bdvYuHEjX375JVarlRD/KFJDRxDjl42Gntld111IKWm0VFJpOkp5Ux5WhwnAJVYEmQlTSYka16PFS2doaDlFbsknNLdVEuaXSE7ENIJ9um/nB3egSIWGthJqzPmue9sGQEpyKmPGjGbI0CEMHjyYvn37kpiYqM4o7Tp6t7OgijWvRAgRCOQBU4GPpJR9XcenAI8DFcAQYAnwJFDlev8hcAh4EPADrpNSnhRC3OC6zgE0SikndVDeKiAM0AOPSilXuUTYx8BWYBxQBsyXUrYJIYYDrwMm1/lrOhJrQoh0YDVwH/AbKeVM1/E7gOsALTAA+DNgAG7FKexmSynrhRCbga+B4UAUcBvwa2Ag8L6U8tGzxaIQ4iEgUEr5hOv6r1xtGQr8QEr5pastHwJ+Aux0tU0NcD8wHZd4E0IMAf4O+AMngbuklA3ny7eD29kh5eXlUkpJ+w/Ahd67O43VaqW1tZWWlhZaW1tpbW2lqamJyspKysrKKC8vp6CggPLy8tN10Gp0SOkUGT7aQAL04UT4pRAbmIVvL4wIuQOHYudY7UZKmw/h7xPOgJTrCA1M9LRZ3YaUCmW1X5NfsQmbvY2k4EFkho/HoO3+BX67GiklLdZajLZS6ttKMJoqabM3nT6v0WiIiY4lNTWFuPg4wsPDCQsLO/3Xz88PX19ffH19v/Var9ej0WgQQqDRaC74I4TwiOjv7jLj4+N7vVhTvwJ7J9cBn0gpjwsh6oUQw6SU+1znRgEDpJSFLsExGMgB6oEC4DUp5SghxIM4hcdPgceAmVLKMiFER6N6zcD1UsomIUQksFMI8ZHrXCawSEr5I1e07/vAW8C/gfullFuEEM9foC6LgHeBL4FsIUS0lLLadW4AMBTwBU4Av5JSDhVCvIhTlL3kSmeVUk5y1WkVTuFWD5x0pb0YOlebzMYpWq9qPyGlLBJC/J0zImtCiOlnXPvGGfV8ynX9Ty+W78VISEjobFKPohU6fHRB6DW+2BULAg0SBYMugGD/ePwMoQgEFnszTaZKaupOkle3iejALDJCxxDk0zt3KugKTDYjB6rW0GipJCFiCNmJs9Bpe+74rctBCA2JUcOJCevHyYotlNTspqIll4zw8SQHD+nRS30IIQjyiSLIJ4qkwKGAc9/RZmsNJpuRNnsjbS1N5O4v4dDe49gUMzbFjOIdHSY9ilnpD2V9fOL54562w52oYs07WcQ3QuU91/t2sbZLSll4RtrdUsoKACHESeBT1/FDOKM+ANuAZS6x9WEH5QngWSHEJEABEoAY17lCKeV+1+u9QKoQIgQIlVJucR1/E7jmPHW5CacQVIQQHwI3AP/nOrdJStkMNAshGnFG4NptH3RGHh+dcfzIGfUtAJIA43nKbqe9znuB1IukPU0H9fwP8MF3zRdgZOpcTK0W2qP34pwovvjmt+gojTjjlTj99uJpxLeOnn4lNOiEAa1Gj1aj/+a1Vk9p89fk1nyJotiJDR9IUuQwQgKSOvz23Gquo7R2H2V1+6hqOU5a5FAGJ0xHr/XtXMNcIRTXHWRf6ccgNAxK+z6xYf09bZJH0ev86Js0i8TIYeSWrie39nPKWw4xNGkW0UGpnjavC/EjnHO3rFIUid3uQHEoWG0WLLY2FOnAIe0o0o6iOFCkHYe0I1FcEXGJ5JtI+en38ozjHhlt0b1lujoHBgCqWFPpPoQQEcA0YIAQQuLsJpRCiF+6krSedYnljNfKGe8VXPdXSnmvEGI0MAfYL4QYIqWsO+O6W3B2MQ6XUtqEEEU4o11n5+/A2b0q6IRHCiEG4YzMfeb6YDfgjP61i7WL2n5WOqWDa3SAHTjzK/jZyqD9Ggdd+8xfdr67CldfPJGHKSws5MYbb+TIid3EhGXRL2U2ek3wBa8J8I0gO/Fq0mLHU1j1JYVVu2h0lPDuu28xY+aMbrLce2lqamLJkiXsensVESGpDEq7Hr0myNNmeQ2BftEMz1jsXOqj/DO25L/J3Lnz+etfX76kNepUrjg6CkL0KnpujLn3sgB4Q0qZIqVMlVImAYXAhMvNUAiRLqX8Skr5GFCLMxp1JiFAtUuoTQUu+F9RSmkEGoUQ7Tbdcp6ki4AnXPVIlVLGAwlCiK7+r1sFRAshIoQQPsDcS7y+GTjnE9M1c7VBCDHRdehWYMvZ6Xojq1atYujQoRw8eIThWQsZlHrjRYXamRh0/mQnzGRU9p1Y2hRmzprF0od+jaIobrTau9m5cydDhgzh3XffJStpGkP7LFaFWgcIIYgJy2Fczn1kJkxl3bp1ZGZm8cgjj2IymTxtnoqKR1DFmvexCFhx1rH/ATd/hzyfF0IcEkIcBr4ADpx1/m1ghBBiD07h1ZmlQu4E/k8IsQNoO0+amzi3Litcx7sMKaUNeArngP81dM7+M1kNXC+E2H+GMGvndpztdxDnJI6nvqu93oyUkt/97ndcd911aGUQ43LuJiKw72UPGA4NSGRM37uJCx/In/78eyZPupqmpqaLX9iLsNvtPP3000yYMIHa6kbG9vsBqVETevR4rO5Aq9GTFjOR8f2WEBWcxbPPPkNqSjpvvfXWFS36Va5M1NmgKiqewescz2q1cs8997Bs2TISo4aQkzgHIbRdkreUkpKa3eSVfkpiQirbdmy+ItaeKigo4NZbb2X79u0kRA4kJ2k2GuHjabN6JPXNRRwv/5Sm1koy0rN56eU/M3v27F6/xIlKp+j1D4Eq1lRUPINXOZ7RaGTBggVs3LiRrMSppERNcMuHYG3TSQ4WLsffL4DPN3/G8OHDurwMb0BKyRtvvMH999+PzeogJ3k2UUH9PG3WOSiKA5vD5BqgLtBotOi1fl4rgKSUVDYc4WTlJkzmBoYPHclLr7zAhAmXPUpEpXfgnQ9sF6KKNRUVz+A1jldWVsasWbM4diyXgWnziA7ucG3jLqPZVMnXBe+hSCvLly/n2nlz3Fped1NXV8e9997L8uXLiQ7rw4C069Dh2XXnFMWBsbWUxtZSmtuqaGmrxmxrwu4wn5NWCA16nT9+hlAC/aIJ8o0mNDCRIL9YhJd03SqKg7K6rymo/AKLrYVpU6/mD398lhEjRnjaNBXPoIo1FRUVt+AVjnfs2DFmzpxJdVUtQzNuJNg3uVvKNVub+LrgXVraanj5pb9w/wNLuqVcdyKlZPny5dx///3U1taRmTCVpIjRHhM4doeVamMuVcaj1DcX4VCsAPj4hBAYEIufbxh6QwB6fcDpBV0UxY7V1oLV0kKbuY6W1irsdueQVJ3Wl7DAFKJDs4kOyUav8/zel3aHlZLa3RRVbsPmMDNp4lSefuZJJk48e+ipSi9HFWsqKipuweOOt2PHDubOnYvF7GB4xs346rp3AVubw8zBwuXUNRXw4yU/5ZW//BmNxjsiN5dKeXk5S5YsYdWqVYSHJDIgdR6+2kiP2NJkqqC4+iuqjMdQFBs+PiFEhmcTHp5JaGgaen3ndweQUmKxNGI0FtFgLKC+4QQWixEhNIQH9SEhYgjRodloumhs4+Vid1gord1DUfVOrLZWRgwfzdPPPMmMGTO8tktXpUvp9TdZFWsqKp7Bo463Zs0aFi5ciEEXxLCMm9GLzi/L0ZUo0kFuyceU1u5j1oy5rFj1Ab6+PWcBXYfDwauvvsrDDz+MqbWNjPgpJESM6vaZnlJK6ppOUlS9nfrmIrRaH2KiBxIbPZSQ0JQui+5JKWluLqO65hBV1QexWBox6ANJiBhCctQofPSe7e51KDbK6r6mqGo7ZmsTGelZLP3lL1i8eDH+/j1/CyuV86KKNRUVFbfgMcd77bXXuPfeewkNimdo+k1opGe7s6SUFFXvIL9sA/1yBrN5y2dERXn/NlVffPEFDz74IPv37ycqtA8D065FJ0K63Y6GllPkl23E2FqCjyGYpMRxxMeNRKd3732VUqGu/jhlZV9RV38cjdCSEDmU1Jhx+Bm6vx3ORFHsVDQcpqR2F02tlQQGBnP33T/k/vvvJzU11aO2qbgFVaypqKi4hW53PLvdztKlS3nppZeICc9iUOr3Eei724zzUtlwlMPFKwkLCWfNuo8YM2a0p03qkMLCQh5++GH++9//EhQQTlbiVYT7Z3d7d5vJUk9e6WfUNOZhMASRljKNuLjhaDTdvzGNyVRH8anNVFY5d6aLjxhCRtxkj0fapJQYW09RWreHyrpjICQTxk/innt/xPXXX69G23oPqlhTUVFxC93qeEajkZtuuon169fTJ24sfWKne+WirI2tZRwsXI7F3sIfnvsjv1j6M68Zc1RSUsLTTz/N66+/jhAa0mLGkxI1FiG6Vxwpip2iqu0UVG5FCA0pyZNJShyHVuf59dvMZiPFp7ZQXrEbjdCRGjuO1OixaDWe/1JgtjZS3rCfstoDtFmM+PsFcMPCG1i8+BYmT56MXu95G1UuG+/4J+FGVLGmouIZus3xdu/ezaJFiygqKqZ/yhxiQwd3V9GXhdVu4sipj6gxHmfypKt4+51lJCQkeMye/Px8XnzxRf71r3/hcCgkRQ6jT/xEdCKg222pby7m6Kk1mCx1REcNIDN9Nj6+od1ux8UwmWo5WbCemtoj+BiCyU6YQUxojlcIbyklDS3FVDUeorz2CA7FSlBQMPPmzWPBgu8zY8YMNeLW8/D8g+VmVLGmouIZ3O54iqLw/PPP8+ijj+LnE8ygtO8RYIh3d7FdgpSS4uqdnCjfhI+PD88//0fuve8etNrumXUopWTTpk28+OKLrF27Fo1GS0LEYDITJqMV3d+151DsnCj/nOLqnfj6hpGdOY+IiOxut+NSMRoLOX5iDS0tFUSEZNIv8Rr8fLxHXDoUG3VNJ6lryaeyLhebow293sCYMWO55pqZTJ8+neHDh3fbc6dy2ahiTUVFxS241fEOHTrEvffe69rmaAD9UuYipMGdRboFk7meY6VrqWsqJDUlnRdf+hPz5893W4SmoKCAN998kzfeeIOCggL8/YJICB9OctRwtJruj6QBNJnKOVS0ilZzDQnxo0jvMwudrufMmFUUB6VlOygs3IBEkh43iZTosV7XDa9IBw3NxTSYCqkxnqDZVAVAYEAQo8eMZvz4cYwZM4ZRo0YRERHhYWtVzkIVayoqKm7BLY5XW1vLs88+yyuvvIKPwZ+shKuJCurvFd1Pl4uUkmpjLicqPqfVXEdKch9+9vMHuO222wgLC/vOeX/99desXbuWNWvWsGvXLoQQRIWmkxA5mPCAbLQeGLDfblth5VZOVmxBbwggJ/v7RERkecSWrsBsNnI8fzW1dccICohnQPJ8gvy8d9avxdZKQ0sRjW3F1DeW0NJWjXS5bXJSKkOHDWHw4EEMHDiQAQMGkJGRgU7nmWdFRRVrKioq7qFLHa+qqoq//vWvvPTSS7S2mkiKHkZWwnQ0eH7QeVehSIXK+sOU1e2hoaUUrVbL+HETmH/dPEaNGsXgwYMJCgo6//WKQklJCXl5eezdu5cdO3awY8cOamtrEUIQHpxEVEg2cWED0GvPn093YLG1crhoBXXNBURHDSI7cx56Q+8YR1VdfYi8/FU47FbS46eQGj3Ga7axuhB2h4UmUzktlkoaW8tpaq3EZK4/LeAMBgMZGVnk5GSTnZ1NZmbm6Z+oqKge/YWpB9DrG1cVaypuRwjhAA7hdCgH8BMp5XY3lfUE8DiQKaU84Tr2M+AFYKSUcs8Frv0p8E8ppekiZWwGHrpQXp3gOzuezWZj8+bN/Pvf/2b58uXYbDbiIweQlTgVg+a7RZy8nSZTObVNeVQ25NLSVgPgFFzhEcTHxxMREYFOp3Uu3WA0UldXR0VFJRbLN3thBgdGE+QbT0x4OiF+aei13iGG6puLOFj0IXa7mczMucTHjex1H/RWawt5x1dRU3uE4IBEBqTMI9DXMzs+fBccio1Wcy2tlhrarLU0tVbT0lZLm9WIlMrpdIGBQaSnp5OT05c+ffqQmpp6+ic5ORkfn97zpcpD9C4H6QBVrKm4HSFEi5Qy0PV6JvAbKeVkN5X1BPA94L9Syqddx7YBocDtFxFrRcAIKWXtRcrYjAfEmpSSoqIitm7dyoYNG1i9ejUNDQ34GPyJDx9MSuxIDBrvGbzdXZitzTS3VdBmq6HN2kibuQmb3Xw64qHT+GDQ++PnG0SQfyS++nB8dREYdN4hztpp7/Y8UbEZf78I+ve7iaCgnjEh5HKQUlJVfZDj+R+hKDYy4qeREjWqR0TZLoYiHbRZjLRZ67E6GjFZ6mhuraXFXIfZ2vQtIQcQEx1LWp/Ubwm5lJQU4uPjiYuLIzw8vNcJ9i6m1zeO2sGu0t0EAw0AQohAYBUQBuiBR6WUq4QQAcB/gURAC/xOSvm+EGI4zghZIFAL3CGlrOigjJXAfOBpIUQfoBGwtZ8UQswAngR8gJPAncBdQDywSQhRK6WcKoT4f8BIwA9YLqV8/MxChBBa4F/ACJzi63Up5YvfpXHa2tqorKykqqqKyspKSkpKyM3NJTc3l8OHj1Bd7Rz07GPwJzI4k6x+swk0JHfbOlbti4zWNxfRZKrAajchpYKPPpAA30gigvoQFpTSrXtF+hqC8DUEAT13PNeZ3Z4x0YPIzrwOnb7nTCK4HIQQxMYMJiw0jbzjKzle+ilVxmMMSJ5HgG/PHsCvEVoCfCM6rIciFSy2ZtosRmxKMxZ7I6a2Bo4fqeTg13m0WRvPEXN6vYHo6Gji4uJISHAKuOjoaEJDQwkLCzv9t/11cHAwfn5+GAwGVeT1EtTImorbOaMb1BeIA6ZJKfcK52qi/lLKJiFEJLATyMQZGZslpfyR6/oQwARsAeZLKWuEEDcCM6WUd51V1hNACzAOeAynaCvFKcgeAoqAD4FrpJStQohfAT5SyqfOjqwJIcKllPUuUbYReEBKebA9soZToP1eSnm1K32olNLYmTaJj8mQdrsVm82CzeH8a3dYURTHOWl1Wl8CfSPx94kgNDCBkMAkAn2iu/WfsEOxUVq7l+LqXZitRkAQ4B+FwRCEEBos1iZMphqkVDDoA0mKHEFy9Cj02t4tOLqC+uZiDhV9iM3eRmbGHOLjR11xH7BSSiqr9pN/YjWKYicjbhop0b0jynapnCnmrLYWrI4WLDbXj7XZ+dfejM1u5uIBeoFOq0OrNaDT6dFp9ei0BrRaLUJo0Gg0zr9C86333xwTHd8DcfbbCz+v5z7P56Y/95HvvA8cO7Gz1zuMGllT6Q7apJRDAIQQY4E3hBADcHrjs0KISYACJAAxOIXdn4QQfwDWSCm/dKUfAHzmcnwt0FFUrZ33gJuAmcB0nGINYAzQD9jmyscA7DhPHguFEHfj9JM413UHzzhfAPQRQvwFWAt82rnmAEubglbjj68uhACDHm2AHq1Gj1ZrwEcXiEEfiI8+EB99EAZdgOufJngi2l/ZcJTckk+w2JoJDUmjT5+riYzsh+6sFfPtdgsNDScoK9/FyYrNnKrZRUb8FJIiR1xx4qMztHd75pdvws8vnOGDbu/V3Z4XQghBXOxQwsPSnVG2sk+pbjzGgJT5PT7KdqlohRZ/n1D8z7MeXXuARUqJ3WHB5mjD7jBjc5ix251/HQ4LDmlHUWw4FDvKma8VO4rNgUQBKZHYkVIipYJEuqJ68vSxc8q/qECUF3nbmQDRpQWRZg5//Kfr9z750iVd1MNQxZpKtyKl3OGKokUBs11/h0spba7Ilq+U8riry3M28JwQ4lNgBXBESjm2k0WtBp4H9rgid+3HBfCZlHLRhS4WQqThjJ6NlFI2CCGW4YwMnlmXBiHEYJyC8MfAQpzdqRflVNlRzGZrJ6viGerr6/n5Lx7gwN7VhIYkMDjrZgIDUs6bXqfzISqqP1FR/WluLuNkwSccO7UOQ2gNy/79OklJyd1ovXdTV1fHkh/fTf6+z4mLG0x25vVoND1vHbyuxscnmIEDbqWqaj/5J9awM++f/PrhR/nJj3+iLkzrJqQEh0NBcSgoikRRnEJNUSRSkafFlZTOX+2dcd+lV66re/Tuv/Wff+/SDL0QVaypdCtCiL44o2J1QAhQ7RJqU4EUV5p4oF5K+ZYQogW4A/g9ECWEGOsSfHogS0p5pKNypJRtri7O42ed2gn8nxAiQ0p5QgjhDyRKKY8DzUAQzvFwwUAr0CiEiAGuATafVZdIwCql/J8Q4iSwrLPtEBDkS0CQ93YR7t69mwULFlBeXkFW5jXEx41Do+n8h2VQUAKDB91FReVeDh9Zy5hxo3n77bf4/vevd6PVPYPt27dz4403UllZRb+c64mJViOPZyKEIDZ2KGFh6eSf+IjfPf0YK1au4O23lzFo0CBPm6fihazf+6T54ql6NlfegAAVT+AnhNgvhNgPvI9zVqYDeBsYIYTYA9wC5LrSDwR2udI/AjwtpbQCC4A/CCEOAPtxjks7L1LK96SU+846VoNT/L0rhDiIU7z1dZ3+J/CxEGKTlPIA8DVwBHgd2NZBEQnAZpedy4Bfd7aU4CzqAAAgAElEQVRBvJlly5YxYcIE6utbGDniXhITJl6SUGtHCEF83AhGjbgfH0MYCxZ8j5/97FcoyrldK1cCUkpeeOEFJk+eTFOThdEjlxAb0/uW5egqfHyC6d/vFvrlLCQv7zhDhgzl7rvvw2js1LBQFZVehTrBQEXFM3id40kp+d3vfsfjjz9OVGQm/XJuQqv165K8HQ4becdXUln1NZMnX826dSuvqM2yGxoauPPOO1m1ahVxsQPpm/09hFDX1uosNpuJwqINlJZ9RUhIKC+88GfuuON2NBo13qACXAFLd6hiTUXFM3iV49ntdpYsWcKrr75KQvxwMjPmo+nibZaklJSUbuPEyY/JzOzP9u2biIzseQuhXirbtm1j8eLFlJSUkJkxm7jYMWo07TJpai7jxInVGBtPkZnZlxdf/BOzZ89W21Ol1z8AqlhTUfEMXuN4ra2t3Hjjjaxdu5Y+faaRkjTdrR9+1TWHOXrsv0RExLB16yaysjLdVpYnsdlsPPXUUzz77LMEBEQwoP+N+PlembM9uxIpFaqqD1JUtAFTWz3Dho3ixRefZ9KkSZ42TcVzqGJNRUXFLXiF49XW1jJ37lx27dpNv5z5xESP7JZyGxuLOXj4TfR6HZ9++jHjx19w+GGP4/jx4yxevJjdu3eTmDCSzIy5OOfEeBdSSmw2E1ZbC1JxIJEIBHp9AAZDQJdHV7sSRbFTUbmHoqJNWKzNDBkynMcee4T58+er3aNXHqpYU1FRcQsed7zi4mJmzpxJQUEhAwcsIjQku1vLN5lqOXBoGTZrC2+8+QaLFt3YreW7A4fDwd/+9jcefvhhpKIhO/s6wsP6edosABTFQVPTKYyNp2hpKae5pQKzuQHnXJ+O0RsCCQyIIcA/hpCQZMJC0zEYArrR6ovjcFipqNxLSek22trqSU5OY+nSn7N48WJCQ6+87deuUFSxpqKi4hY86niHDx9m1qxZ1NUZGTLoNvz9kzxih9XawsHDb9LUVMpjjz3FE0880mPHHx09epQf/vCH7Nixg+iovuT0/R5abaBHbbLbLdTWHqW65jANxgIcDgsAvv7hBATH4RcQicE3GINPEEKjQwiBlAo2ays2SytmUx2tzZWYmqtQHM4d2wID44iKGkBM1CD8/b1nwVpFcVBTe4TSsq00NpZiMPjw/e8v4L777mHChAk99rlS6RS9/uaqYk1FxTN4zPG2bt3Ktddei90GQwbfhcHg2UH+DoeNY3nLqa4+xA033Mzbby9Dr/e+LsPz0dbWxh//+EeeeeYZdDpfMjPmEBE+0GPiQEpJY2MRZeW7qak9gqLY8PENISymL2FRWYREpqM3XNpMXKk4aDaWYqw5QUN1Lk0NxQAEBSeRGD+GmOiBXtVl2txcRmX1XsrLv8bhsJCYmMLixTdz0003MmjQIFW49T56/Q1VxZqKimfwiOO999573Hnnnfj4hDB40J3otMGeMOMcpFQoKNxA8anNDB06mk8/XeP1M0WllCxfvpylS5dSXFxMfNxQMjPnotV0zXInl4qi2KmqPkRJ6TZaWsrR6XyJTBhMdMJQgiNSu3SfTbOpgdqyA1Se2k1baw16QyAJcaNIShyHXu89S7I4HFaqaw5RU3OIuvoTSKmQlprOLYsXMX/+fIYNG6aOb+sdqGJNRUXFLXSr4ymKwmOPPcYzzzxDZGQ6A/vfjBCeERUXoqJyH7l5KwgJCWPVqg+ZNGmip03qkF27dvHQQw/x5ZdfEhaWSFbGHAIusBWXO3EOtN9LUfFmLJZG/AKjSegzgeiEoWj17l3LTUoFY80Jygu3UV91DK3Oh6SE8SQljkev967ny2ptobbuqEu4FQCSiIgo5s2by7x587jqqqsIDPRst7XKZaOKNRUVFbfQbY7X2NjIHXfcwcqVK0lKGk1Gn7kI4b37LDY3l3Hk6Hu0mRt45JHf8vjjj6LTeUcX2+7du3niiSdYt24dfn5B9Em7muioYV0ateosiuKgqmo/hcWfYzY3EBSWTHLWVYRFZ3ukm6+1qYLivM+oqziMVudLSvIUkhPHeVX3aDtWayv1DccxGvOprsnFbjej0+mZMGEi1147hxkzZtC/f3+1u7Tn0OtvlCrWVFQ8Q7c43o4dO7j55ps5daqE7Kw5xMaM7hEfQHa7mbzjK6mqPkh2dn/ef/9tBg8e7BFbFEVhw4YNvPTSS3z88cf4+QWSmDCBhPgxHtt8vb7hBPn5a2g1VRMYkkBK9gzCYvp6xb1taSyn+Ngn1Ffn4usXTkb6bKIicrzCto5QFAeNjcUYG49TXXOM1tYaACIjo5k1awazZs3iqquuIiYmxsOWqlwA73y4uhBVrKmoeAa3Op7FYuG5557j6aefJiAgnP79et6CrFJKamoOc/zEauz2Nm6//U6ee+7pbvvQbGho4J133uEvf/kLeXl5+PuHkJAwloQ4z4m0trZ6TpxcR03tUXz9wknrP4eIuAFeKYQaqo9TcPgjTC3VhIVnkJ0xD39/7x6HCGA2G2kwnqSx8SQ1tcex2UwA5OT0Z86ca5gxYwYTJkzAz8+7unmvcLzPAboYVaypqHgGtznepk2buO+++8jLyyM+fihZmfPRCM+Ii66gfV/IsvJdGAwG7rtvCQ8+eD+pqaldXpbJZGLNmjW88847rFu3DpvNRnhYMslJ4wkNzfFYl57DYaWoeBOnSrYiNFqSM6eR0GcCGp1331dFcVBRtJPi3PUoip3UlKmkJE30yq7RjpBSobmlgsbGk9TX51PfUISUDgwGH8aNG8/MmVczZcoUhg8f3qNmMPdCVLGmoqLiFrrc8fbu3ctjjz3GunXrCA6OIjtzHkFB6V1djMcwmWopPrWRyqpDAFx11dUsXnwzc+fOJTw8/LLytNvtHDlyhM8//5xPPvmELVu2YLFYCPAPJTJyAAnxw/D1je3KalwydXV55B1fhdliJDpxGKk51+DjF+JRmy4Vq7mJk4c/orb8IP4BMfTNup7QkGRPm3XJOBxWjMZCmpoLqK7Jo7W1GgA/P3/Gjh3HVVdNY/LkyYwYMQKDwbuFdC9DFWsqKipuoUscz+FwsHbtWv72t7+xfv16/PwCSUqcSHzcGDSa3vlN32w2Ulm1h7LyPVgsTWg0Wvr3H8D48WMZMmQIKSkpJCQkEBAQgK+vLwDNzc00NTVRVlZGQUEBJ0+e5MCBA+zbt4+2tjYAQoJjCQ3NIDamH/7+yR6ZNHAmVmsL+SfWUFV9EL/AaDIHfY+QyD4etem7Uld5lJMHV2AxN5GQMIr0tJnodL6eNuuysVpbMDYW0txSTG3tSVpbqwDw9fVj9OgxTJw4nlGjRjFy5EhiYz0r+ns5qljr6QghYoGXgJGABSgCfgrEAw9JKee6ocztUspL3uxQCPEE0CKl/FNX29RBWVO4QP2FEC8DC4AkKaXiOnYHMEJK+ZMzbRVCPAV8IaXc0MmyU4E1UsoBnTl+kbxO29TZa8649jdSymcvcH4dcLOU0nipeXeCy3Y8u93OF198wYoVK/jwww8pLy8nICCM+LhRrkHv7l2uoSNstjaMjUWYTDU4HBY0Gj1+vmGEhqbi4+OeKJCUCs3NZTQYj2M0FtPYVIrdbu7UtQaDPwEB0QQHJRIeloy/fyI+Pt6xNZGUkorKfZw4uQ6Hw0pS1jSS0qeg0fUO8e2wWyg69gnlhdvx8QkmK3M+UZF9PW1Wl2C1ttDYWOQUb3UFtLRU0u7qcXHxjB49mlGjRtK/f3/69etHWloaWq33zszuQfR6sdYzBg5cJsI56nYF8B8p5U2uY0MAt45Qvhyh5k0IZ0jheqAEmARsvlB6KeVj3WCWO/gNcI5Ycz03Qko5u/tN+jYWi4X8/Hzy8vI4cOAA27Zt46uvvqK1tRW9zkB4eCbDh15FUFAmGk33/tOXUqGu7jglZdsxGgtwafpzCAyMIyF+DLExg9Fqu65rSAgNwcFJBAcnkZLstMdiacZsMWKzNSOEA0XaEYBW54tW6NFoA/D1Cfe6NcDaMZlqyT2+EqOxgODwVDIHfQ//4N4VkdHqfEgfOJ+oxKHk71/OocNvEB09iKyMuRgMPXudM4MhkKioAURFDaBPmrPbtLm5HFNbOU1NZaxf/wUrV644I72BzMws+vfvT1paKsnJyaSkpJCcnExSUhIhISFeOXlEpfvp1WINmArYpJR/bz8gpdwPpyNLgUKI5cAAYC+wWEophRDDgReAQKAWuENKWSGE2Ax8DQwHooDbgF8DA4H3pZSPuvJukVIGul7/ErgVUICPpZQPCyF+BNwNGIATwK1SStOZhgshHgDuBezA0Xaxecb5VOBNoH1X5Z9IKbe76vWEy+6z6zULZ5SxFth3kXY7DLwPLOIiYk0IsQxnRGz5BdpuOPA6YAK2Xig/V553APMAfyAdWCGl/KXr3J04270COI4zYvotO1zvW6SUgUKIOFddgnE+8/cBcwA/IcR+4AjwCPAxsAkYC1wnhNiCM2pXK4RYDDyA8559BSxxmfovYATOr8+vSylfvFjdAD744ANMJhOtra2YTKbTr+vq6qiqqqKyspLKykrKy8tRFKW9TQgJSSAifDB9szMJDEjrUvFzKTQ2niIv/yNaWsrx8Q0hMX0yYdHZBITEodP74bBbaWutwVidT3XZ1+QdX0Fh8UbS02YSGzPYLV2MQmjw9Q3B17dnjecC50D8UyVbKSreiNDoyBj0PWJTRnm8K9adBIclM3TyA5Tmb+JU/ufUN+STmT6H2JihvUagaLUGQkNTCQ1NJT7OecxuN9NqqsFirqHNXEt1VSUFBRuwWIwoiuNb1+t0ekJDQ4mMjCQqKpKoqChCQkLw9/fH39+fgICA03/9/PzQ6XTn/Gi12m+9P3PHhjPb2R2vu4sRI0Z0e5ndTW8Xa+1i5XwMBfoD5cA2YLwQ4ivgL8B8KWWNEOJG4BngLtc1VinlJCHEg8AqnMKtHjgphHhRSlnXnrkQ4hrgOmC0lNIkhGgfBf2hlPJVV5qngR+4yjyTh4E0KaVFCNFR/0w1cLWU0iyEyATexSkazlevPcCrwDScAvH9C7TLIld+q4BnhRB6KaXtAunb66vn/G33b+B+KeUWIcTzF8vLxRBXXSxAnhDiLzjF65M4270Rp7j6+iL53Aysl1I+I5yrwfpLKb8UQvxESjnEZXsqkA3cKaVc4jrWXq8c4EZgvJTSJoT4G3ALTpGX0N5te5771CELFy4855hG6NDp/TAYAjHoAzEYokhOysTfP5oA/yj8/SM9Js7aURQ7JwvWU1K6DYNPMFlDFhKVOPScqJ5WZyAwJIHAkAQSMibTWHeSwiPrOJb7AZXV++mX/T23dY/2NJqbyzmW9yEtLeVExA0gY8B8DD1sAsHlotHoSM6+moj4QZzYv5xjucupqj5AduZ1+PmFedo8t6DT+RISnATBSd86LqWC1dqC2dKIxWx0RYhN2Gwm6mpbqawowWbLw+6w4HBYURw2FGn3UC28i2lTnh25cdOvd3vaDnfS28XaxdglpSwFcEVYUgEjTpH3mevDWoszgtPOR66/h4AjUsoK1/UFQBJQd0baq4B/t0fNpJT1ruMDXCItFGcEan0Hth0E3hZCrARWdnBeD/zV1a3rALIuUq8WoFBKme86/hbO6N63EEIYgNnAz6SUzS7xOgNY24ENZ5NNB20nhAgBQqWUW1zp3gSu6UR+G6WUjS67jgIpQCSwWUpZ4zr+/ll174jdwOsuMbmyPbraAcVSyp0dHJ+OUxzudtXLD6dYXg30cYnItcCnnagTADNn/prmRhtanQG9zge93oBWq0Or1aDVatDpNGg03hVdaG2tY9uOf2E0lhKXOo7UfrM6NThcCEFoZAZDJv2EiqKvKDy6hq/2vMKokYtJjB/YDZZ7Jw6HjaPH1pObtwG9wZ9+I24l4gptj4CgGAZNuI+Kop0UHV3Hrj0vM7D/HDIyJ6PpxdHFcwnGOZz6XKQERZE4HAqKorheO7DZrNjtFux2K4ricP5IiZTK6R+kgiIVpHScMVr2m2Gz3x5AKzt8eenpuxXv2OTYjfR2sXYE5yD582E547UDZ3sInCJs7EWuUc66XuHc9hR0/PguA66TUh5wdfdN6SDNHJzjxeYBvxVC9JfyW1+jfgZUAYMBDXDmyOqO6sV5bDmbWUAIcMglTPxxdl12Rqx12HauiNPluPGl1sOOsy3ax50ZAKSUXwghJuFs0zeFEM9LKd/o4PrW8+QrcI57/PU5J4QYDMwEfgws5JsI7AX55JPzzmvwSg4fPsyMGTMwm5sYPO4ugi9jQLgQGuLTxhIalcHxfe+wfftr/PJXv+H3z/2u13R7dZbt27fzgx/8gNzcXOJTR9Gn/1yEtufOiuwKnM/HOMJjcig4vJL9B1fgoIh33n6DAQM6PedI5cpko6cNcDe9/SvL54CPa4wYAEKIkUKIyRe4Jg+IEkKMdaXXCyH6X2b5nwJ3CSH8XXm1d4MG4Yw46XF2p30L1wD/JCnlJuCXfBOBO5MQoMI1U/NWnFGsC5ELpAkh2hfeWnSedIuAH0opU6WUqUAaMKO9Dhehw7ZzzaZsFEJMcKU7p86XwFfAFCFEhKv9bjjjXBHOCBjAfJzRR4QQKUC1q+v5X8AwVxqbK4+LsRFYIISIduUXLoRIEUJEAhop5f+A356Rb69ix44dTJw4CWNTG4MnLrksoXYm/oFRDBx3H1EJg/njH55h5jXzsFgsF7+wF9DS0sKDDz7IhAkTKC2vYejEe0gftOCKF2pn4usfRs7IO8getojc3OMMGTKUX/3q15jNnZvpq6LSG+nVYk061yW5HrhaCHFSCHEE5+D78gtcY8UZjfuDEOIAsB+4rNmdUspPcHab7nF1Rz7kOvVbnKLjM5wi6my0wFtCiEM4x2O92MHyEX8DbhdC7MTZDXi+qFC7LWac3Z5rhRBbgeKz07gE2UzOiKJJKVtxTgi49sK1vWjb3Qn8nxBiB9B2sbwuUEYFznu4A9jAtydKvApMFkLsAkbzTZtMAfYLIb4Gvg+87Dr+T+CgEOLti5R5FHgU+FQIcRDnfYsDEoDNrnu7DOekh17F+vXrmT79KmwOHYPGL8HgF9Ul+Wp1BrKHLSI1ZxafrV/DiFETaWxs7JK8vZXPPvuMgQMH8sorr5CQPp4hE39KYFjvWbS4KxFCEJ04lOFTHyIyYTB//OPvSUlN591336O3LzelotIRvX6dNRUVL8XrHe+///0vixcvxjcgmv6j70LvE+SWcqpK9pK//wMSktL4ascXxMf3rD1ML0ZdXR1Lly7l3//+N8FhsWQNuQG/oKSLX6hymoaafIqOraXFWM7AwcP4x//7K2PHnm+kisoVSK8fR6GKNRUVz+DVjvePf/yD++67j5DINHJG3I7OzeuSNVQf59juNwgKDmXr1s3075fj1vK6A0VR+M9//sPSpUsxGo0kZUwmMXM6wot2lpBSwW5rQyoOpFTQ6nzQ6ny8cskQKRWqSvZSnLseq7mJq66exXPP/u6KWLZB5aKoYk1FRcUteKXjSSl57rnneOSRR4iM60fWsFvQartHXDQbSzn61etoNLBu3RqmTrnQ0FLv5vDhw9x3331s3bqViOh0Modcj9432mP2SCkxNVXSZDxFi7GM1qYKLG1GrJZmOGcxY4HBNwi/wCj8A2MIDk8hJCINHz/v2OHBYbdSXvglpSe+wG5rY/KU6Tz7zFOMG9ej1yJX+W6oYk1FRcUteJ3jKYrC0qVLeeGFF4hNHk76oAXdvitCW2sdR756HWubkWX/+Q+LbznfPBjvpKWlhaeffpo///nP6A1+pPabTUTcUI9EqhwOGw1VudRXHaO+Og+bpRkArd4X/7B4fALDMfiFoPMNdN5njQbFZsVuNWFtNdLWXEObsRLF7pz8ERASR2TcIKLiB+EX2DVjF78LdpuZyuIdlJ74Apu1lQEDh/CLnz/IjTfeiJ+fd+5QoeI2VLGmoqLiFrzK8ex2Oz/60Y9YtmwZSRkTScmZ47GuMJullWO7/0NjfTFPPvUMj/3W++dtOBwO/vOf//Doo49SUVFBfNpo0vrNRqPtXtEgpaSpvoiqkj3Ulh/CYTej1fsREpdFSHw2QdF98AmK6PS9lYoDU0M5TZUnaCg5REutc15SSGQ68WnjiYjJQXSzoD8bh91KVcluKot20tpcRVBQCD/4wV3cfvttDB48+IpbFuYKpdffZFWsqah4Bq9xPJPJxKJFi/joo4/o028m8enTPP4B53DYOP71e9SWH2LxbT/g3//6Ozqddy4L+fnnn/Pzn/+cAwcOEB6VRvrAefgGJnSrDYrDTk3ZfsoKvqS1qQKNzkBY0kAi04YTHJvRZYLK0tpAXeE+qo9vx2oy4uMfTlLWdGITh3lctEkpaawroPrUTqrLDiGlQp/0TO64/VYWLlxIdna2R+1TcSuqWFNRUXELXuF4dXV1XHvttezcuZOswdcTnTzG0yadRkqFwiNrKSv4kkFDRrD+49XExnrPpuZ79uzh8ccfZ926dQQFR5LabzYhUf27Veg6x29to+zkl9isLfiFxBLTdyIRqUPQ6t23dptUHDSUHqXi8AZa60vxDYgkOftqohPcs+/rpWKztlJXcYja8gM01JwEICUljeuvn8+8efOYMGECer33TPRQ+c6oYk1FRcUteNzxiouLmTVrFidOFpAzYhGhUZe79rN7qS7dR/6B/xEYGMSH//uA6dOnedSevXv38uSTT7J69Wp8/QJJTJ9MbOq4bp3l6XDYqCjaQWn+JmzWVkLisonNmUxwXFa3ikUpJcbSI5QdXI+poZyg8BT6DJhHcKj3LE1iaTNSX3WUhupc6qvzkYqDgMAgpk6ZwsyZM5g2bRo5OTkejyarfCd6/c1TxZqKimfwqONt2bKFG264geYWEwNG34lfcLInzbkorU0V5O55C1NLDT/44T28/NKfCQgI6LbyFUVh/fr1vPzyy6xfvx5fv0AS+kwiLnUsQuvTbXZIqVBdso+i3E+wmpsIjs0kYdBMgqLTus2G89lVW7CHkq/XYje3EpMykrSca9Abuu8edQaH3UJDTT5Ndcepq8zDbGoAIDIyiulXTWfG1Vczbdo0UlNTPWuoyqWiijUVFRW34BHHk1Lyyiuv8Itf/ILAkGj6jbgNnW+EJ0y5ZBx2K8XHPqascBvRMQm88vILLFx4g1sjInV1dbz77rv89a9/JS8vD//AUOJSxhGbOhZNN4o0gKb6Yk4eXkWLsZSAiGSShs4hODajW224GHZrG+WHPqMq90u0Bj/SB1xHVPwgr41amVvraaw7QXN9AXVV+c6lTID4hCSmTZ3ClCmTmTx5Munp6V5bBxVAFWsqKipuotsdr7q6mnvuuYeVK1cSkziIrCELQWPobjO+M8bakxQe+YiWxgoGDBzCs888xZw5c9BoumasVFtbG59++ilvvPEGq1evxmazERqRTFLGJIKj+qHRdO9EB6u5iYIja6kp+xq9XzBJQ+cQkTbMK8aGnQ9TQzmFO96ntb6U8Lj+ZAy8Dh/fEE+bdUGklJiaq2iuP0ljfSEN1SexWZ071kVFRTNlyjfiLScnp8ueN5UuQRVrKioqbqHbHE9KyfLly/nxj39MQ4ORtH7XEJMyzqs/7C9G+2r2JXmfYW4zkpCYzI9+eBcLFiygX79+lxQFURSF3NxctmzZwrp169i4cSNtbW34+QcTGT+E+NSR6P2iuz2yIqWk6tQuCo6sRVHsxOVMJq7/NLSG/8/eecdHVaV9/HumZSa99w4JEDokdJCiKEiRooKiImvvbdfVd3dFt+la1ld9dVlX17o2FMGGWEAUkN5DJyGkt0mZZPo97x8zsAHpJDMD3O/nc3Nnzr33nOeezJn7m+c55dxY9F0qbip3Lqd082I0Gh1ZeZeTmD7gnPFQSSmxWqppNhfTVF9EffVeHLYmACIjoxgxYsRh8da7d2+0Wv+Ohr3AOTc+VGeBKtZUVPyDTxreli1buO+++1i6dCmRMWl07T8TvTHWF0X7BEVxU1exjaqSnzHX7AckcfEJDB82jJ49e5CVlUVSUhJGoxG9Xk9zczONjY2Ulpayd+9edu3axdq1a2lq8jyEQ8NjiYjtQkJqD0zhmT6fFPgQrZYa9m7+mMa6/YTFZ5M58EpMEf5bAeFssDXXUrTqA5qr9xMZn0NOr+kYg6P8bdZpI6XE1lqPxVxMk7mI+up92FrqAAgJDWXokKGMGjWSYcOG0bdvX5/2qVRRxZqKikrH0KENb926dTz11FN8/PHHGE2hpHcZS1xKvt/nwupIHLYm6qsKsZgPYK4t8nYeP341G4KCMYXEEhKeTHR8FqawVIKCY/3q+ZGKm9J9P3Bg17dotDrS+k0krvOAc9oLCt6BEbtXcXDj54Agq9t4kjIHnvP3Zbc20GwuxmIupq56L63N1QBoNBpyu3Rl0MABFBQUUFBQQK9evQgK8m0/xwsIVayptD9CCDewtU3SFVLK4tPMYzawREpZ3o6m+QQhRCbwuZSyx8nShRBzAYuU8pl2KLcYyJdS1p5tXu1Auze8xsZGPvzwQ9544w1WrlxJkDGYpMwhpGQPR6O78JbfUdwu7/qXFqR0AQpajQGNLgiDMRydPjigQnLWljp2bXiPZnMJUWk9ySiYgiE4sPt5nS52Sz1FP39IU+UewmOzye19JaaQc2OAy6ngsFtoNpdgs5TTWH+QpvqSw/3eNFotmZlZ9OrZg7y8vMNbp06dCA8P97Pl5zyB05A7CFWs+QEhhEVKGXqWeSwDHpJSrmsfq05Ylk56nnbtlV8m56FYO816OuuG19LSwubNm1m+fDmLFy9mxYoVuFwuwqOSSEjLJz5tgM9HLKqcPof6pu3b9hlCoyVzwDRisvr626wOQ0pJzd7VHNzwGVJxk9ltHMlZ53YfyuMhpcRubcDSWIq9pRJLYyXNjZXYWuqQUjl8XnhEBOywy3gAACAASURBVBnpGXTqlE1mZibp6ekkJiYSHx9PQkIC8fHxxMTEqP3ijs95L9YCc/2WCxAhRB/gH0AwsA+YI6U0HysdGAPkA+8KIazAvcC9UsqpQojJwPtABKABCqWU2UKITsD/AXFAK3CzlHKnEGIi8DvAANQB10opq7wiKRnIBGqBa9rYGgosBKIAPfA7KeVCr9j6CvgJGAKUAZOllFYhRH/gdW/ZP51hHZ3uPcQA73nPX0ObBi2E+D1wLXDQe3/rpZTPtGc9nQ0OhwOz2Xx4q6ur4+DBgxQVFVFcXMz27dvZuXMniuL5wo+MTiOl0wjiU3sRFJzU4R4jKSVulw0pJTq98bx80PoCh93Cns3zqa8sJDyhM9lDZmAIOff6c50OQgjicwYRkdyF4tXz2b9tETXlW8jtcyXBAbBAfHsihMAYHOXto9fzcLridmFtqcVqqcblaMDe2kB5TR37ildht36J2+U4Zl5RUdHExMQQERFBVFQkERERv9hCQ0MxmUwEBwdjMpmOuQUHB2M0GtHpdGi12oDyMKscG9Wz5geOCoMWSSmnCCG2AHdLKX8QQjwBhEsp7ztB+jK8njUhhA7YI6XMEkI8A1wE3IdHjN8mpZwphPjO+3qPEGIg8Fcp5WghRBTQIKWUQoibgG5Syge9ImQiMExKaT3Kfh0QLKVsEkLEAj8DOUAGsBeP92qTEOJDYJGU8p2j7uNpYNxxPGs7gF1tkhOBZ7xC6nTv4QWgVkr5hBDicuBzPCIsE/gXMNhbRxuAeWdYxnHr6UTEJWZJxe3C7d0Utwu34t173x8LodFiCo7GGBJLaGQKYZGphEakYTCGnWrRZ0xrcxXVpRtoqN2HpbEcqRyyURAcnkB4dBbxKb0Jj85Sv/xPgbrKQvZsmo/LZSOtz3gSug2/4ESvlJK6ovUcWPcpistJRtdLSe104dVDW6SUuJytOO0WHHYLLkeL57XDgtPejNNhxeW04XbZjtgr7l8KvFNFaLRohAaNVotGaBEaDRqtzpOm0aLRahEarefXrhAIxOGfvp7X4hfHxOEThHcnPGcL71Xt+B3Rqe8czfKFvz6vxYzqWfMPVilln0NvhBARQKSU8gdv0pvAR8dLPzozKaVLCLFXCNENGAA8B4wAtMCPXk/YEG+ehy47FB9LBT4QQiTh8RoVtcl60XEEiAD+IoQYAShACpDgPVYkpdzkfb0eyDzGfbwNjDtO3ew7qm7mevdncg8jgKneOvpCCGH2pg8DFh66NyHEZ2dRxonq6bgomBB6HYYgz5egRqNFCJ1nr9Gi1QWh05s8myEYnd5EkCkCQ1CYzx9kjXXFHNi5mMa6/QihISQmnYTcIeiDIxAInHYLrfVlVJeup7J4FaaweNJzxhAXIOtEBhpul4P92z+j8sBqTJFJdBl6K8FRyf42yy8IIYjNzic8MZfiNfMpLvyC2oqt5PaeTkh44KwD60uEEOgNIegNIQSHJZz8Ai+K4sbtsuN22VHcThTFieJ24nZ79oc35dDehVQUpFSQ0n34teJ9TZvXh87xdN74ryaSSP7r8JF4IrttNJOU3nfSm6z893174Sn/N8BT7Zdp4KGKtfOHH/EIICfwLfAGHrH2EJ5waENbEdSGF4HnpJSLhBAjgbltjrUcp6xr8Xio+kspnd6+YIcmf7K3Oc8NmPCIu7NtnWd6D8cq93g/6dq7no5LXWXh6V7ic6qqqrjnnnv4ccWHmEIiyCqYRFRGf3TGY3e3dLvsmEu2UrVjGbs2vAfWbbz37pv07Xv+9r86XVavXs2sWbOoKtlHas/RJPa4FI1W/Ro2BIeTc9GN1Bdv5MC6T9m4/Hluvvk2nnryz0RGRvrbPJXA57wWauB5OKn4GSllI2AWQgz3Jl0H/HC8dO/rZqBt7Gs5ntDnKillDRADdAW2SymbgCIhxJUAwkNv73URePqWAdxwiiZHANVeoTYKT/jzRPfXADQKIYZ5k649xXLa5nEm97D8UFlCiHF4+tiBp8/cRCGE0etNu/wsyjgv+fTTT8nLy+PjTxaQ3ncc3Sc+TFyXi44r1AC0uiBis/PJG/8A2UOvYX9RMf3z87n/oYdxudptfMo5icvlYu7cuQwdOpSKajM9L7uL5N6Xq0KtDUIIYrL60XPib4jvPIh/znuF9IwsXnnlH7jdbn+bp6LiV1SxFjjcADzt7dvVB3jiJOlvAP8QQmwSQpiA1XhCkcu9x7cAW+R/fdTXAr8SQmwGtgOTvelz8YT9fsTTQf5UeBfIF0Ks8+a78xSuuRH4PyHEKuC0QoZtON17eBwYIYTYAIwFSgCklGuBRcBm4BNgHdB4hmWcV0gpeeqpp5gyZQpuXRi9Jz5IYveL0ehOfVSpEBpis/rTc+JviM3sx/PP/o1+BUMoLz/nZplpF3bv3s3QoUN5/PHHicnsS974BzDGZPrbrIBFbwwlY8A0uo+/H2GK4Y47bqdb9558+eWXbUJuKioXFuoAA5ULEiFEqJTSIoQIxiNwb5FSbvChCQHX8BwOB7fddhv//ve/icvqR8bAq9Do9Gedb+3+dRSv+RiTKZgvPl/IRSNGtIO1gY+Uknnz5vHggw+ioCFz4DTCU3r526xzCikl9Qc2Ubb5K2zNdfTtX8Bzz/yNkSNH+ts0lcDivB/RpIo1lQsSIcR/gDw8fe3elFL+1ccmBFTDq6urY+q0aSz/4QfS+1xKQvdL2nW0lrWxij0/vI6jpYEXX3qZO267ud3yDkQqKyv51a9+xZdffklMajeyh1yNMHT8iN3zFcXtonbfGsq3fYujtZHBQ0fw5z/OZeTIkerIYxVQxZqKikoHETANb/fu3YwfP56i4gPkDJtJRNqxxlecPU57C/t+fIumyr3cesc9vPzi39Fozr+eGAsWLODmm2+mqamZtP4Tiek0KCBHxUopcbSYsTXVYGuuxWVvQXE7kIqCVm9CF2QiKDQGU0QChpDIgLgHxeWkes9KKrZ/j9NmIa97L/7w+0eZNm0aOp3a/+8CRhVrKioqHUJANLylS5cydeo0rA4XXUbOwRid3qHlKW4XB9YuoGbvz4wYNZYvP/vkvFnwur6+nvvvv5+33nqLyPgMOg+7Bk1wrL/NOgK3w4a5dBsNZTtort6P09p0xHGh1QEC6XYeka4LCiYsoTPhiTlEpfXAYPLv8kiK20nd/nVU7lyOtbGaxKRU7rnnTn41Zw7x8efmgvcqZ4Uq1lRUVDoEvze81157jdtuuw1jWBw5o36FPtg3M+dLKanauZySDZ+RmZ3Lj8u+JTU11SdldwRSSubPn89dd91FbV0dKT3GkJg3xit8/I+UkqbKPVTvWUVDWSHS7UIXHE5oUjahSdkYoxIxRsahM4UhvJ5O6Xbjsrdib6zBVl9BS9UBmsv34rQ0gBCEJ3QmJqs/MZl90GjPvl/jmd+bQkPpdqp3/Uhj5T60Oh2TJl3B3XfdoYZILyzO+3+0KtZUVPyD3xqe2+3mkUce4emnnyY6tRtZQ69Fq/f9Qu8NpYXsW/EOwcEhLPn6SwYNHOhzG86W8vJy7rzzTj799FMi4zPIHnwVurDAmMxVUdz/9T41VKIzhhLZqTdRnfsSkph52mFNKSU2cxXmvRsw792Io6kOnTGUuM6DSMgd4vdF560NldTtX0PV3jW4HVaSU9K44YbruG7WLLp16+ZX21Q6HFWsqaiodAh+aXgWi4VZs2axcOFCkroNJ7XvRITGf4tDtzZUsGfZ67hszbz+739z/azTnoLPLzidTl5++WUee+wxWlqtpPW+jNjcYX6ty0NIqVBXvImyzYuxW+owxSQT13M4UTn9221eNykllrI9VG9dTtOBHQiNhricQSR3H+N30aa4nNSXbMZ8YAPm8t0gJd3yenDj7OuZPn06WVlZfrVPpUNQxZqKikqH4POGV1xczOTJk9m6bRtZA6YQ23mIr004Jk6bhX3L36Cpuoh7H/g1z/7tr2i1/hc9x+Pbb7/l3nvvpbCwkJi0bmQNmIrGFO1vswBoqtzLgXWfYm2owBidRPKA8YRn5HVoONDeWEvVxu+p270GITTE5wwmucfF6E8wgbKvcFibaCjZTF3xRpprDgCQ26UbV06fyhVXXEG/fv3Oy0EuFyCqWFNRUekQfNrwli1bxvTp02lptdN5+CyC43N8WfxJUdwuitfMp3bfWvoVDObzhR+TlJTkb7OOYNu2bfzud79j4cKFhEXFk9Z/EiEJXQOiX5TL3srBDZ9Rs28NhrAYkgeMI7JzH5+O4LQ31VG5fgn1u9ej0RlI7nExiV2HB8wqDbbmOprKtmMu3U5j1T6Qkrj4BCZNmshll17K6NGjiY4ODNGtctr4vxF2MKpYU1HxDz5peIqi8Pzzz/Pwww8THBFPl5E3IgLEC3Q0Ukpq96/lwNoFmEzBvP3Wv5lyxRX+Nos9e/Ywd+5c3nvvPQxBJhLzRhHfdThC47+O9YeQUmIu2ULx2gW47C3E976IpP6XotEb/GaTzVxF2apFNJXswBAaTVrfCUSn9woIUXsIp72FxrIdNJcXUl+2E7fTjhCCnr36MH7cpYwdO5YhQ4YQFHTqK3eo+JXA+XB1EKpYU1HxDx3e8CorK5k9ezZff/01sRm9yB4yA7SB//CxNlSyf8U7tJgruHziFbz26j9ISEjwuR1r1qzhueeeY/78+Wi0OhK6DCOx20g0hmCf23IsHK2NFK/5mIbS7ZhiU0m/6EqC49L8bdZhmg7uomzVImz1FYTGZ5ORP5mQ6MAb9SsVN5a6Elqr92Iu20VzzQGkVDAYgsgvKGD0qJEMHz6cwYMHExamTmwcoKhiTUVFpUPosIYnpeT999/n3nvvpaGhkYyCyURlDQwoz8bJUNwuKguXUrb1G4xGIw8//DAPPfhAh8/JZrPZ+PTTT3nppZdYsWIFQaYQYjsNIClvJBqD//tggWcAQc2enzm48QsUxU1SwaXE97ooIAY3HI1UFOp2rqZizZe4bK3EdR5Iap9xAdGf7Xi4HTaaqvZirSuioWIflvpSkBKNVkvPnr0YNfIiRowYwbBhw4iLi/O3uSoezp0vtzNEFWsqKv6hQxrejh07uOeee/j222+JTMig05CZaEPO3QeKtbGKss1fUl+yjcjoWB64/15uveWWdp341OVysXLlSv7zn//w/vvv09jYSEhELAldhxOTXYAIIG+ktbGaotUfYaneT2hKDunDpxMUGfj/X5fdSuW6r6nZ/hNanYHknmNJ6DIMTQAKzKNxO21Yag5grT9AY+U+mmuKUdwuANLSMxk2dAhDhgxm4MCB9O7dG4PBfyHoCxhVrKmoqHQI7drw9u/fzxNPPMHbb7+N3mAktc94orMHHp7k9FynubqIym3fYC7fhU6nZ9z48Vx91ZWMHz+eqKjTm8xXSsmePXtYtWoVS5Ys4auvvsJsNqPTG4hO70Vi7kCCojIDqu48nsZllG1dgkZvIGXQJKK7DjinvKXg6c9WuuJTmkt3YYyIJ73/ZCKTu/rbrNNCcbtoqTuItf4AlpoDNFYXH14JQm8w0LdvP4YOGcygQYMYNGgQaWlp59z/6RzkvK9gVaypqPiHs254iqKwdOlSXnrpJRYtWuTpV5U7lOQeoxH6wOhX1d5YG6uo2/czNUWbcFqbEEKQk9uFwYMGkZubQ1paGrGxsQQFBaHVamlubqaxsZGqqir27t3Lnj17WL9hA+b6egCMweGEJ3clLqMnxthstHqjn+/wl1hqSyj6+UOsDRVEZvcmdegV6EP8O5fZ2SClpKmkkLIVC7E31RKRkkdG/0kYwwPfQ3gspJQ4WhtoqSvBbi6loaqIlrpSFO+SXbFx8RQU5JPfvz99+vShT58+ZGVlqQKufTnvK1MVaz5CCCGBd6SU13nf64AKYLWUcsIZ5FcM5Espa49KnwTkSSmfPHurfcMJ7qUYaAbc3qTlUsp7hBBvAJ9LKeefZjmZwBAp5X+OczwZeEFKOf108vVee7o2nVHDs1qtrFq1igULFvDxxx9TUVGBMSSc2E4DSMgditbo+zUbFbcTp80CgN4Y5pOpGqRUsNSW0FK9B0vtQZprS3Bam094jcEYgjEsFmNEIlFJ2Zii0tCHxQXEAuXHwu20U7p5MVU7f0QfEk7asKlEZPX0t1nthuJ2UbNlOZUbvkG6XSR0HU5Kj0vQGgJPMJ8uiuLGai7HWn+QlroSmmpKsDZVg/d5GxIaRq9evcjv34+8vDxyc3PJyckhJSVFnfftzFDFmkr7IISwAHvwiAWrEGIc8FegtD3FWnshPD/7hJRS6Yj8jyqrmOOLtWOlv8GZibWRwEPHqm8hhE5K6To9y8/KphM2PCkl9fX17N69m8LCQrZv387q1atZu3YtTqcTnd5AZEo34rL6EJLYzafrM0opsdQeoL54E43lO7FZag8/hEBgikwkPCmXuOwCgqN8N1ea2+XA0dqI296KorhAKmh0QWgNJvRBIeiCzh1vY0P5TopXz8fRYiY2bwjJAy9HG+T7JcF8gbO1ifLVX1C/ay06YxipfccTl50fsCL6TFFcTlobKrA3VWBrqKCp5iCt5nLcLsfhc4KMRjp16kzXLl1IT08jNTWVlJQUUlJSSE1NJT4+nuDgYNUr90vO+wpRxZqP8Iq1F4ANUsr5Qoi3gO3AcCnlBCHEAOB5wARYgRullLuEEFrgKeBSPA/4V6WUL3qFzJvAREAPXCml3CmEmI1H4NzlFRBNQD6QCPzmkJgQQvwauAoIAhZIKR/zep6+ApYCg4FPgUgp5f3ea24GukkpHzjq3l4BCry2z5dSPuZNP56NMcB7QBywBrgM6H8mYk0I0R94DggFaoHZUsoKIURn4B/eMtzAlcC7QDegyGuXGbgcMAIhwBxvvj1OUO9/8N6PCVgJ3CqllKcr1gZfNks6HTacDhtOuw2X047TbsPa0kRLcz2tzQ2HOzEDaLR6gqOSCUvIJjw+m9CETmh1vu/43lS5l9LNi7HUFCG0OsJScgmOTUEfGgmA09KApaqYlor9SMVNWGJn0vpcTmhsus9tPRdx2iyUrF9EXdF6giLjSR9xJaHJnfxtlk9oqS6h9KcFtFYfICQmjYz8KYTGZfjbrA5FSgVnaxO25hrP1lSLrakaW3MtjtZGlDZC7hAajRaDKZQgUwjG4FCCTKHo9UFodXp0egNavQGdznD4vUarRQiNZ9N49hqNBoRAcyhNo/EKwONrnjMRiCe+5gTHTrOoxe88fd6LtcCYWvrC4X3gD0KIz4FewOvAcO+xncAIKaVLCHEx8BdgGnALkAX09R5rO6NprZSynxDiDuAh4KZjlJkEDAO6AouA+UKIsUAOMABPs1gkhBgBlABd8AjFO4QQIcAWIcRvpJRO4Ebg1mOU8T9SynqvwPlOCNFLSrnlBDY+BvwkpXxCCHG59x6Px1IhxKEw6JtSyr8fOiCE0AMvApOllDVCiKuBP+MRXe8CT0opFwghjIAG+C1tPGteYTsY6OW1P7NNucer95eklE94r38bmAB8dgL7j8nPX78LgEZnQKsLQqMzoNEZ0BtDCYrKICy5J/rgcIJCojFFJhIUEu3XDu9tRYQ+JJLUoVOIzs0/rrfHZWuhbudqqjcvo3Dx/xLbqYD0/pPRGc5P79DZIqWkrmgDJesX4nbaSOx3CQl9x/h1cltfExKfTu6UuzHv3kD56s8p/PoFYrL6k9b3cr+vN9pRCKHBEBKJISSS8MQjVxWRUuJ22nC0NuJsbcTR2oDT3oLb0YrLbsXlaMXqsNJsqUZxOVDczsObdLuQivs4pZ5/DBRJl6x++4Fv/G1HR6KKNR8ipdziFQQzgS+POhwBvCmEyMHjyTkU17oY+MehEJ2Usr7NNZ949+uBqccp9lNvKLNQCHFoZtGx3m2j930oHvFWAhyQUv7sLatFCPE9MEEIsQPQSym3HqOMq4QQt+D5PCUBecAhsXYsG0ccei2l/EIIYT6O7QCjThDq7QL0AL7x/oLTAhVCiDAgRUq5wFuGDY77K++bo+r0EMer91FCiN8AwUA0Hu/oaYu1txauYPW2UoKCDBiD9ISY9ISYgggPMWI0BFaz3LF1Ay88+ReaGhtI6j+W+L5j0OhOHHbVGUNI6DOa2LwhVG38lqpNy7DV7eee3/yJHn0KfGT5uUFVRSmvv/RX9m9cTVhiJukXXY0hyveTAAcCQmiI7pJPRHZPqjd+R9WmpTSVbWfy1TcyYdosDIbAmUYlUHC43LRYHVhtDmwOFzaHE4fTjc3mwGqz4nQ4cLrcOF0uXC43ituNS1FQ3J7XbkVBKm6klEjpEYmH+O9r2eZvG04QmJNnOobqNKN9piA9ZhfH+g4/rwisp8KFwSLgGWAkENMm/Y/AUinlFK+gW+ZNFxy/Sdi9ezfH/1/a27wWbfZ/lVLOa3uit9yWo67/F/AoHs/fv4/OXAiRhcdjViClNHvDgW17CB/PxvaIvwtgu5Ry8FE2nU4v+6Pvt23eR9jo9dC9jCc0e1AIMZcj7/WUuW7SEK6bdCZX+g4pJc8++yx/efS3mCLj6Hn1Q2gjTk9EaA1GkgdOICKzJyVL3+Ovv7uTPzz+Rx77n0cu+H43DoeDZ599lieeeAIpNGRddCURXc6f6VbOBq0+iKQB44nuOpDKnz9j/tuv8NN3n/H0U08yc+YMtNrAn59Nxaes97cBHY36reB7XgeeOIaHKgIo876e3SZ9CXCbd/QoR4VBz5SvgTlCiFBvnilCiGPOMiqlXA2kAdfg6Wd2NOF4BE+j13M37hTKXw5c6y17HHB6E2X9l11AnBBisDcvvRCiu5SyCSgVQlzhTQ8SQgTjGVl6quvFHKveDwmzWm/dnfao0XMFt9vN7bffzq9//Wsis3vR+Yp7T1uotSUkIYPcqfcRkdGdx3//P4yfPA2bzdaOFp9brFy5kv79+/Poo48SmtaVvKt/S2S3wapQO4qg8Bgyxs6m04TbaLIrXHfdLDrlduX9999HUTp87JOKSsCgfjP4GCllqZTyf49x6G/AX4UQK/CE8w7xLzzhyS1CiM14RNPZ2rAE+A+wSgixFZjPiUXMh8AKKeUvwpVSys14wqnb8QjRFadgwuPACCHEBjzh2JITnLtUCLHJu711VNkOPILpKW/dbAKGeA9fB9wjhNiCZyBAIp7QrEsIsVkIcf9JbPxFvUspG4BXga14Bl+sPYV7Peew2+3MmDGDefPmkZw/lrTRsxD6sw8/aQ1GMsfeQFLBOBZ/toB+g4ZhNp8oAn7+YTabuf322xk2bBhFpRV0mXAzaWOuhwBefikQCE/NJXf6A2RefD3VDRZmzpxJ5y7d+PDDD1XRpnJBoI4GVTkp3gERf5dSfudvW84jArLhNTc3c8UVV/D999+TMXwK0d2Hn/yiM6B+z3pKlr5PfEoaq3/8gYyM83u0qNvt5rXXXuPRRx+l3mwmodcIkgouA+2FM4CgvZCKQsP+zVStX4LVXEVGdid+98hvue666wgKUvu0XaCc930qVLGmclyEEJF4ptbYLKW80t/2nGcEXMOrqalh3LhxbNy4kewx1xDWqV+Hltdctoeir/+NKTiYZd99S/9+fTu0PH+xcuVK7r77bjZs2EBkWg7pw6aeVUi5I5CKG2dLEw5LAy5rs3dEoRuNTo/WYEQXHI4xMg6NLnDEpVQUzPs2UbtlGS01pUTFxPLgA/dz5x13EBkZ6W/zVHyLKtZUVFQ6hIBqeCUlJVxyySXsLyqm82WzMaX4Zr1Ga105+798Fel2sOCTT7h83GU+KdcXlJeX8/DDD/POO+8QEhlD8qCJhGT09PvACiklNnMllvK9tNaU0lpbht1cdQpTPQgM4dGEJGYTltKZ8PRu6E3+D99KKWku3U3t1h9oLNmJ0RTMDbNnc989d9O167m17qjKGaOKNRUVlQ4hYBpeYWEhY8eOpabeTM7lN2OI9e1EpA6Lmf1f/gtbQzUv/t/L3HnbiabdC3yam5t59tlneeaZZ7DZHST2GUVc39EIP4Y8XXYrTQe203RwJ82le3B5l+bSBodiik/FGJeMISIGfVgkutBwNDo9QqtFcTpR7FaczY3Y66uw1ZTTUroft60FNBrC07oSnVtAZFYPhMb/IzRba8uo2/oDdXs2IhU3g4cN56H772PSpEnodOrkB+cxqlhTUVHpEAKi4a1atYoJEyZgdSrkTLjVb+E5t91K8Tdv0lS6mwd+8wjPPPlnv3ugTheHw8Grr77KE088QXV1NbE5fUkZPAFN8JkOdj47XPZWGou20bB/M82lu5GKG21wKKFpOYRm5BKSnoM+POq061lKBVt1OY07N9KwcwMuSyOG8Gjiel1EbNdBJ52Dzxc4rc2Yd66hpnAljmYzsfEJ3HH7bdxy882kpKT42zyV9ufc+rI4A1SxpqLiH/ze8L744guuvPJKtKZwOk+4BeEnUXEIxe2idPlH1O1ay6RpVzH/vXfQ6/3/4D8ZiqIwf/58Hn30Ufbt20dUei6pgyaii/a9KJBSoblsL3U7fqaxaCtScaMPjyIipzfhub0xJaW165qbUlFo3redmrVLsVYUow+LInnA5UR17hMQa3tKRaGppJD6HatoOLADodEwctQY7rjtFiZOnKgOSDh/UMWaiopKh+DXhvfWW28xZ84cQuNT6TTuJqQhxJ/mHEZKSeX6JVSu+5ruffrzzZefkZTku8XgTwe3280HH3zAn//8ZwoLCwmPTyVl8ASCEnN87hV0WS3U7viZuh0/42iuRxtkIjIvn4hu/TElpvnEHsuB3VT+8Bm2mjKC49NJG3ElwbGB48WyN9bSsGcdtTvX4LA0EB4RyfXXX8fNN91Er169/G2eytmhijUVFZUOwS8NT1EU/vSnP/HYY48RndGVjEtuAD8sCH8y6ves5+APHxEcEsLCTz5m9OhR/jbpME6nk3fffZe//OUv7Nmzh/C4FBL6XewZPODjSW1tDdXUrGHBywAAIABJREFUbFlO3a41SLeLkLQconoOJDynp1/CkVIqNBSup3L5Z7htrST0GU1iv0sCIjR6CKkoNJftpmH3Wur3bUUqLvJ69uL2W25m5syZxMTEnDwTlUBDFWsqKiodgs8bnsViYfbs2Xz88cfEdRtAyvDpCE3gdrq21ldS/M0b2Btruff+B3jyz3/ya9iqpqaGf/7zn7z88suUl5cTnpBGUv5YTKndfB7ys9aVU7HuaxqLtiE0GiLz8onpPxJjbGBMCeKytlC5bBENhWsJioonY8wsQmJT/W3WL3DZWmjYu4G6nWtorS1Dq9Uy5pKxzJl9AxMnTiQ4ONjfJqqcGqpYU1FR6RB82vB27NjB1Vdfzbbt20kfMpmo7sPOiQ78boeNspWfUrdzDenZnfnPW28wdOhQn5UvpWT16tXMmzeP9957D7vdTlRGNxJ7X0RQku/DnbaGairXfY157yY0hiBi+g4nps8wdKGnuoqab2ku3knZ4vdx21pIGjiB+J4jAvZz11pbRtO+jdTuXo+zpRFTcDBTpkxl9g3XM3r0aHU90sAmMD9U7Ygq1lRU/INPGp6Uknnz5vHAAw+AVk/mmGsxJuX4ouh2pbFkB6XLP8JhaeCy8RN4/rln6NKlS4eVV1RUxDvvvMPbb7/Nnj170AcZicrNJ6nXCDRhsR1W7vFwWS1UrF1M7Y6fEVodMf2GE9t/JLrgwOhreCJcrRbKlnxA877thGV0I2PkDPSmwBSX4AmTWir20bRvI3V7N+F22IiOjWPWNTO59tprKSgoCFjBeQFz3v9DVLGmouIfOrzh7dq1i7vuuotvv/2W6Mw8MkbNgCD/T2J6priddmq3LKdy0/coLgeXjL2UXz/4AGPGjEFzln3FFEVh/fr1fPbZZ3z++eds3LgRgMi0XGK75BOS0QON3tget3FaSMVNbeEqKtZ+hdthJ6bPUOIGXowuJHDFzrGQUlK/aQWVPyxCawwm8+IbCEvK8rdZJ0VxOWkqKaRx30bMRduRipv4xCSunD6N6dOmMWzYMHX+tsBAFWsqKiodQoc1vPr6ev72t7/x3HPPodEZSBownsiuAwNiKoX2wGltpm7bT9QUrsJltRAdG8eUyZMZN+4y+vfvT0ZGxgk9H4qiUFpayq5du1i7di0rV65k5cqVmM1mhNAQnpxFREZ3Ijv1QRviv2WLWqoOULL8I2x15YSk55A0agrG2ES/2dMeWKvLOLjoDRzNZlIGTyKux/BzxkvlsrfSdGA7zcXbaTiwA8XtJCIqmilXTGbqlCmMGjWK0NBz98fQOc658SE6C1SxpqLiH9q94ZWXl/Pyyy/zwgsv0NzcTFzXAtKGTAqYaTnaG8XlpKFoKy0l26kvLkRx2gEIDQsnLTWVlJRkQkND0Wq1uFwu6urqqK2to/hAMTar9XA+obHJGOPTiU7LxZicgzbIv/WluBxUrP2a6i3L0IdEkDhyMuG5vc4ZUXMy3DYrpYv/Q/O+7UTm9CV9xFVo9YE3IvlEuJ12mkt2YinZRt3+bShOOzqdjgEDB3H5+HFceuml9OnTR+3n5jvOj8ZxAlSxpgKAEEIC70gpr/O+1wEVwGop5QQhxCQgT0r5ZAfbsQx4SEq57hjpSYANsABzpJS7zrCMuYBFSvnMGVx7H/BPKWXrmZTdhnZpeC0tLSxZsoS3336bRYsW4Xa7icnpS+qAS9GExbdHEecEituFtbYMR305NnMl9uYG7C2N4HaBVECjQRsUjDYoGFN4NCHRiRgi49CGx6MzBo6YtVQWUbL0feyNNUT1HETiiElojb4Pv3Y0UirUrvmeqhVfERSVQNbY2Zgiz83Pq+J20VKxn9aKvTQc2EFrbRkAIaGhDBgwkOHDhjJ48GAGDhxIVJR/J54+j1HFmsqFgRDCAuwBhkgprUKIccBfgVIp5YR2LEfg+dwpxzm+jOOLtYeklOuEELcAE6SUk446RyulPNlq1Gcr1oqBfCll7eleexRn1PBsNhvr169n1apVLFu2jO+++w6bzUZQSBjRuQXEdx+CJjT6LE07NRSXA2tdBfbGGhSnA40hiKDwWIJjUxGqR+G0kIqbirVfU7XxO/RhkaSMvZrQzFx/m9XhWA7s5uAXbyPdLtJHzSQq69yfnNbZ2oylbDe2mhKayvbRWl8B3udsYlIyvXr2pHfvXvTo0YPOnTuTkZFBUlLSWfe7vMBRxZrKhYFXrL0AbJBSzhdCvAVsB4Z7PWuz8YiUu4QQbwBNQD6QCPxGSjnfm8+vgauAIGCBlPIxIUQm8BWwFBgMXAH8FigATMB8KeVj3uuXcXKx1hX4REqZ57X7OeBS4EFgADDHe9m/pJTPe6//H+B64CBQA6yXUj5zVL6xwDopZaYQQgs85c1XAq/i+UJ4BtgF1AIXA69560ECr0sp/36KVS4BXC4XNpsNq9V6eG82m6mpqaG6upqamhrKy8vZvXs3u3fvpri4GEXx6NyQ6HhCU7sS27kX+pgMnwgkKSVNJTuo27mappIdSLfrF+do9AbCM/KI7TaE0ORO5034rqNwWMwUf/sOLZVFRHYfQNKoK9AGnX/etOPhaDJzcNEbWKsOEt9nFMkDxgfEovDthdtho7W6BEd9Gdb6Siw1Zdgaqo9oO3q9gZTUVDIzMkhMTCAuLo7Y2Fji4uKIiYkhLCyMkJCQX2xGoxGdTodOp7vQxd55/yWjDmNRacv7wB+EEJ8DvYDXgeHHOTcJGAZ0BRYB84UQY4EcPIJJAIuEECOAEqALcKOU8g7wiCcpZb1XFH0nhOglpdxyinZOBLZ6X4cA26SUfxBC9AduBAZ6y18thPgB0AAzgL54PvMbgPUnKeMWIAvoK6V0CSGivfY+AIySUtZ6y0uRUvbw3tMp90bXB5lwuxxI5ZgOxiPQ6IMIiogjKDKO+L4XExyXSnBChs+nP7CU76N01UKsNaXogsOI6jmI0LTOBMUmojEE4bbbsNdWYCnZQ+OuTTTs3URIUjYpgyYSkpDRbnZY68qxVBThslnQGUMJTc7GFB2YS1KdjMYDhRz4/j9IxU3quGuJzOvvb5N8jiE8iqwZd1O59FOqNy3FUlVM1pjrMIT6b3BHe6I1GAlLzYXU/3pKpeLG3liLvbkeZ7MZh6WehqZ61u4owrVhKy5bC26H9QS5HgMh0Gi0CI0GodGi8e6FEOD9wSQOaZrD0sabLo6XfkQBtE0MJHWUc9VvjRteud/mbzs6ElWsqRxGSrnF6wWbCXx5ktM/9YYyC4UQh6ZNH+vdNnrfh+IRbyXAASnlz22uv8obztThEX55wMnE2rtCCCtQDNztTXMDH3tfD8PjzWsBEEJ8gkdsarzprd70RScpBzxes39IKV0AUsr6Y5yzH8gWQrwIfAEsOYV8AYjtNgip0aHR6RFaz16j1SG0erRBJnSmUHTGUHSmkMOdrzVC4A8nlctupXTVZ9QWrkIfHkXK2KuJzMv/hSdPHxqBMSaBiC59SBo5GfP2tdSsWsLuBS8Q33sEqQPHo9EZztiOlqoSSlYsoKWy+BfHQpKzSBs8mdB2FIUdieJ2UfbzF1RtXoYxLpm0CdcTFH1u9tlqDzQ6HcmXTCc4NYvyb+az8+NnyRpzDZHpef42rWPQ6NDFJBISc+ToXgkoiifaJd1uXPYWXLYWFKcdxelAcTlwe/eK04F0u5BSQSpukApSObS5kVIBReFwj5OjomjyUE8M2bb0Y7w/Ikn+4liAcCvwv/42oiNRxZrK0SzCE+obCZxokTx7m9eizf6vUsp5bU/0CsCWNu+zgIeAAiml2RtWPZW4z7VHh0cBW5t+aieSMsf7dnHhEXMcZYM4wTWeDD2298YTKr0TT/h3zomuOUTFpqWncprf2bp1K1OnTqVu/34SBowmdtAliFMYuafRG4jpM5TIvP5U//gF1Zt+QGs+wDdffkH37qf3AJZS8tRTT/HoK88TFB5ByuXTMObkoQ2LwNXciGXHVupXfMfOT/6X3/7+D/xl7mMBHXotKipixowZVG1eQ1y/YcQNnxhQa2f6k8hu/TElpFH6+Vvs/fxV7rrvAf7+9FPqXGYqJ+O8Fmrw34eUisohXgeekFJuPemZv+RrYI4QIhRACJEihDiWuyAcj3hr9Hrlxp2xtUeyHLhCCBEshAgBpgA/etOnCCFMQogwPGHUQxQDh2JP09ukLwFu846KRQhxqNd+MxDmTYsFNFLKj4HfA/3a6T4Cgvfee4+BAwdSWl1L7sy7iRs+4ZSEWlu0BiNJY6aROf02amrr6Nu/P+++/8EpXy+l5Pbbb+eRRx4homdf0m9/mND8oegiohAaDfqIKKIGjSDzrkcIz+vDk088zuSZ1x7u1xdofPLJJ/Tt25dNW7bRacqNJIyaqgq1owiKjidr5j1E9xrMS88/R98BgygqKvK3WSoqfkUVaypHIKUslVKe0a8UKeUS4D/AKiHEVmA+XmFz1Hmb8YRKt+MRhyvO3OIj8t0AvAGsAVbjGWCw0Zv+AbAJT8j0xzaXPQPcLoRYCbRdR+hfeMK3W4QQm4FrvOn/BL4SQiwFUoBlQohN3nIfaY/7CASefvpprrnmGgxxKXSedT/6xLMLL4Zm5NJp1v3ooxOYNXMGDz7yP5xscJOUkgceeIB58+YRP+Ji4q+4FnGchdy1QUYSp80ietgYPvvgPabMuv6k+fsSm83G3XffzbRp01BCosi54UFM2T39bVbAotEbSL7kSlLHX8uOwu10zevO/738SkD9T1VUfIk6GlRFxT8EZMNTFIWHH36YZ555huhu/UgaOwPRjiEoxeWkfMkHNOzYwLRrruODt/593IlDn3/+ee6//35iB19E9CWTTim0KaWk5tvPMa9cyoN/eJxnHv9Du9l+puzZs4cZM2awYcMGEgpGEjN0PBqtGtY7VRxNZiqWvE/zgT0MGzWaD955m+TkZH+bpRJYBG6/h3ZCFWsqKv4h4Bqe0+nkpptu4q233iKu33DiL5qM6IDpAKRUqPrxS2rXfs/gUWP47ovPMJlMR5yzfPlyRo8eTWhudxKuvP60lsqSUqH8wzew7NrOfz5ewMwpk9v7Fk6Zd999l9tuuw2nhLTLZmLM7OY3W85lpFQ8a4su/xyj0chTTz7JHbfdqq4QoHIIVaypqKh0CAHV8FpbW7nqqqv44osvSBo2jugBF3d4J/26DT9SsfRTOnfvyc8/fE9MjGc8S11dHT169KBZgZQ59yDOYM4xxWHnwL+eB7uNol07SU707ZqaFouFu+++mzfeeIOI9M6kXT4LgsN9asP5iL2+morv5mMp2Uu3nr146/XXyM/P97dZKv7nvBdrap81FZULnPr6ei655BK+/PJL0i+9ipiBl/hkNGVMv+GkTbyefTsL6da7L/v37wfgzjvvpKa2lpTpN5yRUAPQGIJImjoLZ4uFMVOm+7Sv0+bNm8nPz+fNN98kaehlpE67VRVq7URQdDwZ028ndfy17N1fTMGAAcyafSPl5eX+Nk1FpUPRzp071982qKhciMz1twEAZWVljBkzhs1btpI56XpCu/p2UlZjTCIhqZ2o3LiSf/7rNZAKL77wAgmjxmHsdnYd8HWh4QidgZLl3+I0hTBm2NB2svrYuFyuwwMzLHYn2VN/RWi3/NMK4aqcHCEExrhkonoORLhd/Pz1Z7z44kvUNzQwoCD/FyF1lQuCx/1tQEejhkFVVPyD3xvejh07uPTSS6mqrSNr8hz0Kdl+s8VeV0Xx/Hk4LQ2EpKSTMufudllySEqFg2++gqO6nN07d5GdntYO1v6SnTt3Mnv2bFavXk101z4kXzwdgoI7pCyVI3E01FH789fUb1+PKSSEO++4gwfuv4+kpHNzVQuVM0INg6qoqJx/rFy5kqFDh1Lb2Eznq+/0q1ADCIpJICS9MwhBzGVT221tSCE0JEyYjuJwMPn62e2SZ1scDgd/+9vf6NOnD5u3FZI96QaSxl+nCjUfYoiMIfmya+h8/YMYUzvxzNNPk56ewawbbmDr1jOZLlJFJfBQPWsqKv7Bbw1v4cKFzJgxA31YJBnTboWQCH+ZchhrdRn73nmOyIKhJIyb2u751y5bTN0PS/jHu+9x6zUz2iXP7777jrvuuoudO3cSlduLlIungym0XfI+13A7bLhtnrUsNVod2uAQv4V/7eYaGjYup3brGqTLSY/efbjztluZOXMmERH+/6yrdAjnvWdNFWsqKv7B5w1PSslf/vIXfv/73xOWkknGFTchg/zfv0dKSdEHL2E3V5N15yNog9vfK6W4nBT/4xl0QPWBIkJDQs44r3379vHoo4/y4YcfEhoTT9KoKQRldGk/YwMcxenAUrwTS8lerFUl2OuqUBz2I0/SaNCHRWFKSCU4OZOwrG4+X/vUZW2hacd6zNvWYK0pR28wMHrMxcy46komTpx4ePSxynmBKtZUVFQ6BJ82PIvFwpw5c/joo4+I7VFA4pjpECDLHDXsWE/pl++SMOEqIvsP6rByWov2cPCtV5h0400sfP3V076+rKyMP/7xj7z22msgNMQNHENM/ii4ACa4lVLSUrKH+s0raS7agXQ5EXoDxqRUghKT0YVFog0ORiBQnA5czU046muxVxzE2VAPgCE6nshu/YnqMRB9qO9Gx0opsVWV0rxrA+bdW3A2mdFotRQMGMj4yy5l9OjRDBgwAIPB4DObVNodVaypqKh0CD5reGvXruXaa69l7759pFw0iYi+wwNmoXO3w8ae159EFxFB+k33dnjorPyTd7AUbmH1+vUU9O51StcUFhby97//nbfffhuX2010r8EkDLrkggh5SsVNQ+F6atZ8j8NcjTY4lLDufQjt2pPgjGzEKUxK62w0Y9m5jeYdW7Ae2AcaDeGdexJbMIrgxHQf3MV/kVJiqy6lZd92mop20FpVClISZDQxaPAghgwaRH5+PgUFBaSmpgZMO1E5Kef9P0oVayoq/qHDG57dbuepp57ij3/8I0FhEaSOvwZ9YlZHF3taVC7/jNq1S0mfcy+mtLNbf/RUcFmaKHrpSdK7dWf/hrXHfRjb7XY+//xz/vWvf7F48WJ0egOR3QtIGDQGERLZ4Xb6Gykljbs2Ub1yMQ5zDUGJqUQNGkFY9z5ozmL5MUddDQ3rV9G4cTWKzUpIZhfiB15CSKp/Bri4ba20HNyHvWwfTaX7sdWUIxUFgOiYWPr27UPPHj3o1q0beXl55OXlER0d7RdbVU6IKtZUVFQ6hA5teN988w133XUXu3fvJiavP0kXTwP9mU0w21HY66vZ++bThPXsR9IVM31Wrnn1cqoXf8qz817lgVtuOpxutVr54YcfWLBgAR9++CENDQ2YwiOJ6j2U6F6DwHjm/dzOJWw15ZR/9zGtZUUY4pOIHXkZoV17tKuXSbHbMK9difnnZbhbLIRmdSVx+ASMcf5d81NxObHVlOOsKcNadZCWqnLs9VUoTsfhc2Ji4+jarStdc3PJycmhc+fOh7eQs+gLqXJWqGJNRUWlQ+iQhvfTTz8xd+5cvvvuO0JjE0gePRVDWk5HFHVWSCk58MmrtFYUk3XnI+jCwnxXtuLmwKvPI2ytfPj2WxRu387y5ctZunQpVqsVnSGI8M49iOs1EF1SdoesjxqIuO02qld+Rd3GFWhNJuLGTCC8b0GHhqYVp4OGNSuo++lbFJuNiLz+JAy9DEN44HivpFRwNjVgr6vE3ViLvbaS1roq7OZaXK3NR5wbF59ATm4OXXNz6dy58xFiLjT0/A+b+xFVrHVYwUJI4B0p5XXe9zqgAlgtpZwghJgE5Ekpn2yn8t4APpdSzhdCLAMeklKua4+8OwohxFzgMSBHSrnXm3Y/8BxQ0N72CyHuAW4HNkgprz3Na+8D/imlbG1Pm9rkb5FSHvPbTggxBfgE6Cal3HmccyKBa6SUL3vfJwMvSCmnn6DMZXTc56TdGp7VauWjjz5i3rx5rFy5ElN4JDH5I4noORgRIIMIjqZp7zZKFr5O3NjJRA++yOflWw8WU/L6CxjiEnHUVBIck0BIRi7ROT3QJmSg0V9Ync1bDu6ldPF7OJsaiMwfTOyocWiDfeclcltbqf/pO8yrfwQk0X2GETfwYnSmwPZUue02HA21OBtqUZrN2M3VtNbX4DDX4mxpOuLc2Lh4cnJy6JKbQ05ODp06dSI7O5vs7Gyio6PV/nFnx3lfef4cxtQC9BBCmKSUVuASoOzQQSnlImCRv4wLILYCM4A/ed9PBwo7qKw7gHFSyqIzuPY+4B3glMWaEEInpXSdQVlHMxP4CU89zT1GOVogEs/9vQwgpSzHU5fnJNXV1SxZsoRFixaxePFimpubCY1LJG3MVMJ7DEDoAldsKC4nFcsWYohNIGrAML/YYErLJKLPABq3rCNz5t2EJgdWXz5fobhcVK/4itp1y9BHx5A+525MaZk+t0NrCibukolEDhhG7bKvqVu/HPO21cTmjyKm33C0hsAK4R9CG2TElJCKKSH1F8fcDhuOhjqvkKvHbq5la0kl67ZsxWk5UsiFhoaRmZ1FbufOhwXcoS0jI0MdqariV7EG8BVwOTAfzwP3PWA4gBBiNpAvpbxLCHElHg+TG2iUUo7wPoCfAi7F46V4VUr5ohCiPx7PUyhQC8yWUlYczwAhxCtAAWAC5kspH/OmFwNvAhMBPXCllHKnECIEeBHoiaf+5kopFwohjMArQD7gAh6QUi5tex/efD8HngF+BF7zni+B16WUfz+GiZ8Ck4E/CSGygUbAeRb2zwUsUspnvOdtAyYAvwWygUVCiNeBFcDz3nytwI1Syl3Hqnc8v2qSgaVCiFop5ai2njAhxPT/Z++846Oq0v//PjOTSe+dANKbdBApShEBQaWrlBWwY2F1lXVX3f2tZfl+7bt+dXXXBvayFkCpgvRO6F16CSSkTSZtyr3P74+5YAyBBMkwSbzvV+Y1M+fee85zb+bM/czzPOcc4CYRmWR4OHOBTsAmpdSbwL+ARHxC7x7DzsbAp8Y1nn+B/18E0Avoh0/cP22U98X3mTkJdAS2AU2VUluAH4w2vxeRtuf7LJVrZyC+9eeCgQPG9ShUSj0PDMX3P18oIlPPZ+vFIiIUFRVx+PBh9u3bx759+9ixYwdr1qw5u+h5SFQM4Y3b0qptV6wpjWrFr/PsjUvxOHKo/7vJVRpN6C8Srr8J557tZK2aS/joB2rFtatOSk9ncGzuJ7iyTxLdpSdJA27GEhwcUJuComNJHTaGuB59yP5xHlmr5pGzeQWJ3foT16EnlhrqKa4Iqz2E0KQ0QpPSztmme1y4Hbl48nOQwnzcjhyO5p1m/7JVuGfPRvf+/BvWYrGQkJhEar1UGtavT2pqKvXq1Tv7HB8fT2xsLDExMcTGxhIc4P+hiX8ItFj7HPh/hoBpD7yPIdbK8f+AQSJywghnAdwLNAY6iYhXKRWnlArCJ6SGichppdRtwDTgzgvY8JSI5Bo37MVKqfYiss3Yli0inZVSDwBTgbuBp4AfReROw5b1SqlFwGQAEWmnlGoFLFRKtbhAux2BNBFpC2fDdBVRABxTSrXFJ9q+AO64BPsrREQmK6VuAPqJSLZSKgrobVzb64H/AUZRwXU32n/0zLEXOOcztACuFxFNKbUYmCwiPymlrsbn+boOeA14S0Q+VEo9eIG6hgPzRWSfUipXKdVZRDYZ27oBbUXkkFKqkfG6I4Dx/gznnFPZBpRSCcBfDJuLlFJ/Ah5VSr0BjABaiYhc4H94Dh2HjMbrdqN5zjw8eD1uvG4XriInJU4HrsICNI/nF8cFRUQTmtKQlN43E16/CSEpDWrVQuFuRy6n1y0ionV7wpteqHv4H1t4BIn9byRzzlfk791E7GVexD5QiK6Tnb6UrFXzsISEkTbmbiJatgm0Wb8gOCmVtDF3UnL8CNmL53Jq6Syy05eR1GMgMW26Yqnlc9tZgoIJSUglJOHc9UtFdLxFTp9XzpGD25GDx+ngQL6DvcfT8RYV4C0uPG/d1iA79rBw7KFh2OzBWIPs2ILsWIPsWO0/v7bYbFiUBWUp8yj3/sx2KvghU9mPm3O3qwu+rdIx52HN5xc/b2JtI6CfeBHZZtw0xwJzL7DrKmCGUupLfLlJANcD/z4TRjMEQ1ugLfCD8U+34vOsXIhblVL34rsWqUAbfF4YyrSVDpxZA2cgMFQpdcaDEgI0BK7BJxQxPENH8ImS83EQaKKUeh2YAyy8wL6f4wvxDQL680uxdrH2V5Vo4AOlVHN83qYzP2nPue4XWS/Afw2hFgH0BP5bppOe+VnYC584BPgIn+erIsbi8wCC7zqNBc6ItfVVDOlWdk7d8V3XVYaddmANPiFdCryrlJoDfF+FtgDYOu9rlC0Iiy3IeLadfW8NDcee2pjQ0AhsYREERUYTHJeEPSYRa3AIllrsATq1dBYoRdLAYYE2BYDozt1xbF7HqWWziW7SBlsdX9PT7cjl2LxPKDp+kIhW7Ui+8RZsNTjxPbT+FTSYeD9FB/eRvXguGQu/JGvNQhK69Ca+fY8aGx69JJQVa2QMwZEx0KDpOZtFBE3z4i1y4i0qQCstRistQXOVoJUWo7tKzr53eT2I24NeXIJ4Pehez8/PmgaiI6KDLr7nWjrgsF39NqO2v/yHrwNthz+pCT9PZuMLC/YFKlz/w/D6XI0vZLpFKdURn+Qu/8lSwE4R6VGVho1Q21R8yfp5RoiubO8/s4aKxs/XSgGjRGRvubrOdwf1AmVdHyHGOeUppTrgE2APArdyfg/gd8BLwEYRKTjT1K+0v0J7KuA5YImIjDAE9dIzp0rVkuPL7lO+jSLj2QLkn/F2VVLHOSil4vF54doaA1asgCilHi/XTmVUdk4K+EFEzplfQinVDZ+AHgM8ZNhTKQu27GX9geMEWS3YbVaCbTZC7DbCg+2Eh9ix1cERiBtXreCv+7eT3P9GgmJiA20OAMpiIfnG0Rx595+9p662AAAgAElEQVREHUrnb8/9T6BN8gsiwqLvZvLWm6/i0TXqjxhHWLsutSb0G96kBWGNm1O0fw/5q5dwauls8jf8yE23jmPobeNITE4JtIk1FhFweb2Uur24vF7cXg2314tH0/FqOl5Nw6sLuu57r+kamteLV9PQNB1d0xARBEEE43WZyo3nsl+gUv7rtPzbCkWh/EIrVnXwo91mZfmhrK1V2rkWUxPE2vv48tC2G3lG56CUaioi64B1SqmbgQb4PFGTlVJLy4Su9gKJSqkeIrLGCIu2EJGd52k7Ct8N3aGUSgYG87MoOR8LgClKqSlG6KuTiGwGlgPjgR+N8GdDw54o4AHli1Wl4QvNnQmtuUXka6XUAWDG+RoUkRIj9LavGuw/jC9HDaVUZ3zhv4qI5ucBH5PKlJ9z3Q1PlBOIxJcnCJCplGqN7xqMMLaXP68CpdQhpdQtIvJfQ/C2F5Gt+LypY/ANWjjfyNTRwIcict+ZAqXUMnxezvKcsa8izndOZ1gL/Esp1UxE9iulwoD6QAYQJiJzlVJrgf3nqf8cBnZowcAOgQ0DXk5cLhdTbrmJ8KQUortf/tGfFyKkXgOiO/dg7ZxvCX/qca7tfnWgTapWsrOzue+++/jmm2+IbNSMhiPGQVTtm9hXKUVE89ZENG9NyfEjONYu46sZ7/D1B+8yYNANPDLlIQYOHIg1gHmQJgGjyt+9tZWA/3wXkeMi8lolu72klNpuJMMvB7YC7wJHgW1Kqa34pmVw47uBv2CUbcEXZjtf21uBzcBOfKJxVRVMfg5fSHCbYc9zRvmbgFUptR1fXtkkEXEZdR7CN6rzZX4O0aUBS42E9xnAExdqVEQ+L5OLdSn2fw3EGe3ez7kC8AwvAv+rlFqFz2N1hnOuu1H+NjBPKbXEeP9nfGHBH7lwKHo8cJdR1058eXkADwMPKqU24BOOFTEW+LaC8xtXfkcRycEXxtyhlHqp3ObzndOZY0/jE6yfKaW24RNvrfCJv++NsmXAHy5wnr9pXnjhBfbv30/y4JGoS5gB318k9h+MNTSM2yZOQjdmsK8LzJ07l7Zt2zJr9mxSBw0j9fbJtVKolSe0/hWkjJ5A4ylPktDrOn5csYIhQ4aQ1vAKnn76mbMDcExM6grmpLgmJoHhN9Pxdu7cSadOnYho1Y6kkb8LtDnnxbFlA6dmfcZDT/6F16c9V/kBNRin08ljjz3GO++8Q0RqGvVG/g6VkBxos/yGaF7f+qOb1+I8+BOI0KXb1dxz5x3ceuutxMbWjLC7id+oHfH8S8AUayYmgeE30fE0TaNnz55s272HRg/8CQkJDbRJ50VEyPjifYoO7GXl6jX0vKproE36VaxYsYKJEydy+PBhEq65jtjeg2qkN9NfeBx5FO7YjGPrRlynT2ELCmLQ4MHcfccdDBkyxJyzrG5iijUTExO/8JvoeK+88gpTp06l4S0TCW3TIdDmVIq3yMmRt14iKi6e43t3Expac8VleVwuF3/96195+eWXCYtPJHX4OKxpDQNtVsAQEVynTlC0fRP52zbiLSokMiaG340fzz133UWnTp0CbaJJ9WGKNRMTE79Q5zvetm3b6NatG6FNWpB0y6RaM/KwcN8uTnz2LoNuuY35X34eaHOqxJo1a7jnnnvYuXMn8V17kTDwJggyJ0c9g+gaRQf2UbR9I45d2xBNo1nr1jxw7738bvx4EhMTA22iyaVRO75cLgFTrJmYBIY63fGKi4vp2rUrhzNOcsV9U5HQ2jV/WdaCWeStXca0f7zGk4/8PtDmnBeHw8GTTz7JW2+9RWhsHCk33kJQk3NHGYuu48nPxZ2dhTvnNFphAVqJb34u8I20VDYb1rAIrGHhBEXHYk9Mxp6QVOfWSdVKinDu2IJz6waKTxzFarMx4IYb+P0DDzBo0CAsdXDanN8AplgzMTHxC3W6491zzz289957NJn4ALYrzp3Ys6Yjusbxj9+m5NghFi5azPV9egfapF8gIsyaNYsHH3yQkydPEt+9N/H9bjjrTRMRXJkZFP20m5KjByk5dhjdVfpzBVYr1rBwLKGhvtnpRRCPB62oEHG7f9FWUHwioQ0aEdqgMWGNmmGPS7icp+pXXFknKdy6kfytG/AWFZLaoCGPTHmIu++6i7i4uMorMKkpmGLNxMTEL9TZjvfWW2/xwAMPkNR7ALH9BgfanF+Nt7iQo+++hnK7WL9mDR3atQ20SQDs2rWLRx99lAULFhBRrwGpQ2/Fkuxbf7L01AkKtqVTuHsbnnzfVIFBScmENm5CcP0G2JOSCEpKxBIWft6wtO52483NxZ2ZiTsrE9eJ45QePoReXOyrLyGRiOZtiGhxJaENm/iWI6rliObFuXs7zvTVFB4+QJDdzujbbmPqI4/QuXPnQJtnUjmmWDMxMfELdbLjLVmyhAEDBhDZvLUvT62W38jduac5Nv0Ngu12tm3cQJPG55tD2v/k5uby9NNP8+abb2ILDiG+9wAiuvZCdA3nji3kp6+m9MRRsFoJa9ac8LbtCGt9Jbao880FXXVEBE9WFiU/7aNo9y5KDh4ATcMaGUXklR2JbteF4NT6tSYv8UKUZmbg3LiavK0bEY+b9l268KdHH2X06NHmSNKaS+3/4FWCKdZMTAJDnet427Zto2/fvnhDwkibNAWpIze20lMnOP7Bm4SGh7NqyY+0b9fusrbvdDr5v//7P15++WUcBQXEde1BYr/BaMpC/sbV5K5ZhlbkJCgxiairexDZpSvWcP/mCOouF8V791C4eRNFe3aDphGUkEh0x6uJ7tQNW1jNXW+0qmilJRRsWY9j42pcOaeJiU/gwfsn88D991OvXr1Am2fyS0yxZmJi4hfqVMfbvXs3ffr0oUjTaTjpQSSy9s+SX5bSUyc48ek7WDSN72bNYuD1/f3eptPp5K233uLFF18kJyeHmNbtSOo/BImKJW/NMnLXLkMvKSa0eQti+/UnpGnTgHi2tOJiirZtw7lpI6WHD4HVSmSbDsR07Ulog8a13tsmolN8YC8FG1ZR8NNuLBYLw0aM4LFHHqFnz561/vzqCHX+n2CKNROTwFBnOt6WLVsYPHgwjpJSrpj0EBJTNxOzPfm5nPjkHVw5WTz+5FNMe/pv2Pww2eyhQ4d4/fXXee+99ygoKCC6RRuSrhuMSkqlYGs6p3+cg+YsIKx1G2L7DyCkYc2ZS8196hSOtaspTE9Hd5ViT0ohtntvotp1xVIHJuZ1557Gmb6G3E3r0EtLaN22LVP/8AfGjh1bq+bkq4OYYs3ExMQv1ImOt2DBAkaPHo1uD6bBuHshvm7PV6W7Ssma+zWObek0admK6W//h969L32kaGlpKd999x0fffQRc+bMAaWIbtuJhB59sCSnUXzkIFnzv8V16gTBDRoSf9NQQgOYP1cZuttF4eYtOFavwH3yJNaISGKuuobYrj2xhoUH2rxLRne7KNy+ibz1KynNOklkdAz33nM3Dz34II0aNQq0eb9FTLFmYmLiF2p1x/N6vUybNo1nn32W8JQ06o+/Gz3s0hPZawMiQuHubZxeOBuPI49uPXvy56lTGTx4MCEhIVWuJycnhx9++IF58+Yxc+ZMCgoKCI2JJaJ9F+KuuhYiItFKijj9w/c4Nq/DFhNL3OAbiejYsdaE3kSEkp/2kb98GSX79qKC7ER1vIq47n3qxBQgIkLJkQM4N64mf/c2FNCnXz/uvuMOhg8fTnh47RemtYTa0SEuAVOsmZgEhlrb8bZv387999/PqlWriOvUjcTBI36Ts+XrbheO9LXkrV2Kp8BBaFgY113Xn549utOmTRtSUlKIjIxE13UKCwvJyMjgyJEjbNmyhU2bNrFr1y5EBHt4BGHNWxPfqRvW+o1RFgsignP7JrIWzEIrLSamdx9i+w/EElx7B224Tp7EsXwZzi2bQISodp2Jv+Z67AlJgTatWvA48nBuWkf+1g14HHmEhIYybPhwJt5+O9dddx3Bwb+9PnIZMcWaiYmJX6h1He/YsWM8//zz/Pvf/yYoNIzkwSMIvdJcX1F0jeJD+ynZsx3noZ9w55y+4P4h0TEEpaQRnnYFEc1aYUmu94spTjyOPE7N/oLig/sIbtCQxFG3EFyHRh96HQ7yly2lYN0axOslsm1H4q8dQHBiSqBNqxZEdEqOHqJ4x2bydmxGLy0hNCyMAQMGMmL4MIYMGUJSUt0QqDUIU6wFGqWUBmwHbMBuYKKIFFdDvYUictHjy5VSM4A+gAPQgQdFZM0l2tIVmCAiflnXRinVHXgNCDYeX4jI00qpvoBbRFb7o11/YvwfvheRryoovxVIFhGnUfYa8HsgUUSyL1DnkyLyP1Vo+zDQ9UJ1VYGa3fEMNE1j6dKlzJgxg88//xxd14nt2pPEfoOREDOhuiK00hI8eTnohQUorxdltaCsQRAegTUq+rzTWogIBdvSyZr3DSJC/OAhRPXoWevnqjsf3kInjmXLcKxZhXg8RLRuT3zvAYQk1x1hqns9FB/8idL9u3Hs3YG3wAFA0xYt6d+3D3369OGaa66hQYMGtSa0XUOp8xevNoi1s6JKKfUJkC4ir15CfVYR0S5RrH0vIl8ppQYCL4tI+4ra+LU2VjdKqb3ArSKyVSllBVqKyC6l1NNAoYi8HFgLL55KxFpn4EUR+VgpZQG2AHFAx0rEWpU+E3VZrOm6zqFDh1i9ejVLly5l7ty5nDp1iqCQUKI6dSOhR1+IjD67v4iOaBoWW1DgjK4DeIsKyZzzXwp3byekUWOSbh1LUEJ8oM26LGhFheSvWIFj1QrE5SLiyg4k9huMPb5ueZ9EBNepE5Qe3EfJ0YMUHjl4dgmwqJgYOrRvT+dOnWjXrh1NmzalcePGpKWl+WXEcR3EFGuBppxYmwy0B/4IvA60w+dxe1pEZimlGgEfAWeyOh8SkdWGB+lvwEl8N+w2Z+pVSqUCXwBRRl33i8iKC9gzg5/FWgiQKyJhxg38fWAg8AaQCzyDz5N1ALhDRAqVUlfh83KFAy6gP9AFmCoiNyml4ox6mgDFwL0isq28sFJK7QBuAk4DXwL1ASvwnIh8Uc7mPHwCLatMWSNgLaAZdUwBjhptJxpld4jIUeOcC4CuQArw+BmRpJT6Iz5PVjDwrYj8TSkVXgWb7gHuBezAfuB2ESk+X1vK97PzdeA64BC+zvn+ecTaXqCniNyslLoOuAUYjCGwlFK/w+dpswPrgAeAafg+V9uBnSIyXik1E2gAhACvicjbRhuHDftKKjvPC1BpxxORannouk5JSQlFRUW/eOTl5XHy5Mmzj71797Jr925KjGWF7OERhDRqRnz7LtgaN8cSZEcrKca5aytFP+2iNOM4XqfPU6CCgrAnphDWsAmRbTsRUs/0FFSVwr07OPXdl2ilJcQNGkxM7z511pt2IbTiYhzLl5G/cjni9RLV8SoSeg8kKDo20Kb5BdF1XJkZuE8cxZN1kqKTx3FlnkT3/Lw2q9Vmo169NNLS0khJTiIxMZGEhAQSExOJiYkhPDz87CMsLIzw8HBCQ0Ox2WxYrVZsNts5D6vVitVqrWv9s06dTEXUGsmulLLhu+HOB54CfhSRO5VSMcB6pdQiIAsYICKlSqnmwGf4bqoA3YC2InKoXNXjgAUiMs3wOl3M1N8347u5n6FURK5RSiUA3wDXi0iRUupPwKNKqefxCcPbRGSDUioK3w2/LM8Am0VkuCE0PgQ6XsCGG4AMEbkRQCkVXcE+/wD2KqWW4rt+H4jIYaXUv/mlAPwO+FBEPlBK3Qn8HzDcqCMVuAZoBcwGzngWm+O7tgqYrZTqjU/sVWbTNyLyjrH978Bd+MRYhW0BI4CW+AR6MrALn7CsiJ+AYUqpWGAs8DG+zw5KqdbAbUAvEfEopd4ExovIn5VSD4lI2Wt9p4jkKqVCgQ1Kqa9FJKfM9qpc+wqxBtnx/VASQ7YJZ384XeYfUMoWhC0ikqC4BELadSUqKYWQtIYEJ6Xgc0yC1+ng9KI5ODb58oxscfGENGtKUFw8ymZDKyrClXGC/I2ryFu7jOCUesT3HUREi7Z17aZQbWiuUk7Pn4ljy3rsqfVIvWcywfVSA21WwLCGhRF3w2Ciel1D/o+LcaxdjXNbOjFX9SLumv51YlWEsiiLhZDU+oSk1gcgHp+n2pOfhycvB09+Lp68XPLzc8g5mcWmAwfRiovQiotA1/1k1Ll99ef+W2abOufFz4cGoL83f/KFhD1P/+FSIh01ntog1kKVUluM1yuA94DVwFCl1FSjPARoCGQAbyilOuLzGLUoU8/6CoQawAbgfaVUEDBTRLZUsE95XlJK/QWf9+muMuVnvCrdgTbAKuODbgfW4BMbJ0VkA4CIFADlb2bXAKOM7T8qpeIrEQHbgZeVUi/g8/id4xUUkWeNEPJAfOJ0LNC3grp6ACON1x8BL5bZNlNEdGCXUirZKBtoPDYb7yPwibcVldkEtDVEWoxx3IJK2uoNfGaElzOUUj9WfDnO8g0wBrgauK9M+RlP5gbjuofiE/kV8Xul1AjjdQPj3MqKtUqv/flI6tkHt2Z84SoFKONPGd9/5z6f/ZxU8KzK1VO+PhVkxxJkx2K3+17b7VhCQrFFRGEJDkEpRZDVgkX90qMjuk7O+hWc+uF7dK+HyM5diO7RC3v9iteB1EpKKNyyBcfypWR8Pp3wxs2pP3wMwXF1e/61i6Xw0E8c++YTPI48Yvr1J27AQJQZ7gLAFhlJwrDhRPfuTd7CheStXY5j01oSevYjsdd1WIOrPj1KbSQkMRkSk8uVCroImi5ouo5eWoLuKkV3u9E9LsTtRve40d1uxOsF0RHd9+Dss/Zzmehnqv1FG+XLpIKyn/er4Edl4CJ1w4F3A9X45aA2fDuUlPN2YITERonI3nLlTwOZQAfAApSW2VxUUeUistzwBt0IfKSUeklEPqzEpj+WD7+Va0MBP4jI2HL2tafy8FdFP0sE8OI7pzOEGPbvU0p1AYYA/6uUWigiz55TgcgB4C2l1DvAaaVUVRJiytrqqsBGBfyviPznnJOo3KYZwHAjj24SvxSPFbVV3p7K+BzYhM+LqJcRFsooe+JCBxuh8+uBHkZ4dinGNT9rTBWvfUWcXPbDRZxKYDhx4gRjxoxh+8qVRLZqRfKIUUjshVcnsIaGEt2jB1HdulGwfh258+aw/18v8D/PP88fH3nkN+9lKy0t5S9/+QuvTn+D0MQkGkx5GFW/QaDNqpEExcaRdNsYYvr2JX/hArKWzKdkyzqe/utfefCBB8ypMEzKUqeFGvzy5l+bWABMMUQbSqkz8wdE4/Nc6cDt+PKILohS6gogywjJvYcvOR2l1IdKqW6/0r61QC+lVDOjrjClVAtgD1DPyFtDKRVphHfLshwYb2zvC2QbHrjDZWzrDDQ2XtcDikXkY+DlM/uUO8cb1c93yeb4vI75gBMoO5PpanzeKAwbVlZynguAO5VSZ3IK05RSSVWxyWj3pOHRHF9JO+C7LmOUUlYjz7DfhXYWkaP4wuVvltu0GBitlEoybI4zPgMAHsMe8H2W8gyh1gqft/QXVPE8ayWLFi2iU6dOrEtPJ23seBLvuLtSoVYWZbUS3aMnDR57nJAmTfnTo48ycNhwCgsL/Wh1zWbLli1cddVVvPLKK8T26Enqw4+YQq0K2JNTSLp9ImlTHkZPSOCxRx+lYdOmfPDhh2hajRnHZWLiV2qrWHsOCAK2GYn2zxnlbwITlVJr8YVAK/SmlaMvsEUptRlf+PE1o7w9vgEJF42InAYmAZ8ppbbhE2+tRMSNL1/qdaXUVuAHynlrgKeBrsZxzwMTjfKvgTgjJHw/sM8ob4cvZ28LPnHy9wpMuh1fztoWfOHN8UY48TtghFJqi1LqWnxJ93cYbd8OPFzJeS4EPgXWKKW248sti6yiTX/Fl9z/Az4RWxnf4stF2w68BSyr7AAR+Y/hUSxbtgv4C7DQOM8f8OXIAbyN7zP1Cb7cPpuxz3P4/oflqcp51jpef/11Bg4cSLEtiIZTHiGkU+df7RGzRUeTPOlO4m4YwqLvv6N5u/YcPHiwmi2u2WiaxgsvvEC3bt04cPw4V9x7H7HDR0JQzZngVvd48OTm4M7Kwp2ViVZU+HMOZQ0hpEFDku++j9S776UAxaSJE2nZti1z586tcbaamFQ3NX40aCAwEv/fE5FbAm2LSZ2lxnU8Xdd5/PHHeeWVV4hq147E28aBvfoERfFP+8j65CPsQUEsnDuXa3r2rLa6ayoHDx5k4sSJrFy5kpgOHUkYOQoJvZgxTP7BnZlJ0a6dlB45jOvYMTRnwTn7KJsNe2oqwQ2vIKxFK8KaN68xeXWi6xRu20r+wvm4s7Pp2qMHr7/6Kt27n+MAN/ltUOfzK0yxZmISGGpUxystLWXixIl8+eWXxPW6lpibh/pl+gh3Vian3n8PrdDJ9A8+YMKYMZUfVAsREd5//30eeeQR3LpO4vCRBHcI7JqeWlERBevX4dy0EU9mJgC2pESCGzXAlpSALSYGFWQDAa2wEG9uPu5jx3EfOYa4PVhCQojo3JnoXr2xJ9aMASPi9eJcv47cRQvRCgu54aabePXFF2ndunWgTTO5vJhizcTExC/UmI6Xn5/PsGHDWL58Ock3DSX82t5+FRXeQieZM6ZTeuwof/3733nmiSfq1MCDEydOMHnyZL7//nsim7cg5bax6FFRAbPHk5dH/o+LcW7aiHg8BDdtTFjnDoR1bIsttvLZZsTjpWTPTxRv3ELR5q3g1Qi78kribxiCPblmLBGlu1w4V64gd+mPiMfD+Ntv53+ee44GDcycwN8IdecL5DyYYs3EJDDUiI6XkZHBoEGD2L1nD6ljxhHcvsNlaVf3eMj67BOKdmxn3F138eF//oPVWul4oBqNiPDuu+8ydepUil0u4m8YTHiPXgGb4FYrLCTvx8U41qwCIOLqLkT2vQZ7/V8/l5vmKMC5fA0FS1YiLheR3boRP2gI1oiaMQeaVlhIwdIfyVu1EqvVypSHHuIvTz1FXFzVB8eY1EpMsWZiYuIXAt7x9u7dy6BBgziZlUW9iXdgbdL0srYvuk7OnO9xrFhGr+uvZ8HMmYSHh1d+YA3kwIED3HPPPSxZsoSoFi1JHn0rekxMQGwRXT87bYpeWkp4967EDB6ALaH6VgLQCotwzFuEc9lqLKGhxN88jMhLGIhS3XhycylYtJD89I2ERUTw1BNP8MjDDxMWFvh8QRO/UDM+eH7EFGsmJoEhoB1v/fr1DBkyhCKPl7S77oHUwM2c71i1kuzZM2l65ZWsWrSI5OTyE4LWXFwuF//4xz949tln0ZQi/sabCe16VcBEi+tkBqe//grX0SMEN29K3G0jsNfz3/V0Z5wi5+P/4j58lNDWrUkafRu2yMjKD7xMuE6exLFgHs5dO4lLSmLaM89w1113ERRkrmVbxzDFmomJiV8IWMdbsGABo0aNgrAwUu++96LmT/MXRbt2kvnpx8TExbFy8WLatGkTaJMqZf78+fz+97/np59+Irpde5KGj0QPkFARXSd/2VJyF87HEhpC7MibCb/68ni6RNdxLl1F3sy5WEJDSLptHOEtWvq93Yuh5NBB8ufNofjwYRJTU3nqz3/mnrvvNj1tdQdTrJmYmPiFy97xRIQ33niDP/zhD4Sm1iPlrruR8JqRawRQeuwYmTPew6LrfPbJJ4wcNizQJlXIgQMHeOyxx5g1axbhySkkDhuOtVnzgNnjyc0l64vPKD10kLBO7YkbMxJr5OUPJ7tPnCT7vU/wnMokul8/4gcORtWgPEQRoXjPbgqWLqH40EEiY2N57JFH+P2UKcTG1s3F4n9DmGLNxMTEL1zWjud2u5kyZQpvv/020W3bkThmLGKvecv1eHJzyfpwBqUZJ3jgkT/w2ksvYqshc3udPHmS5557jnfeeQdlsxHbfwCRva6BANrnTN/I6ZnfgFLE3Tr8snnTzofudpP339kUrlpHcJPGpIyfgC0ycCNhz0fJoYM4ly3FuWsnwWFhTJo0iUemTKFVq1aBNs3k12GKNRMTE79w2Tre0aNHGT9+PCtXriSh//VEDRgUsBGKVUH3eMiZPZOCdWtp07kzMz//nObNA+e5On36NP/4xz/45z//icvtJrp7D+KvHxBQr6Tu8ZA961uc69cR3KwJCRPGVOsAgkulaMNmcj7+L5awUJJ/N4HQKxoH2qQKcZ3MwLl8GQVbNiOaRo9rr+Wxhx9m6NChZl5b7cIUayYmJn7hsnS8r7/+mrvvvptil4ukUbdctqk5qgPn5k1kz/wGpWk8/fTT/Gnq1Mt6Az1w4ACvvvoq06dPp7S0lOjOXUgcNDhgozzP4MnJ5tRHH+DOyCDqhv7E3DSwRopv9/EMTr/9Id68fOKHDiW6e68aM1q0PN5CJ0Ub1uNYuwZPXh6xCYlM+N14Jk2cSIcOHWqs3SZnqfP/IFOsmZgEBr92vKysLKZOncpHH31EZKPGJI8dj9TCvByvw0HOzG8o3LmDtEaN+OdLLzFq1Ci/3Ty9Xi/z58/nvffeY/bs2SirlcjOXUjo2w+JT/BLmxdD0c4dZH3xGVgU8RPHEtauZs/UrxUXkzP9M0p27iGiSxcSR96CpQZ7rETXKd69i+L0jTh370I0jaYtW3LXxImMHj06oB5ekwtiijUTExO/4JeO5/F4ePfdd3nqqacocDqJ7Xcd0f36BzSv6lIREYp37yJv3lxcmado3qYNf3r0UcaNG0doaOgl16/rOmvXruXbb7/l008/JSMjg5CoaMK7diWm17VQA6aiEE0jd8E88pcuwd6wPol3344tIfCjeKuC6DqOeYtwzPkBe1oaybdPwB4XeOFbGVpREcXbt1G4eRPFhw4C0LhZM0aPGMHQoUPp0aNHrZ/IuQ5hijUTExO/UK0dz+Px8Nlnn/HMM89w8OBBIpu3IHnkqBrhDaouRNNwblHbwS0AACAASURBVEqnYOVyXCdPEh4ZxdChNzNqxAj69OlDQkLVzlXXdfbv38+KFStYsWIF8+fPJzMzE4vNRniLlsR174G1eYsaM5LR63SS+clHlB48QMQ13YkbPQxlr33iu3j7LrJnfIZSisRbxxLR5spAm1RlPHm5lO7eRfGuXRQd2I9oGuGRkVx77bX079ePPn360KlTpxozGOY3iCnWTGoeSikN2A7YgN3ARBEpVkoVishFZz0rpR4B3haRYuP9XGCciORXp90XYU8j4HsRaVtB+W5gL2AHNgJ3iYjnAnU9DRSKyMvlyvsCU0Xkpuqz/KKolo53+PBhpk+fzttvv82pU6eIaNCQ+BsGY23WvM7m2YgIpQcOULwpnYKdO9BLigFIa9CAjh060KB+fVJTUwkODsZms1FYWEhubi5ZWVns27eP3Xv2UFLsO8YeGUlwk6bEduiItWkzLNXgqatOSo8c5tRHH6CXlBA3bhQRV3cJtEmXhOd0Ntnvfoz72IkaOb1HVdBLSyneuwfPwQMU7v8J9+nTAISGh9OhQweuvuoqOnfuTOfOnWnZsqU5UOHyUDe/7MpgirVaSFlRppT6BEgXkVcvQawdBrqKSHY1m/qrqESsfS8ibZVSVuAH4D0R+eQCdT2NH8SaUsoqItqvOdbgV3U8t9tNeno6ixcv5ttvv2XTpk0opYhs3Ya4ntdgaX55RZqI4MnKpGT/T3iys9GKilBWK7b4BILrpRHavLlfc5RE0yg9chjt+HFKjx2lJCsTvaAAb1HRL/azhYZhCw/DGp9AcFIS4fXSsF7REEt8Yo0UtSJCwdo1ZM+eiS02hsR7J2CvXy/QZlUL4vGQ+9/ZFK5c65veY+zt2KIrX1C+puItKMB16CCeI4cpPnaM0owTiMf3+9FitdKgYUNat2xJy5Ytad68OQ0bNqRevXqkpaWRmJhohlKrh5rXiasZU6zVQsqJtclAexF54Ey5UioCmAXEAkHAX0RkllIqHPgSqA9YgeeAZOBlfN6qbBHpV1a8KaUmAFPxiYttInK7UuoW4G+ABjhEpHc5+87XfiNgHrAS6AmcAIaJSIlSqgvwPlBsbB98IbFmvH8eyBWRF8vZ3BV4WUT6GmKtKZAGNABeFJF3DLH2LJADtASWAw+IiK6UGgg8AwQDB4A7RKTQaON9YCDwBpAETAa8wC4RGVPV/yEXEGu6rpOTk0NmZibHjh1jz5497Nmzh507d5Kenk5paSkAEY2bEH5lW8LbtUdd5sEDuseDc+MGHCuX4zE8CyokGGtEBOL1ouU7fGX2IMLbdyC2dz/sKSmXzT7RNETXQdNQQUG1ynujezxkf/MVzvSNhF7ZivhJY7GG172Z9gvXpZP72dcoezBJY8YS3qJuzHEmuo7n9GncGSeQ7Gxcp7MozcrCk30a3e3+xb5Wq5WEpCSSk5NJjI8nLi6O2NhYYmNjz74ODw8nLCzsgs9BQUE18kfHZaTOn7wp1mohZUSZDfgamC8ib5UrDxORAqVUArAWaA6MBG4QkXuMeqJFxFHes3bmPT4h9w3QyxBBcSKSq5TabtRzQikVUz5ceoH2rwD2G21tUUp9CcwWkY+VUtuAKSKyTCn1EpWINaVUCD7h97CIbKtErI0AugPhwGbgaqAFMB9oAxwxXv8HWGqc82ARKVJK/QkIFpFnjTbeFJEXDXsygMYi4qroOlyIRtdcK5rbhdflRnO58LpceN0uPMXFuAoKfEKjDNbwcIKSkgiu34Cwxk2wX9EoIGswighFO3eQPXsmWn4+9isaENHjKkKvbIU1LubsDUN3uXEdPEzxpm0Urd+EeDxEXHUV8YNvxBYR+IT9moonN4dTH36A+2QG0YOvJ3rI9TVyWo7qwn0yk+x3PsJzKpOonj2JH3IzFrs90Gb5BRFBKyjAW+BAczjQnE40hwNPgfG6pAS9pBi9pAStuBjKfQdUhsVmQ9lsWKw2LDYbVpsVi832i4fVFvTze6sVLAplsaCUQimL77OmFOpsueXsdl+55eeHUVYVKhSS1Xjszm+/qfNizcyGrJ2EKqW2GK9XAO+V266A/1FK9QZ0fF6lZHx5bi8rpV7AJ3pWVNLOdcBXZ0SciOQa5auAGYbY+qaC487XPsAhETljezrQSCkVDcSIyDKj/CNg8Hlsamqce3PDtm2VnAPALBEpAUqUUkuAbkA+sF5EDgIopT4DrgFK8Qm4VcaXhB1YU6auL8q83gZ8opSaCcysgh1nydizGxVkR9mDUEF2LKGhqKgogoKDCYmMxBYZiTUiEmtUFPakJKzhESjAEsBfz1pxEZlffkHRzh0E1UshYeJ9BLdoWuGXqSXYTmjrFoS2bkHMsMEULFxCwY8rKN6xg8QRI4nuVLtzr/xB0d49nPz0YxAhcfIdNX5ajurAnppMyp8fJn/WPAqWrKDkp59IGTOW0IaNAm1a9aMUtpgYgs8zT5/gE3Rnn91un3hze3yvPW7j2ff+F681r8+b7NUQzQuaZrz3omkaXuM9mhdxuXzbNC+IgAgi4hOHIoguZcp10Mu8Nvbz7V+Ro6eCsio6hKrsOKpgv2YvvXrH/j8+Or1qFdROTLFWOykRkY4X2D4eSAS6iIjH8AiFiMg+I9w4BPhfpdRCEXn2AvUoKuh9IjJZKXU1cCOwRSnVUURyKmvf2OYqs58GhJ6vnfNwQEQ6KqVSgaVKqaEiMhtfKPKMCyKk3DHl65YLlCvgBxEZe572yyZD3Qj0BoYCf1VKXSki3qqcRPqOHRzJy8dutRIcZCPUFhRQIVYZ2zel8+QDD1CSmUnCyJsI63dNlUOL1ohwYkfeRESPq8j99CsyP/2E5oUFTHvxZcLCL/8aljUNXdeZ8cYb/Pu9dwitn0bivRMgvvbNifdrsdiDiLtlKGHt25Dz0Zcc/9cbjJg0iYcf/5P5+fADXl1H03W8xkPTdTSRs8+6Luj43usi6CI+jSaCIGUEJcZ73/OZb1MxXpTVVFLFr/dfE+ezoHhx+Yq5v+LQWoUp1uom0UCWIZT64Qs/opSqhy/H62OlVCEwydjfCUQC5QcYLAa+VUr9Q0RyyoRBm4rIOmCdUupmfLlgZcVahe2fDxHJV0o5lFLXiMhKfGLvgojISaXUn4EngNnAYaALvtDoqHK7D1NK/S++MGhf4M/4wqDdlFKN8YVBbwPexhey/ZdSqpmI7FdKhQH1RWRf2QqVUhaggYgsUUqtBMYBEfg8dpXSLiWFdpcxh+tSmD17NvffeiuW6CgaPD4FfmWie1BqMkmPTMYxbxErv/ue23bsYMWChTRr1qyaLa49ZGVlMWHCBBYsWEB0ty7Ejh+F/EZHD4a0bEbqU3/AMXMu37z/PkvmzOHtN97w6yTIJnWDe6++KjPQNvibupsM8dvmE6CrUmojPuGzxyhvB6w3wohPAX83yt8G5hkhwrOIyE5gGrBMKbUVeNXY9JJSartSage+xPytVWz/QtyBTyStAUqqeJ4zgTCl1LX4BgS8ppRagc9jV5b1wBx8Quw5EckwytcAzwM7gEPAtyJyGp+I/czIo1sLVJT5bAU+NvL3NgP/CNRUJ/5kxowZjBw5Emu9FJL/+OuF2hmU1UrMTYNI+v29ZGVm0rZLZxYsXlRN1tYuli1bRseOHVm85EeSx99C9MTbfrNC7QyW0FBix44iZeqDFAdZueWWW+g9YAC7d+8OtGkmJgHFHGBgYhIYanzHe+WVV5g6dSrhbVoSf/ftqJDgaq3fk5VN9r+n4zmdw0v//CePPfRQtdZfU9E0jWnTpvHMM88QmpxE4t2/Q1KTKz/wN4ZoGs6lq3DM+QFxuxk3YQIvTptGvXp1YwoTk2qlzrteTbFmYhIYamzHExGeeOIJXnjhBSK7dCB2whhUkH8yJvTiErLf/4SSXXu586EHeee1/8NSh0c/Hj16lEmTJrFkyRKiu3clbsxIdLt/vWm6y40n4xTuEyfx5uSiFxahl5SeHQloiQjHGh2FLT4Oe/162BLiatQIVK2wCOf8xTiWrSbIZuOhKVN44vHHSUxMDLRpJjUHU6yZmJj4hRrZ8bxeL5MnT+a9994jundPom8d5vcbt2gauf+dReHyNVwzaCDzv/6G8DqWWC4ifPDBBzz88MOUeDzE3zoMe7fO/luQPjePovStlOzYjevA4Z+ngbBYsESEYQkLBdERr4ZeWIy4fp7/S4UEE3xFA0KM0bxBaak1Qrx5snNwfrcA58YtBNnt3HPvvTz5pz+RlpYWaNNMAo8p1kxMTPxCjet4paWljBs3jm+//Zb4GwcSPuT6y5bYLSI4l64i76vZNG7dipU/LKoz4a7MzEzuvfdeZs+eTWTL5iRMuA09tvpn7BcRSnbswblsFaW794EIQQ1SCG3XguBmVxDUIAVbQsw5wktEkBIXnswc3EcycB/JwLXvEJ7jvpxta0wUYV06EN61E/aG9QOe7O85lUXhD0soWLcJq9XK+Ntv58nHH6dly5YBtcskoJhizcTExC/UqI5XUFDA8OHDWbJkCUm3jSC0T8+A2FG8fRfZ739CZFQUSxcspFOnTgGxozrQdZ3p06fz+OOPU1DoJHboEEL79qx2L5VPpO3GMWch7qMnsMZGEXFtV8Kv7UJQUtyvrtebV0Dp9p8oTt9JyfZ9oGnYkhKI6HU1ET2uwhoRWO+nJzuXokVLKVi9HvFq9O7fnz8/9hiDBg2q06F0kwoxxZqJiYlfqDEdLysriyFDhrB5yxaSJ43F3qVDQO1xH8/g9FvToaSUzz/7lFHDRwTUnl/D9u3buf/++1m1ahURLZqSMHY0kpxQ7e14srLJ/fJbSnftw5YYR/TQfoT37ISyVe/yWlphMcUbd1K0ahOufYdRQTbCunYksk8vghvWr9a2Lto2ZyFFK9dSsGw1WoGTBk0a88dH/sCECROIrsVrjppcFKZYMzEx8Qs1ouMdPHiQQYMGcfjYMVLumYC1TYtAmwSA11FA9lvTcR07wRN/+3/8/a//r1Z4S3Jycpg2bRqvv/46trBQYkbciP2qTtXvTdM0HAt+xDH/R5TNSszIAUT2717tIq0i3MdO4fxxLUWrNyOlbkJaNSd60HXnXc3iciFeL8Wbt1O0dBUlh44QFBLM6NG38MB999GrV6+Ah29N/Eqd/+eaYs3EJDAEvOOlp6czZMgQHCUlpDx4JwTYQ1Ie3eUm96MvKNq0jat6X8t3X/6X5OSaOcVFSUkJr732Gs8//zwFTidRvboRN2wIelhotbflOZ1N9ozPcB86Sli39sSOuxFbbFS1t1MZekkpzh/X41ywEs3hxN64IdE3XEdo2zYBF0auI8coXbOBgvWb0EtdXNGsGQ/ddx8TJ040R5HWTUyxZmJi4hcC2vHmzJnDmDFj0ENDSH7obvTE+ECac15EhMKVa8n76jvCIyOY/s67jB45MtBmncXpdPLOO+/wyiuvkJGRQVSHtsSPGIKe5B9BULRhMzmffgUWC/GTRhDevb1f2rkYxO2hcOUmHHOWoWXnEdykITFDBxPSIvArU+guN8WbtlK8egMlBw5hsVrp278/d9x+O8OGDSMyMjLQJppUD6ZYMzEx8QsB6Xi6rjNt2jT+9re/EX5FA5LuvwMtMiIQplwU7oxT5M74DNfxDK4bPJgZ//kPDRo0CJg9GRkZvPnmm/zrX/8iPz+fiFbNib/pBmjS0C/tiaaRP3MuBYuXE9y8EQmTb8OWUPGC4IFCvJpPtM1chJZXQEibFsQMHRzwnLYzuE9mUrouHefGLXhz87CHhHDjTTcyYfzvuOGGGwgJKb+ksEktwhRrJiYmfuGyd7zc3FzuvPNOZs2aRXT3rsSOHYX4abJbfyCahnPxcvLn/IAFuG/yZJ7+618vW1jL6/Uyb9483n33XebMmYOu60R0akf8oP5IA/9NM6IVFZP93seU7vmJyP7diR17EyrI/7lpvxbd7cG5aA0F3y9FLyohrGsHYoffiC2uZixOL7qO69AR3OnbKEjfguYsJDg0lP79+zNi2DBuvPFGUlNTA22mycVhijUTExO/cFk73oIFC7jzzjs5lZlJwqibCenTM+B5Rb8Wb04eznmLKFizAXtwMGPHjeORKVPo2LFjtbdVUlLC4sWL+eabb5g1axa5ubmExEQT2r0LUT2vhoRfPzVGVfCczibrjXfx5uUTd/swIvte5df2qhO9uJSCucspmL8CgKjr+xA18DoswfYAW/YzommU7t2PZ8cenNt24s3NA6Btx44MHjCAPn360KtXL2JiapYX0+QcaueX2UVgijUTk8BwWTpeZmYmTzzxBNOnTye8fj0SJ45F0lIuR9N+x3Mqi6LFyylYvwnxeGjSogW3jRrFkCFD6NKlC6GhF5/cf+rUKbZu3cqaNWtYsmQJa9euxe12ExQeRkjb1sR07YRq1QxlvRyjLk+Q+ca7IDqJD08gpMUVfm/TH3hz8sn7Yh7F67ZhjYkiZtgQwv0wQvZSERE8Gafw7NxD0Y49lB46gmgaSinatGvHtT170rlzZzp16kTbtm3NsGnNwhRrJiYmfsGvHa+wsJA333yTadOmUVRcTHT/3kTeOABstSfsWVW04mJKNmymZMtOin86ALqO1WajVZs2tGrRgsaNGlGvXj3Cw8MJCwtD13WKi4spLi7m9OnTHDt2jGPHjrF7zx5OZ2UBoCwWQhvWx968CVGtW0KzRqjLeO1K9u7n9H9mYAkPJXnqnQTVq/0jGEv3HSbvk+9xHz6BvXED4m4ZTnAj/+T4VQe624P70BG0g0co3ref0iPH0EtdAFhtNpo2b86VrVrRvHlzmjVrRrNmzWjatCn16tXDVgf7WQ3HFGsmJiZ+wS8d7+TJk7zzzju89tpr5ObmEtmuDYm3DkOL92+4rqagFRXjOnAIOXqCkiPHcGfn4M3NQzzeCvdXNiv2mBgssdHYEuMJb1ifoLR6kJrsWz8zABSlbyX7g88ISk4gaeod2OLqzsSuousUrdpM/n8XoDmchPfoSuywIVijav6oTNF1vNm5eI9noGecovR4Bq6sbLzZOYj358+XUor4xETq10+jYf0GpKWlnX2kpqaSkpJCcnIyiYmJWC+Dh/Y3ginWTAKPUkoDtgM2YDcwUUSKL7HOZ4HlIrLoPNsnA8Ui8uElttMI+F5E2v6KYycBC0Uk41JsqC6Mc+kpIp9WQ3XV1vFycnJYsGABn3/+OXPnzkXTNCI7tCV+8PVIQ3ORa9F1pNSF7nYjbjcohbLbsdiDUMHBNSoc51y2itwvZxHc/AoSH56ANSIwgtHf6CUuHLN+pGDhKpTdRsyQAUT26XVZvZfVheg6Wp4Dz+lsyMlDCgrw5Dlw5+XjzXeg5TvQis79urZYLMTGx5OSkkJavXqkJCeTkpJy9pFc5n1sbGytzTG9TNT5i2OKtVqAUqpQRCKM158A6SLyapntVhHRAmbgBbhEsbYUmCoiGyvYdtnPWSnV17Dnpmqo7ld1PE3TOHz4MOnp6WzYsIFVq1axbt06dF0nODaGsKs7E92jG+LHedO8+Q6KN26hdN8B3Bkn0YuKUVYr1thoghtfQWibloS2a3NZ8rrqCiKC4/sFOOYtJrRTaxLuH4slOCjQZvkdz8nT5H7yPaXb92FLSSRu9DBC29S9Bdl1twfN4UArKESchajCIvQCJ15HAe6CAryOAvSCQrwFzl946c4QFBREckrKOYKuvKhLSUkhIqLmT8XjB0yxZhJ4yom1yUB74Evgb8BJoCPQDnge6AsEA/8Skf8YxzwO3A7owDwR+bNSagY+EfWVUup5YCjgxefJmqqUehooFJGXlVIdgX8DYcAB4E4RyTPE1DqgHxAD3CUiK8rZ3shop63hKRtq1NMU+FZEHldKWYH3gK74RMz7wDFgBnACKAF64PMqvg8MBN4AJmOIOaVUArBRRBoZ7QwHrEBb4BXAblwDFzBERP4/e+cdHkW1/vHP2ZKebBoJgUAKvXeQ3hQQBFFQbAh2xXL1iorlWu71Z78WrmJXROyFqtJUkCYivXdCT++7m23v748dMEQCAZLsJsznefbZmTMz57xTzs533/eUHKVUI+AtoA5gBW4Tke3atSnQ7KkLPKxdp9+BFsA+4BNgAfCxlrcBGCUiuypwS9mzZ4+UlJRw/ONwOE4s2+12cnNzycnJITs7m+zsbA4fPsyevXtJ278fp9MJgMFkIqhhIsEtmhLWpiWSmFClXiLH0XTyf1iAdd0mEMFcLw5zwwSMlnBwuXFl5mDftR+xlWCMCCd8QC/C+/XGEFD7Rcf5IG43OV/OoGj5KsL6dCF6/OUXlNAVEWwbtpP72VxcGTkEt2tF1KjhmGP9c6DmqkRE8NhseAqKkMJCDEVW3AWFOAsKKMnLx1NQBIVFuAsKcRQUIh7P3/IICQ0lPj6ehFJiLjIykpCQkBPtNkt/goKCMJvNGI1GTCbTiU/ZdYPBcMK7V9rLV9lp50J0dHStF2s1z+d8AaOUMgGXAvO0pK5AaxHZp5S6HcgXkS5KqUBguVJqAdAcr3DpJiJWpVR0mTyjgSuA5iIiSqlT9VGfBtwrIku08OlTwP3aNpOIdFVKDdXSLz7DabQHOuAVTTuUUv8D4oD6x71vSqlIEclTSt1DKc+aVqHtItJLW7/zNOW01soJAnYDj4hIB6XUa8CNwOvAe8CdIrJLKdUNmAIM0I5PAHpp12828C0wiVKeNc32N0TkM6VUAF5xWCEaN67g6O4mE8bQEIyWCEyx0QT370V4bAwBDesTUK/uSWGjqvq18jic5M+dT8HPv6ECzEQM7UNY786YE/4+Mbm43dg27aJw4QryZv5E4ZIVxFx7JcGtW1aRdTUbj8NJ1sefYduwBcvw/lhGXXLBhbuUUoS0b0FwqyYUzFtG/pxfOfLvV4i4uA+WwQP9aqiPqkYphTEkBGNICNSNA7wv6UCgrL9MPB48xVbc+QW4Cwq9H03IpRcUcjQ7A/e+PbgLCvHY7HAKYVdbSJrycur+uybu9bUdVYku1moGwUqp9dryUrxeqB7AHyKyT0sfBLRVSo3W1i1AE7zi6ePjbdxEJKdM3gWAHfhAKfUDMLf0RqWUBYgUkSVa0ifAN6V2+V77XgMkV+BcfhaRfC3vrUASsAVI1cTPD3g9VuXxVQXKAPhVRAqBQqVUPjBHS9+E9zqF4b2G35R6OQaWOn6miHiArUqp8iakXAk8rpRKBL6vqFcNoOEtN2AVQZmMXsFlMqFOfIwYQkIwhIVgMJsxG42YDAZMBgOqmr39tgOHOPDuxzjSMwnr24XI0YMxRoSWu78yGglp35yQ9s2xb9tDzqdzyJjyMZF9ulN/zJUYAgPLPfZCw11sZf9bH2LbvZeo64cTMaiHr03yKcpswjK8H6E9O5D39TwK5v2CddVaEq4aiaVLhwtOxFaIoGCIObUH0iOCWwSPeHCL4Ha6cDtK8DiciMOBOJzax4GIB9wer6fOo32XWvemHY/ClYrGHY/MnRSgKz/tpEBe5Ub1OgO6WNPxOTYROWnET+2Hq7h0El7v1/wy+w3hNO2jRMSllOoKDASuAe7hL+9SRSjRvt1U7HkqKbXsxuuZy1VKtQMGA3cDVwM3l3N86XN24Q0/gteDVl45nlLrHs1OA5BX9rqWc/wp3xIi8rlSahUwDJivlLpVRH4pJ7+TSPvg04rs5lOmT5/O7S8/giEkiAaP3YGhWfJZHR/UohEJT99N3oxF5P20lPCMbH77aT7JyWeXT23k0KFDXHrppZTsS6Pe3ddh7nLWTTprLaZoC7F3jiFsQDfyps/h4HtTSdiyk/femkK7du18bZ6Of/K1rw2oavynG5TO+TIfuEspZQZQSjVVSoXi9VLdrJQK0dLLhkHDAIuI/Ig3tHmSeNG8YLlKqd5a0lhgCZWI1t7MICLfAf8COmqbCoHT9enfD3TSlkefZr+/ISIFwD6l1FWaDUoTjKfjJHuUUqnAXhGZjDdU6vtZtSsBEWHSpEmMHTsWY3I96j5991kLteOoADNRYy4l7oFxHD5wgBbt27Hw1wrp2VrL1q1b6dGjBzv37qHeQ7foQq0cgpomE//03cSOv4I/N6ynQ8eO3HHXnWRnZ/vaNB2dakcXa7WHD4CtwFql1GbgXbxeq3l4hcSfWih1YpnjwoG5SqmNeEXYA6fIexzwsrZPe+DflWx7fWCxZt9U4FEtfSrwjlJqvVLqVGMYvIJXoK4A/t6A6sxcD9yilNqANxR7+Rn23wi4lFIblFIPAGOAzZrdzfG27avRuFwubrvtNl588UUiB15E9MSbkNOEPStKcLtm1H1qAu6QQAYPGsxHX3xWCdbWPJYvX06vXr3IKi6k3uN3YGie7GuT/BplMBDavyv1XnwQy8DuvPfue6Q0bsSUKVNwu/2yA7yOTpWg9wbV0fENflfx7HY7119/Pd9//z0xIy8mdOSASm8n5C6ykvX6NOy7D/Dsf1/h8Qf+Wan5+zMzZ87k2muvxRhtIW7izXhiInxtUo3DceAo+Z//gHXbHpq2askHb79D7969z3ygTm2n1jdo1MWajo5v8KuKV1hYyMiRI/nll1+Iu2EEwZd0r7KyPCUOst76AtuG7Ux4eCJvvvBSrW48LiK8+OKLPPbYY4Q2akidB8bhqaWD3VYHIoJ19WbyvvwRV3Yel181mjdffY3ExERfm6bjO2rvD4iGLtZ0dHyD31S8rKwshg4dypq1a4i/9SoCepTX56LyEJeb7I9nULxsDaPGjeWrDz+ulVPv2O12br/9dj799FMs3TsQecuVYPa/fl0igqewGE+RFY+9BClxgMHg7Z0cFIAp2oIh2L8mLveUOCj68TfyfliCyWjinnvu4YlHHyU6+sKYWk3nJHSxpqOjUyX4RcU7dOgQgwYNYuee3dS9+wZM7ZtWW9ki4h2i4cff6DNsCAu+m0lgLRra4+jRo4waNYqVK1cSM2oQocP7+YUH0ZWTjyPtSO0yVwAAIABJREFUCI79h3GkHcGVno0rKxdxOE97nAoOxFw3loCURAJTEglq0QhTnahqsrp8nJk5FH67gMJVGwkKDeGf9z/AwxMnYrHUnjlVdc6I7ytWFaOLNR0d3+Dzirdjxw4GDRrE0axMEh4Yh2qa5BM7CuYtJfeLH2nbvRtL5y0gIqLmt+VatGgR119/PbkF+dS5/WrMnXw3KLC7sBj71j3aZzeuDG2oRaUwJ8QQkFgHc1wkpjoWTJYwVFAAhqAAlAgehwuPrQRXdgHOrDwcBzMp2XsEj9U7so05MZ7gDi0I69EBc704n50jgOPQMQpn/kzR6s2ERETwyEMTuf++f9SK50nnjOhiTUdHp0rwacVbvXo1Q4cOpcjloO6DNyMNyxv3t3ooWr6O7A+/JalZU1b9spj4eN/ac6643W6eeeYZnn32WUITE6hzz3V46lb/tEmunHysf27GumYLJTv2gwiG4ECCWyUT3DqFoMb1CUqOxxB89p5M8XhwHM6ieN1uitfsxLY1DTweAhs3JKxfF0Ivao/yYajXkXaEghmLKF63jaCwUO66404m/vOf1KtXz2c26VQ5uljT0dGpEnxW8RYuXMgVV1yBhAUT/9DNePwglAVg27CDzLc+I7pOHVYt/o1GjRr52qSzYvfu3dx0000sW7YMS58uRI0dgQRUn2jx2Eqwrt5E0W9/UrIrDYCABnGEdWtBSMcmBDeuVyVzjrryiyhYvIH8n9fiPJyFMSqCiCG9COvXFUOQ78LaJfsOUzxvKYWrNmI0Ghlz3bU8/sgkWrbUpz6rhehiTUdHp0rwScWbNm0at956K4H144l7cDzuShhDrTIp2X2AjNc+IdBkYs73MxnYv7+vTTojHo+HyZMn89hjj+E2Goi5/rJq6aRxnJJ9hyj8+Xesf2xCShyY68cS0acdYRe1JDDxXIYfPDdEBOuGPeR8vxTblv0YwkKwXD6A8AHdTprDtrpxZuRQvGA5BUtWIw4nXXr24IG77+HKK6+sVW0kL3B0saajo1MlVGvFc7vdTJo0iVdeeYXw1k2Jufs6JMQ/X1TOo5lkvfEpzowcnnvpRR554J9+0TD/VKxevZr77ruP33//nYgOLYm56Qo8lrJTblc+4vFg27CDgnlLKdm+DxUUQHjP1kQM6Ehws0SfXy/bzoNkff4Ltk17McXHEHnVYEI6t/apXe7CYqxL/qRwyR84M3IIj4rk5vE3cevNN9O6tT6LRA3HP38gKhFdrOno+IZqq3hZWVnceOON/PTTT0Rd0oOIa4aCyb+HyfBY7eS89w3F67Yy6IrL+fLDj4mK8o9wLXh7ej722GNMnTqVoCgLUWMuxXxR2yoXI+LxYF21kbxZv+A6mokp1kLksIuIGNgRU6h/Da0hIljX7SZz2gIcBzMIaplK9LiRmOvW8a1dHg/2rXuwLV5N4dot4PbQqHkzxl13Pddccw1NmjTxqX0654Qu1nR0dKqEaql4P//8MzfeeCPpGRnEjh1BUL8u1VFspSAeDwU/LCFvxiIsMTF88ck0Lh0yxKc2HTlyhJdffpl3330Xh8uFZXAvLMP74QkKqNJyRQTb+u3kfbsA56FjBDSMJ/rK3oR3b4nyc+Etbjf5C9eQ9dnPeBxOLMP7YRnWz6edEI7jLijCtnoz1lUbse3YB0DzNq25cvgIhg0bRrdu3Wrl+H+1EF2s6ejoVAlVWvHy8/P517/+xZtvvklI/brUufMapIFvh1Y4V0r2HSbnva9xHMlg0PDLeOeNyaSkpFSrDZs2bWLKlCl8/PHHOF1Ownp0JHrkQCQ2ssrLdhw4Ss6nsynZuR9zQgwxY/oT3rMVylCzpnZ25RaS8fE8ipZvxpwQQ/T4Kwlqnuprs07gys7Dvnoz1rVbse3y9nANj4xk8KBBXDJwIH369KFZs2Y+DzHrnJJaf1N0saaj4xuqpOJ5PB6++OILJk6cSHp6OpaLuxN59RAkwFwVxVUb4nBSMG8Z+XN/xSAw/qabefyRR6pUtOXl5TFr1izef/99li9fjjHATFj3DkSN6F8tIs1dZCX/+4UU/rIKQ1gwsdcNxDKwQ5X06KxOitftJv29ubgycgkf1IPI0YMxBFatZ/JscRfbKNm8C+fm3RRu2I47vxCAyJgY+vTuRd/efejcuTPt27fXx3HzD3SxpqOjUyVUasVzu93MmDGDp59+mi1bthDWqCEx40ZCUkJlFuNzXDn5FM78mYJla1EIQ4YO5dbxNzF06FCCgs6vzZaIsHfvXn755RdmzJjBokWLcDqdhNSLI7RfV0J6doCwkEo6k9NT/McmcqbNwlNkxTKkCzFjBmAKrz3ziXrsDjKnLyT/pz8wxUcTc+tVBDVN9rVZp0REcKVn4dyZhnNnGkXb9+LK9A4srJQiuVEq3Tp3oVOnTrRt25aWLVtSv3593QNXvdT6i62LtVqCUsoNbAJMwDZgnIhYfWvVySil+gETReSyU6TPAvZpSVkicvF5ljUe6Cwi95SzvT1QT0R+rEBe9wF3AWuBm4EfgFjgeRH56hxNrJSKd+DAAaZNm8b777/PgQMHCE2sS+TIizF2alHjwmRngysnH+vClRQsW4O7oIjgsFB69+7Nxf0H0LFjR1q0aEFCQkK5L0ybzcaRI0fYtm0bmzdvZuPGjSxdupRDhw4BEBQXQ1DnVli6tkWSEqrtWroLisiZNhvr6k0ENqpH/F2XE5RSt1rK9gXWTfs4NmUmrsx8Iob0xHLlIAw1wAvszivEkXYYOXAM2/7D2PcdwpWdd2J7SFgYzZo1o23r1rRo0YIWLVrQuHFjkpOTCQmpHsF/gaGLNZ2agVKqSETCtOXPgDUi8mqp7UYRcVdR2RXK+wxi7W/p52nTeE4v1k67vcy+24FLRWSfUuoi4EUR6XueJp5TxbNarfz5558sXryYWbNmsXbtWgDC2jQlckB3DO2bVqtIE48HRHwWmhO3G/vWPTjXbqdo226cRzNPbAsIDMASGUl0dDRmkxmXy4XD4SArK5OC/IKT8gmMjcLcqAHhLZtgbpYEdWOr3TNSvHoTOZ/MxGMrIebqfkSP7FnjQ54VwWMrIXPaAvIX/Ik5IZaYW0cT2Ng3U5+dD+6CIpxHMpCjWbiOZmI7dAznkQxcuSc/azFxdWiUmkrj1EakpKSQkpJCYmIiCQkJJCQkEBMTg6EW/9GqInSxplMzKCPW7gTaAl8DTwFHgfZAG+AFoB8QCLwlIu9qYunfQDbQDPgNmCAiHqXU20AXIBj4VkSe0srYD3wEDALeBHKAZ7R89wA3iUiRUmoI8DqQhdczlVpRsaaUuhZ4DG9F/EFEHjlD+k3Ao9r57gRKROQepdRV2nVwA/nAxcBu7ZwOA88DLYAiEXlFy2szcBkwCa83bQcwHbgNqIPXCzhKWx8BuIAFIjLxTPdK45QVT0TIz88nIyODjIwMDh06xM6dO9m5cyfbtm1j48aNuFwuUIrQJkmEdGxJcOfWqGqahcCdV0jxyvXYtu7Gse8wnsJiAAxhwQQk1SeoRSqhPTpgiqn6Nl2ntC+/EMfhDDiWhScnH1eRDVdRsVdUGhTKaMQcEY45MhxTZDiG+FhUvToYQnw37IXH4SR3+hyKlqz2etPuuYKghjWzM8j5ULxhD+lTZuHKLiBiSC8sV15SI7xsZ8JTbMN5NBNPZi7k5OPIyMaeno07Kwdndh54Tv4pMJnN1ImPo15CAvUT6hEdHU1UVBSRkZFERkaeWLZYLAQHB//tExQURFBQ0IUWhq31J6uLtVrCcbGmlDIB3wHz8IZDfwBaa16h24E4EXlWKRUILAeuApK0/VsCadryuyLyrVIqWkRylFJG4GfgPhHZqIm1KSLyklIqFvger/epWCn1CF7R9hKwCxiAVxx9BYRUIAz6DfAx8DvQCcgFFgCTgT/KSV+lfTrhFWS/Aus0sbYJGCIih5VSkSKSV9azppR6mlOINRHZr51rZxHJKi0slVLRwEqguYjI8bwrcr/qdmwjrpIS3HYHbocDV0kJ7hIHLqsdj8tV9uZiionEFB9DYEoiQY0bYm7cEGN49c0+4EzPIn/mzxT/vhE8HgIaxBHUpD6mGAsocOUUUrL7MCX7j4FShHRsgeWKSwhoUHtDeJWB80gGmW99gfPQMaKu7E3MmP4Y/HwojqrEbbWTOW0BBQvXYE6IJfrmUX7blq0yEJcbV04+7rwC3HmFePIKTyy78gpw5xfhsdrwWG2I3XFWeRvMJpTBgDIaUUbvt8Fo8KYZvGkGo9G73aC8ywYDKIUyKBTK+wdHE33ebaDU8W8F2ked9ptyt5dLOZtUORv2Lfyt1os13w90o1NZBCul1mvLS4EPgR7AHyJyXAQNAtoqpUZr6xagCeDQ9tsLoJT6AugFfAtcrYk8E5CAV9Bt1I4/3l7rIi19uVaxA9BEDLBPRHZp+U4Hbi/H/qWlRZxS6nJgsYhkauufAX3weqROlU6Z9K+Aplr6cmCqUuprvKKysigA7MAHSqkfgLkVPTCvsBAVaEZFhKACLRgCzBgDzAQFBWKMCMUQHoYxIhRjZASm+JgTHgZDNf+BFJeLvDm/kjfnV5TRSOSwblgu7lzuNEbOjFzyF60l76dVWNduI+KS7kSNGuzTOSL9laIV68iaOgMVYKLeE2MJ69DY1yb5HGNIEHXvHEFEj9YcmzKL9Ofe8z5Do4f4XY/RSsFkwhgXA3Exp9wsyAkXvLjceGx2r3grtuGxlSAOJ+J0ad9O77fD5V12usAjiMft/XZ7wOPRvt2IR3C7PV6vs9tzYj9EAAHxIG5tXdC+vcsiHq9RnuP7ereL/H3/Ew6hE9uOl3Fqyt9UzgaB5Gkv3Lf/xkmTT3epazq6WKs92ETkpAkJNeFUXDoJuFdE5pfZrx9/rwmilEoBJgJdRCRXKTUVKB0vOp63AhaKyLVl8m1/inwrSnmq5HRqpbzQ4p1KqW7AMGC9ZldZXEDphiJnjIuJiEsp1RUYCFwD3IPXi3hGDm7cQpGzBJPy37Ypu3bs4O7xN5O3ZSuRfdpR58bBqKjTe/PMcVHEXjeQqOHdyf5qMXnzVmLcvIcPpn5Cl4u6VZPl/o3NauWphyfx5bSvCG2ZTML9ozHEhPvaLL8ipG0qya9NIPuzn8n9aQUB2/bz1jvv0r13L1+bdkHhQfCI9yMiJ9YFTqSdWEY0naYJTG3b8X2AE9LzhH4r9ZN92hfFGSKA1y388oNzOsEahC7WLizmA3cppX4REadSqineNlsAXTVxlgaMAd4DIvAKsnylVDxwKbD4FPn+DryllGosIruVUiFAIrAdSFFKNRKRPcC1pzi2PFYBb2gh1lzt2P/hDYOeLj0Gr8frKmADgFb+KmCVUmo40AAoBEq/IffjbaOGUqojcMYBvJRSYXjDuj8qpX7HG+qtEHWCQ6kT7F+TqJfmu+++Y/z48bhMiuTHxhLQ6ey8PsbwEOJuHUp4z1ak/28mo4cO49kXX+DRBx680NrSnMT27du56qqr2Lx5M3FX9cNyVZ8LohPBuWAIDqTOrUMJ7d6SjCmzGDNsODfedguTX/4vFovF1+bp+BH7b5zkVyMfVAX++7depyr4ANgKrNXaZL3LX4J9Jd7OB5vxth2bISIbgHXAFrydCZafKlMt9Dge+EIptRGveGsuIna8Yc8flFLL8ArBCiEiR/F2FvgVr+haKyKzzpD+tHYei/B2ZjjOy0qpTdo5/6Yd9yvQUim1Xik1Bm87v2gtlHwX3g4KZyIcmKud8xLggYqen78iIjz11FOMHj0a6keT9PKdZy3UShPcIokGL91OaPvGPP7gQwy/9iocjrNre1Nb+Oyzz+jcuTO7Du4n5anxRF7TXxdqFSCkVTIN/3sXUZd1Z9oHH9GwcSoff/LJX+E1HZ0LAL2DgU6VDJ2hc0b8ruK5XC4mTJjA+++/T/TATsTcNrTS5m8Uj4fsb5aQ8/ViWvfoyrIfF1ww3hGr1cp9993Hhx9+SHirFBLuHw3RYb42q0Zi332YrA9+xLrrEO0v6sq09z6gTZs2vjZLx/fUene9LtZ0dLHmG/yq4tntdq699lpmzpzpDc+N6Vcl4cr8X9eT/vYs6qYm8cfPS2jQoEGll+FPnBT2HN0Xy9V9dW/aeSIeDwW/rCNr+iI8VjvjbrmZF/79LPHx8b42Tcd36GJNR0enSvCbipeXl8fll1/O0qVLSbhlGGGXdqnS8oo37OHoy18REhbKbwt/oUO7dlVani8QET755BPuvvtuPAFGEv4xCnPb6p18vrbjLrSS88Wv5C78k8CgQB6cOJFHH3qYsDDda3kBoos1HR2dKsEvKt6RI0cYMmQIW7dto/79ownq3qJayi3Zf4zD//cZqsTJ7JmzGHLxJdVSbnVQWFjIhAkTmD59OpY2jah7/ygk0n87k9R0HIezyP3iF/JXbiEiJoonn/gXd91+hz6t04WFLtZ0dHSqBJ9XvJ07dzJ48GAOZxyjwSPXYWpdvVP8ODPzOPJ/n+E4ms37H33ILWPHVWv5VcH69esZM2YMu3bvJu7qfkRc2Rtl9K9+XG6rnZK9RynZexRHeg6u7AJcuYWIwwVuD8psxBAegskSSkBiHQIS4whulogpOsLXpp8W286D5Ez/meIt+4iIjuKhBx/kvnvuJSLCv+3WqRR0saajo1Ml+LTi/fHHHwwbNowil4MGT4xFpfhmeiN3kY2jL32Jdct+/vXsv3nmsSdq5NAebrebV155hSeffBJjeAj17h+NsaV/tMcTtwf7zoMUr91F8bpdlOw7dmKbMSyIgDoRmKPDMAR6R7z3OF24Cmw4c4pwpOef2DegfiwhHRoT3qsNQY3r++19sm5NI3/GMgrX7iQ4PIwJd93FfXffQ8OGDX1tmk7V4Z8PYyWiizUdHd/gs4o3b948Ro0ahbKEkPivsUi8b+bxPI7H6SJ98gwKV2zmhttvYeqUdzHWoEb4O3fuZPz48axcuZLI7q2Jv/0yJCLY12ZRkpZOwZINFC7diCunEAyKsJaJRLRPJrRpAqFNEjBHnj5U6LY7sKVlUbjpIAXr91O4IQ1xuQlIiMYyuAsRAzpiDPXdvKqnw77nCPkzlpG/aisKxaWXDWXi/f+kX7+q6Tyj41Nq/Q3VxZqOjm/wScWbNm0at9xyC8FJdan3+PWIxT/a9YjHQ9a0BeTOWUmfoYP48evvCQ3173ZeLpeLN998k8ceewyP2UjcLUMJ6tnSp0JA3G6K/thO7pyV2HccBKMBS+dUovu1IrJLKqbzFFauIju5y3eStXADRVsOYQgOwHJxJ6Ku6IXJ4p8N+50ZeRQuXEPuwj9xF1pJbtqYCbfezg033EBCQoKvzdOpHHSxpqOjUyVUa8Vzu908+uijvPzyy0S0bUzCw2OQYP+bazF37koyp86nfuMUfp7zI82aNfO1Sadk2bJl3H333WzcuBFL5+bUvWuETzsReBxO8heuIXfOClyZ+QTERxI3ohMxA1oTcAbv2blSvOsox2asJmfJVgyBZqIu607kiB4YQ/zT0+YpcVK0fDMFC9dg3XkQZTAw4JKLuf3mWxgxYgRBQf5pt06F0MWajo5OlVBtFS8vL4/rr7+eH3/8kdhLuxE9fjCY/DfMWLxhD8de+xaDW/joww+54ZqzmaWsajl48CBPPPEE06ZNIyQumjo3DSGgS1OfedPE6SL/57XkfPcbrpxCwlolEn9FV6IualJtHRtsB7M5PO03cpdtxxQVRuy4wYT3auPXoUbH4SyKl2wkd/E6XNkFhISHMXz4cK69egyDBg0iONj3YWyds8J/H7ZKQhdrOjq+oVoq3ooVK7juuus4ePgQCbcOI/SSTtVR7HnjzMzj2KvfYtt5kMtGX8HUd94nJibGZ/ZkZGTw/PPP8/bbb+PyuIke0ZOoUb0h0OwTe8TjoXDpJrK++BlXZj6hLROpP7YPlvbV26O3NEU7jpD21nysu44R0jqZuNsuIyCxjs/sqQji9mDdvA/biq3k/74Fd5GNoNAQhg0bxrVXj2Hw4MH6uG01A12s6ejoVAlVWvFKSkp44YUX+M9//kNQXBQJ94/G0Lhmtc8Rp4ucGUvJ/vY3wiMtvPrSK9w0bly1dj7Ys2cPb7zxBh999BFWm42o/h2Ivbo/xIZXmw1lse06ROZHP2HfeYiQxnWpP64vlk4pfuHJEreHzJ/Wc+iTJXjsTmLG9CPq8p41YtYGcbmxbtmPfdV28lZuxl1gxRRgpkevnoy8bARDhw6laVPfeVF1Tkutvym6WNPR8Q1VVvEWL17MXXfdxfbt24nq2564W4chIf7XPq2ilOw/RuY7c7DuOkTjVs159fmXGDZsGAZD1YT5nE4nCxYs4P3332f27NkYjEbCe7UhbnRfSIiqkjIrgiu3kKzPFlHw63pMUaEk3tSP2IFtUAb/e08584pJe3M+uct3ENysPvH3XEFAPf/2spVG3G5s2w5Qsm4PBWt2UHIwA4DElCRGDL2MgQMG0LdvX596e3VOwv8qQSWjizUdHd9Q6RVv/fr1PPnkk8yZM4fQhFjibrsMc7vaMcWRiFC0YgvZ0xfhyMilYeNUHvrHA1x99dXExZ3/GHF2u52lS5cye/ZsvvzyS7Kysgi0hBFxSWeiLu0KPuw8IB4P+YvWkPXpQsThIv6KLiSM6YEpNNBnNlUEESFnyVbS3lqAx+Ei9vqBRA69CFVFIrsqcWbkYVu3G+u6XRRu3IOUOAFo3roVgwYMpH///vTu3VsXb75DF2s6OjpVQqVUPI/Hw/z585kyZQpz584lMDyUyOHdsVx2kc/aU3lKnNi2pmHbeRBXVj7i9mAMCyawYRwhHZpgjjn3EeXF5aZw5Vby567EtvswymCgR+9eDBs8hJ49e9KpU6czDvkhIhw7dox169axdu1ali9fzpIlS7DZbBgDzIR1aU5Mvw4Y2yShzKZztrUycBzJIv3t2di2phHeLomke4YQnBjtU5vOFkd2Ifvf+In81XsIaZNM/N1XYK7j27H9zgdxurDvOYJjaxrFm/dTvC0NcXjFW4OUZHp2u4hu3brRtWtXOnTooHdWqB50saaUcgObABOwDRgnItbT7L8YmCgif56XYUrVAeYCAcB9IrJUS78cuElERmrrjwK3iEhjbX04cJuIjDjP8otEpEpbliqlegPvAE6gu4jYSm1LBN4CWgIGvNfiIRFxKKXaA/VE5Edt36eBIhF5pZLsmgr0BY4PX/4REAv8JiKLlFL7gc4iklUZ5Z2lbfuBgyLSu1TaesAkIq1Pc1wy0ENEPj+HMleISI8z7HO2z8s5izW3283KlSv5/vvv+f7770lLSyMo2kLEoE5EDrsIQnzjcXHlFJAzazkFi9fjKbKDQWGOCkWZjLjyrXjs3hdacMskokb2IrRjk3Nu/yMiONLSsf2+jfzft54IUwHExseRkpxMlCWSsLAwTCYTxcXFFBcXc/TYMdLS0rDbtKqmFCGJcQS1TSWyY1MMzRMxBPk+ZCwuN7mzV5D99a+oABMNbxtI7KC2Nba9lIiQtWAjB95dBAZF3C1DCe/TrsaeT2nE6cK++zDOnYex7zpM8a6DOLO8P50Go5HkRqm0b92G1q1b06pVK1q1akWTJk0ICPD9c1aLqPkP0hmoiFg78RJSSn0GrBGRV0+z/2IqR6xdA1wqIuPKpNcBNotIvLY+G0gEhohIhlLqeSBPRF48z/LPSawp76+PEhFPBfZ9B1glIh+fIo9VwNsi8rFSygi8B+SIyENKqfF4xdI92v5Pcx5iTSllFBF3qfWpwFwR+bac/fdzBrGmlDKJiOtc7DmDrfuBPGC4iBxUSrUAvuDMYq0f3ufysrMo66TrcoZ9q0SsuVwu9u/fz/bt29mwYQPLly9nxYoV5OfnYzSbCG3biOh+HTB3aeIzL5C43OTMWErOjGXgdhPZoxmxA9sQ3rYBRk34iEewH8omZ/kOsuZtwJGRT3DzROLuGEFgw/jztsFdUIxtx0HkUDaOYznYM3Jx20qgxIG4BUOQGRVgxmgJJSg+mqD4aMwN4zAkx2EI9q9won3vEdKnzKJk3zEiezSj4YRBBMbUjh6J9qO57HtlLkVbDxHevSVxdwzHGO4fAzNXJq7cQkp2H8a19xj2tHRsB9JxpOeAx1vtlVLEJySQmppKo5QUUlJSSE5Opm7dusTFxREfH09cXJwu6CqOLtbKiLU7gbbA15R68Sml3gT+FJGppcWaUqoIeBfoD+QC14hIZpn8k/B6buoAmcBNQDQwGwgGDvN3r9NOYKiI7FZKrQG+B7aIyEyl1BLgCeBA2XxF5MCpytPSU4DP8XoQ5wEPnOrlq5T6J3CztvqBiLyueW1+An4FugMjRSSt1DEDgVe0vFcDdwFjgZfweq9WiMj1ZfZ/SkT6lEqLAPYBKcDmUtfmeaAF0BBI1b5fF5HJ2nE3APfh9VCuAiaIiFu7N68Cg4EHRWRZqbKmUkaslU7TBNNXeO8rwHXavZgK5AAdgLXAp3g9hyHAHuBmEckt84zE4n12kpVSrYCPNVsNwCgR2VXm+u/HK1wdIvKKUurfQDEwVkRaa/fiU+B4LOweEVmhlPpdu077gE+AycALQD8gEHhLRN7VRN1TwFGgvYi0PF4HlFJhwCwgCjADT4jILM2usxJrc+bMkeLiYqxWK6W/s7OzSU9PJz09nWPpxziQdgCHw3HiuJCGdQlsloilbWNM7VMw+HgAUseRbI6+/i0le44Q1as5iTf1I6je6Rvhe1xushdt4tDHi3EVlxB7TX+iRvaqkW2ZKhNPiZPsrxeTO3s5JksISRMGE93LPwcFPh/E7eHot6s4Mv03jOEhxN99OaEdmvrarCrHU+LEcSQL18FMPOl5ONJzsKXn4MrIw5ldAKd4F0dEWoiJjSXSYiHKEkl4eDgREREnPiEhIQQGBhIQEHDKb7PZjNFoxGAwYDAYUEqdWD7V+vG045+qoCrIuLPJAAAgAElEQVTybdu2ba0XaxX+K66UMgGX4hUyFSUUWCsiDyqlnsT7ErynzD5vAtNE5BOl1M3AZBEZqe1/wntUhhVAD83jtAv4HRislJqLV0yuBr4pmy8w8lTlaelv4PVkTVNK3V3ONeiEV0x2w6vkV2niMBdohlf4TShzTBAwFRgoIjuVUtOAuzSR14tTe7BaAWtKJ4hIgVLqAJAMnHRtNM9ac7ziKRzYoZR6G2gMjAF6iohTKTUFuB6YhvfebBaRJ091rsDLSqkntOWxp9heICJdlVI3Aq8Dxz1WTYGLNUG4EbhXRJZoouop4P5yygO4E3hDRD5TSgUA5fX3/xbvNX0FGK6d03EbM4BLRMSulGqC1+vWGZjEyX8wbgfyRaSLUioQWK6UWqDl0RVoLSL7ypRrB67Q7kUs8LtSaracQ8PPESNOHaU3hAVjsoRijAzDFBdGaKsuRNWvQ0BiLAH1YzGG+k/7l6I/d3D0tW8xmI00evzKCgsLg8lInSHtiezelLS3FpD12c/Yt6URf9+oWullqQjWLftJf3sWzqM5xA5qS+ItAzD7wfyiVYEyGqg3pjuRnVPZ8/JsDj/7GZGDOxN742C/CEFXFYZAM0EpCZDy9yF0xOnCmV2AO78Yd14Rrvxi3PlFuPKKySq0kmErxHM0C/eeEsTmwG0rwWO1g/uMAZwLgqbfPdNhx5VPrvO1HVVJRcRasNYmCGAp8CFw2vY7pfDg9cAATMfrAStLd+BKbflTvN6mM7Fcs8EIrAT+wCtgOgA7tBd1efmWl94TGFUq/VRh1F7ADBEpBlBKfQ/0xusFTBOR309xTDNgn4js1NY/Ae7GK3DKQ3HqMFl56QA/iEgJUKKUygDigYFAJ2C19m8mGK+YAXAD353GhofKeNbKbv+i1PdrpdK/0YSaBYgUkSVa+id4BfTpWAk8rrXX+76sV60UOUCuFirfBpRuQ2kG3tTa9bnxisdTMQhoq5Qara1bgCaAA/jjFEINvNf/OaVUH7zPdn281/nYGc7rb7R//QFylRNDgBlDkBlzUCDGADMmowmTMmAyGDAqA/7o3RcRjs5eypEPZxOSGk+TJ0cRUOfsOw2YLSE0evRyMts24MC7P3PosQ9o+cxtBCfUnCEezhdXsY20j38gfd5KAutG0uy5a4nokOxrs6qFkEbxtJp8E4c+WUL6jD+wb9pHkwevJ7yZ7wb29RmBQNiZOl0IbhHc4sEjgtvjxuN243a6cDtdeBxO77fLjbhciMuNON1ej50I4hFtGe+6iDcse3z5+McjVTeuUFV0aPRmef5dwv2ciog1m4i0L52glHLhDVMdp6KxmIrcqYrsswK4F69Ye19ECjUPVj+8Qu5s8pUK7HOc0705i8/hmPLYwl/C0ZuJNwzaAG848VTD0JeUWnbjvbcK+EREHj3F/vaKtscqh/KuW3nXoTSln58Tz46IfK6UWgUMA+YrpW4VkV/KyeMrvB0wxpdJfwBIB9ppZdjLOV7h9frNPynRGwYt7xyuxxs+76R5KvdT8Wf/JNb9o9xmn36NiDBp0iReen8WsT2bkzTxMgxB597rVClF3GWdCE6JZ/e/v2XbQ2/y05wf6Nerz5kPruHMmjWLCQ9MIOPYMepdeREJY3ud17WsDMQjuIvtiNONMhkwhARiqMKpyQxa54nIbo3Z/98f2Pzwmzw86RH+89QzmM2+vRY6NYr5Z96lZnOujUTSgJZKqUDNgzLwNPkf91xcByw7xT4rgGu05evL2acsW4F6eL1ax12f6/GG0VacId/y0peXST8VvwEjlVIhSqlQ4Aq83sbTsR1IVko11tbHAktOsz/Az0CIFmJEC/f+F5iq9cQtxBvuPBM/A6OVUnFaPtFam73KYEyp75VlN4pIPl7v1/Fem6XPez9/Cc7jzwdKqVRgr9bebjbekHZ5zMDrFS1bSS3AUa2Dx1j+CqWWvWbzgbuUUmat7KbaPT0dFiBDE2r9gQvKBSAiTJw4kZdeeom6wzqR/OjllSYuwlsl0uLVGyHYzMUDL+azb76slHz9kfT0dK6++mpGjhxJcbDQ7vWbqH9b/2oXauL2ULj5IIen/caup79hw7i3+HP4i6y7+nXWX/8/1o15gzWXv8yGcW+x84kvOfL5Mgq3HPJ6aCqZiLZJtJxyM3UGtObF/3uetl06sn379kovR0enpnJO3ce0XnhfAxvxthkrL1ZcDLTSOgHk89cLvjT3AR8ppR7irw4GZypfNA+MRUScWvJK4Hb+Emvl5Vte+j+Az5VS/6Cc8KCIrNUa0f+hJX0gIuu0Ru3l2WpXSt0EfKO1+1uNt9H9mc7vCmCKUupfeEXvj8Bj2i6/ApO08PTzp8lnq9bubIFSyoB3iJC78Yrt8yVQuwcGoLyZtscB7yilQoC9/HWtXwG+VkqNBUp7zsYANyilnHhDi/8ur3ARKUQLVZcJ0U4BvlNKXYX3Oh33km0EXEqpDXjbu72Bt/3fWuXNIBNv28XT8RkwRyn1J94/BxfM20REuP/++5k8eTIJl3el/h0DKr2hcFD9aJq/eiO7n/mWG665jsPHjvLwvQ9Uahm+RESYOnUqDz74IAVFhSSN60ed0V1RVei5OpUNRVsOkbVgA7krduIuLkEZFKENo4hpU5fghKYEWIIxBBjxON04C+zYjhZQsDuLw9OXwqdLCYgNJ7p/K+KHdzqn8Hd5mEKDSPrnMMK7NWb35J9o074tjz7+OI899AhBQb7tSKOj42uqdFDcs+0hp6NzAVFjRqP2eDzce++9TJkyhXpXdKPebf2rdHwst93B3udmkrd6D/+YNJHXnnupxo/HtXnzZu69914WL15MVJtkUu8biiHRUm3le1xucn7dwtFvfsd+MBtjsJm6fRpRp0cKdTo3wBx25uFLnIV2Mn5P48jPO8lclYZSipj+Lak3tg+BcZV7Ls6cIg68vZCcZdtJSErknclvMXz48Br/HOhUGbX+wdDFmo6Ob6gRYs3j8TBhwgTeffdd6o/uTsLNfavlhelxuUmbPI+shRu5atx1fP7BJ5hMvp1N4FzIz8/nmWeeYfLkyZhDg0gc15fIIW2rbT5PcXvIWriRI18sx5FRQHijWJJGt6de/8aYgs897Go9WsD+7zZwYNYmEKh7ZRfqXtPzxLh6lUX+un0cemcR1gNZ9Lq4H/97+TXat29/5gN1LjR0saajo1Ml+H3F83g83HHHHXzwwQckjulJ3XG9q9WzISIcnvYbR79cQd8hF/Pjd7MICakZQ3t4PB6mT5/Oww8/TEZGBvGXdqDBuH4QUX0D8BZsTOPAu4uw7c3A0rIujcZ2Jr57cqXeQ1tGITveW8mRhTsIqhdJ8gPDCG/dsNLyB69wz5i9hiNfLMddZOfSyy/jxf88R5s2bSq1HJ0ajS7WdHR0qgS/rnhut5tbb72VqVOn0uC63sTf0NNnIaiMuWtIm7KA1p3as3jeIr+eLFtEmDdvHpMmTWLjxo1ENm9A8oRBmJtU38gCzjwrB95eQM5v2wiKD6fZnT2p179xld6/7PWH2fjiImxHC0gY3Y364/qhjJU7yLGryE7GzD85NuMP3NYSLhk2hEcemMiAAZXfflKnxlHrHwBdrOno+Aa/rXhut5vx48czffp0Go7tS/x1FR1WserIWbadvS/Npl5SA5YvWkxSkv91xP3999+ZNGkSS5YsIbxeLPVv7ENY76bVFvIEyFm6jbQ35+O2ltDohs6kXtsJU1D1hI9dVgfbpizn4JzNRLRNJHXSlZijztTB+hzKKbSRMeNPMn5cizPfSkqzxtx7xwSuueYaEhL+PuCszgWBLtZ0dHSqBL+seC6Xi7Fjx/Lll1+SNL4/cWMu8rVJJyjcdIBdz3xLWGgYv85fSIf2HXxtEiLCkiVLeO6551i4cCHB0REkXNOD6CFtUebq6+XpKrSxf/I8cpdtJ6JZHG0euRhLI994IA/P386m//6KKSyQRv8aRViz+lVSjsfhImfJVjLnrqNo5xGUwUCvvr259qoxDB48mNTU1CopV8cv0cWajo5OleB3Fc9ms3Hdddcxc+ZMkm8ZSJ3RXX1t0t+w7stg15Nf4yks4dXXX+WeOyb4JATmdruZO3cuL774IitXriQ4OoL4K7oQM7Q9hpDqnTKpcOsh9r4wC2duEU1u6kbqNR0xmHw7z2rBnizWPP4DJTlWGj0ygsjuVTvHqe1gNvlLtpH56xbsR3IASGqUwqWXDKZ79+507dqVpk2bYrjA55+txehiTUdHp0rwq4qXnZ3NiBEjWLlyJSl3DSZmuO+9VuXhzCli33/nkr92H4MuH8qn731MXFz1tAlLT0/nww8/5N133+XAgQOEJkRTd1Q3oi5ujQqs3t6q4hGOffs7hz5ZQnDdcNo/OYSoFvHVasPpKMmx8uejc8jfkUHSXRcTN7xLlZcpIpQczqFwbRoFa/aSvykNt80BQGh4GC1atqB1i1a0aNGCZs2akZqaSlJSEhERlTdenI5P0MWajo5OleA3FW/Pnj1cdtll7N67hyYPjySsZ+MzH+RjjguVw5/+RlBICC+98CJ33nZ7lQzvYbfb+eGHH/j888+ZM2cOTqeT6A6pJAzvTHDXlEpvSF8RXMV29r44m/zVe6jbrzGtJw4gILz6eppWFJfNyfr/zCdj+T7qj7mIhHH9qrdHsduD/VAO1p1HKdmVTtGBTGwHs3DkFJ20X1hEOA0aNiA1OYWkhkk0bNiQpKQkUlNTadSoEdHR0XonBv+m1t8cXazp6PgGv6h4P/zwAzfccAN2j5OmT40msGU9X5t0VtgOZHHwrQXkb0yjXnIDnn3yGa699trzHvG+oKCARYsWMXv2bGbMmEFBQQHB0RFE9m1OwtBOGBPPNOl21WE/ksuup7+h5EguLe7tTdLINn4tJMTtYfNrizk4Zwt1L+9I4u2DqrXTxalwFduxH8rBmZ6PJ6uYkox8bOl52DPycGQW4iq0nbR/uCWC5NQUmjduSpMmTWjVqhXt2rWjWbNmNXL8v1qI/1aASkIXazo6vsGnFc/hcPDMM8/w3HPPEdmkPo2fuAIVV5HpZv0PESHv910c/Ww5xXuOEWoJ54brrufy4SPo06cPoaFn7pGYlZXF6tWr+eOPP/jll19YsWIFLpeLgNBgIns0JX5AWwLb1POJF600BRvT2P3s9xgUdHjmUmI7JvrUnooiImyfsox9X68nbnBrGt47zOfX8nS4rSWUZBRQciwP99F8HEfzsB7NwXYkh5L0fMTtAcAcGECT5s3o3L4j3bp2pXv37rRp00YXcNWPLtZ0dHSqBJ9VvPXr1zNu3Dg2btxI/OD2NLzrEqjm9lZVgYhQuD6NnIWbyF6+HY/DhdFkJKVRI1q3bEmd2DpYLBaUUlitVnJzc9m/fz979+3l2NFj3kyUIrxRXSI6pRDTpQnmZvEYqnHuztOROW89aW/OJ6S+hU7PXUZYA995984FEWHX1D/YPfUPYvs2I+nByzFUY4/ZysLjcmM/mI1tXyaO/VkU702naM8xnHneaYiDQoLp2LkzfXv2okePHnTv3t2vxwasJehiTUdHp0qo9oqXmZnJM888wzvvvENgZBjJ9w0htGvtHN7AU+KkcMshbJsPYU3LwnooC3eRHVeRHaUUxiAzxpBAAuIsBMRHEN4wjtCm9TA3isUY4l9tv8Tt4eAHv5A+czWxXRrS/qkhftk+raLs/XIt299eTlS3VFIfG4UhoHb8UXBk5FO87TC27Ucp2HqI4j3piMfrgUtt2pi+PXvTq1cvevbsSdOmTf06dF0DqfUXUxdrOjq+odoqXnp6Om+99RZvvPEGRcVFxA/tSP2xvVHh59euS6fqcRXb2fvCLPL/3EvSqHa0mNDL58NyVAZpszax5bXFWNo1pNGTV2EMrt7hTqoDt91B8c5j2LcfoXDrIQq2HMRVZAcgMjqKnj160ruX1/vWuXNngoODfWxxjUYXa9WJUsoNbAJMwD5grIjkVWL+J00sr5QaD3QWkXuUUncCVhGZVuaYZGCuiLSuRDsuAt4AArXPVyLytFLqaaBIRF4ps/+/gd9EZFEl2rAf77lnnUce7YF6IvKjtv40p7DfHzjNtX0auA3I1JLmicikajCpSiue2+1m8eLFTJ8+nS+++AKHw0FMj2Ykje+PoZIbx7uK7LitJV5vVViwzxuP1xZKdyRoeX9fkkZU2k+QX3B4/nY2vLCI8OZ1afzMNZjCavefB/EI9kPZ2LYdoXjbYfI2H8B+2DsmnMlson3HDvTp2ZvOnTvTpk0bmjVrhtls9rHVNYZa/6Pjb/5nm4i0B1BKfQLcDfxfdRQsIu9URzkanwBXi8gGpZQROO2IkSLyZPWYdda0BzoDP1ZGZkopo4i4KyOvs+S1cxGYPrT3b4gIBw8eZMmSJSxatIgFCxZw7NgxAkKDiL64NfWv7IahnqVSyvI43eT9sZuc37ZRtOkAztziE9uMIQGEtaxPVO+WRPdq5nchxZpCwcYD7Pm/70E8dH7lcurUkI4EZ0P9wc0xBptY98x8dk6aTpNnr8McGeJrs6oMZVAEN4wluGEs0YPb0gBw5luxbjuMbdtRdmw5wNr/TcbjdAFeAdekWTM6tGtHi+YtSE1NJTU1lZSUFOLi4vQw6gWGv3nWTni+NE9XWxGZoJTqCrwOBAM24CYR2aGU+hGYJCIblVLrgBki8m+l1H+ANBH5oLz8tfXx/OVZexrN86KU6gR8BFiBZcClItJaE1YvAP3wesTeEpF3lVIJwFdABF4BfJeILD3NeeYCzUQko0x6aRtuA67UPm/j9e59q3nEPgGGA2bgKhHZrpTqi9dbB16vTR8RKTyNDfsp41lTStUB3gEaakn3i8jyU11/vJ7P3VraYeB5oIV2bKr2/bqITNbyvgG4DwgAVgETRMStlCoCXgUGAw+KyLJy7B0OPKEdnw1cLyLp2jUrr8zHgRuBg3g9Z2vK8ayd5HEr/Vxo63OBV0RkcVl7gcuAEYALWCAiE8u75mWocMUTEaxWKwUFBRQUFJCRkcHBgwc5ePAgBw4cYMuWLWzYuJG83FwAgiLDCG3XkPjerQjunIQhsHL+nYvbQ9aCjRz5cjmOjAICooKp0zWJsJQYTGGBuG1Oig/kkr32INbD+RhDA0kY3Y24kV0wBtW+MFdVkTl/A2n/m0dIPQudnq95HQnOlsxV/8/eecdXUaV/+Dn33vRKKgQISWgJgRB6FVARBASxIKKCLqsu9t7QVda199X1Z8HuqsuKCiKgIL0X6SAJJCEBElJIT25ufX9/3AsETCAotxDn+XwmM3fmzDnvzJ1z55v3nPOeXH55Yj7+LcPo+Ox1+Eadn6OSzwV2i426Q0cxHSjBlFtCdU4hNTlFmIsrT0rnHxhA6zataRXbipaxscQ6l5iYGEJDQwkNDSUkJOSkdUBAAL6+vvj4+DRHodfsLuhUvM2zBjg8FsDFwIfOXXtxiA+rUmo48BxwFbASuMApPKzAIGf6wcB/Gsg6QCm1rd7nCOD7BtJ9DNwlIiuUUi/X2/9XoEJE+iil/IA1SqlFOATVTyLyrNP2M/17+DqQoZRaDvwIfCoidfWu/05gBDBeREwNVKwSEemplLodeBC42bm+wymugoG6U09qAv/C4WVarZSKB37CIcB+c/9F5Cql1JOcLGpmAMnAhUCI8xrfAToAE4FBImJRSv0fcD3wGRAE7GqC93A10F9ERCl1M/AwDrFEI2WmAdcCPXA851uAXxrJ+z6nmAR45Ax2HLdXKRWB4xlNdtrV5LdqXM/OiM2G3WbHbrMhNrtj2+rYd+yYtc6MpbbueKiAU9EH+RHQJpKA/u1ISOpLUEprAhJjznlTpDG3hJw35lOzN5+wlFi63juEmH7tGuw/JSKU7Sog+6stHPp0JSU/bafdvaMJ7Z5wTm1qbojNzsEPl1L43SYi+8TT48lL8Q1t/p7J6H7t6PPy5Wx+dB4ZD39Op+cn4RfbwtNmeQSdj57AxBgCE0+ekcNusmAqrMB0pBxzQTmmgnLKSqsoKjvA5pzdWMprsVU3/Sdf52NAZ9Cj99Gj8zGg9zGg8zGgdDrHb4dSKKVQOufauc3xfTqUAnQ653HgTALwDMfP+It1mvMPbdxzprPPe7xNrB0TUwk4XqyLnfvDgE+VUh1xeCSOuQpW4fDW5ADzgUuUUoFAgohkNJD/8WZWOOFBqZ9AKRUGhIvICueuz4FRzu0RQJpS6up6dnUENgEfKaV8gDkiUl8Q/gan9+8LZ37XAZNweOsAJgOHcAg1SyNZfOtc/4JDKAKsAV5z5vutiBw6nQ2NMBzoUk8chiqlQmj8/jfEfBExASalVBEQi0N49wI2OfMOAI55FW3AN02wrQ0wy+nF9MXxnZ+uzAtweFprAZRSDYnyY5zUDOp8Lhqjvr2VOETxB0qp+cAPTbgOAKqtdY44Uz4KpfdB6XUonQ693rE4Pit0fo5Ri/ogP/SBvugD/TCEBuAbHYpvVIhbmhmLf9xG7tuLMAT6kPb4CFpfcvqRbEopIrrFEdEtjtLth9nx0lIyHv2KVlf2ofXUi7w6vpansNWYyHpxLhWbsmh3ZRopd1zQLAYSNJXI9Nb0e308mx76nowH/0PH5yYR0DbK02Z5DTo/n+NNqI1ht9iwVtZiqzVjqzVhrzVjMzq2bUYzdpMVsdoQqw27xbEWi2OxW22IxYoIYBcQQZwLdudacOy3C4jNuQZszuOn44zHz3QHGk8gAn1/nP7wxkufe+lMuZzPeJtYM4pIulMw/YCjz9qbwD+BZSJyhbPD/3Jn+k04xFY2DmEXhaOzeGMelKagaPzJUDg8bj/95oBSQ4AxwOdKqZdPHahwKiKSBbyjlJoJFCuljgXi2YWjL1gbThYk9TE51zac36GIvOAUDKOB9Uqp4SKy93Q2NIAOGCAiJ4XvVkq9RcP3/3S21bdP4fAePtZA+rom9vt6C3hNRL5XSg0DZpyhTPj9nfitOO7FMer3fD5ur9PT2BeHGL0WuBO4qCkFlG7Lxo54te/eZDJx3z338sHMhcT2TaD74yMwhJ+dOIzo3poLPryWve+uJffbTcQU2Vn4zQ9ERWkv4mNkZWVx5fgrqMrIofsDF9N6XBdPm+QRwlNa0u9fV7LpgblkPfQl3377LRcPa1J10vAQDv0mx7c5dauBX2BxwdiqYT//w+sGtZ1rvE2sASAiFUqpu4G5ziatMBz9ogBuqpfOrJQ6CFyDQ9BFA684l99bdrlSqkIpNdjZf+r6eod/Am5TSi11Nud1ctoVBRwWkZlKqSCgJ/CZUuoz4N8isrF+GUqpMcACcTzlHXEIjGOjXrfi6KP2vVJqpIjkN8VupVR7EdkJ7FRKDcDRNLhXKbVXRJKbePmLcAiOl515pju9hA3ef6AKR9PjmViC47t8XUSKnM2HISKS28B1PA9sFJHvTjlU34Ybm1DmSuATpdQLOJ7zscB7TTgP4ABwu1JKB7QG+jaUyNncHCgiC5RS63H04WsSBp13BwOtqqri8ssvZ9myZXS6vg/t/9r3d3vE9P4+pN47lLDkGHa+uoxuvdJYuXgFXZJTzrHV5x9LlixhwoQJ1NnNDHz1KkJ7tPS0SR4ltH0UA/7vajY/+gNjRo7m/957h79NvcXTZml4ORsvfa7hfiLNCK/1s4vIVmA7Do/FS8DzSqk1wKlvuVVAobO5axUOj1SjnfubyF+At5VS63B0qD/GB8AeYItSaheOl78BRxPmNucgh6s40dE/DShoIP/JOPpWbcPRzHp9fe+SUyQ+CMxXSjXVBXGvUmqXUmq70+aFznNP57zZoZQ65Fxew9Gk3FsptUMptQeY5kzX2P1fhqPZdJtSamJjhYjIHhyDAxYppXbg8IK2aiR5N+BIA/tnAF8rpVYBZww3IiJbcAz62Iaj2fJsnok1OLyaO3EI/y2NpAsBfnBe0wrgvrMow2spLS3lkksuYcXKFfR6/FI63Nr/nDRdtrk0hf5vXkl1TQ29B/Zl9fq158Da8xMR4d///jcjR46EFj4Mfm/in16oHSMwLowBb19FRFoc0/56K3c/ch92e7N/F2tonBavGg3anFBKhQIfisgED9pwGZB0bHTk+YBS6icRGelpO9yAV1a8wsJCRowYwe5f99B7xmgiB7c752XUHCpn04PfYy438vXsrxk/etw5L8ObMZvN3HXXXbz//vvEDepA2uPD0QW5N56WqayWsp35lO4ooCavDGNhFdYaE2ITDAE++EUFEdgmnBZdWhKR3pogD0xcb7fa2P3acg7O30O/YQP4ftYcYmJiznyixp8Rb+5Rck7QxJqGhmfwuoqXl5fH8OHDOXAol77PjiWsV5zLyqo7WsPmh+dRlXOUmZ9+wF+v/4vLyvIm8vPzmThxIqtXr6bT5L60n9rXbUGETeVGCpZkUrBsH2U7HQ5/vZ+e8IQwglsF4xfii9IrLLUWaotqKcsux1RpBiC0QyRxwzvT9rJUfNw484WIcHDebva8tZLQFmF8O+sbLhw6zG3la5w3aGJNQ0PDJXhVxcvMzGT48OEUlZfQ78XLCU6NdnmZlmoTv0yfT+mOw7z4xss8fHdTQ9Sdn/z8889cd911VNRU0v2h4URf5J55WSuzSjgwezv5P2dgN9to0T6cxOEJtO7TiuguEegbmUxdRKjIqyJv9SGyfz5A8a4S9P4G2o5Oof3kvvhFuC+AbeX+YrY+9RO1+eVMu+t2XnnuJQIDm28AXY2zRhNrGhoaLsFrKt6OHTu45JJLqLbU0veV8QR2cF+MK5vJyrYZP1K4NoeHnnyUF2c81+wCdtrtdp555hlmzJhBi8RoevxjFH7xoS4vtzKrhMwP11O0Jge9v4GOo5NIubozUR1/3/d7dF8ZO7/aw/4F2eh99SRO7EHSpF7o/d3ThGupMZPxzhry5u0iLrENn838hIsvvtgtZWt4Pc3rR6MBNLGmoT4b0DkAACAASURBVOEZvKLirV+/nlGjRmH1g36vjsevrfujx9utNna+uJTDi/Yy9Y6bmfnme+h0Xjv26azIz8/npptuYvHixcSP7ELq/cNQ/q4dCVxzqJzMD9dTsGwfPkG+dLu+C12u7kzAWYZdaYyKvEo2vbOVnJ9zCYoLIfWBi4jqHX/mE88RR7ccYtcry6g5XM7wMSP496tv0rnzaWfs02j+aGJNQ0PDJXi84i1evJjx48fjExFA31cvx6dlkMdsEbvw6/+t5sDX27h80pV8/el/z/tJrGfNmsVtt91GtbGG1LuG0GpMsku9htZaM/s/20TO19vQGXR0vTaFtBu64B/mmsDJBb8cYeWz66g8WEXbUckk3zUUnyD3TCtmM1k58PU2sr74BbvJyrU3XMcTj0wnJUULB/MnRRNrGhoaLsGjFW/27Nlcd911hCZE0vulcegjPD+tkYiQ9flmMj9czwWXDuOnbxcQEBDgabPOmpKSEu666y7++9//Ep3amu7TR+DbJvjMJ/5ORIT8nzPZ++4aTCU1dLysPX1u70lQtOvvndVkY8sHO9jx2S4CWwaT9sRIWqQ2FpXn3GMqqyX781/I+2EXNpOVS0aP5N477mbEiBEYDF4ZRlTDNWhiTUNDwyV4rOK999573H777UR1bU2v58eggr3Lg5U7Zye731hOap80lny/iNjYWE+b1CTsdjsfffQRjzzyCBWVFXS6qR/tJvVw6bRRlVkl7H5jBWU78olKiWTAg31pmeb6wSGncmR7Ecv+voqaolo6T+1L4qTebp1WzFRu5OB3Oznw3Q7MFUYiY6K4cfIUrplwDX369Gk2zeoajaKJNQ0NDZfg9opns9l48MEHeeONN2g1oD3pM0a6vP/U76Vg6T52vPAzIeGhLJg7nwH9+nvapNOydetW7rjjDtatW0dMelu63XchfglhLivPZrKy/7NNZH+1Bd8QX/rc3oPkyzu4LQxIQ5iqzKx+fj3Ziw8Q07ctaU+MxDfMvZ5Ru8VG0foDFPyUyZG12YjNTkR0JJeNHsOoS0dxwQUX0Lp1a7fapOEWNLGmoaHhEtxa8SoqKpg0aRILFy6k/YSedJw2wOsnCq/ILGbr3xdgOlrDS6+9wn133ON1I0WzsrJ48skn+fLLLwlsEUzybYOIHdHRpXYe3XaYnS8vofZQBR3HtKffPb0IaOG+2GenQ0TY+90+1r6ykYCoQNKfHk1YJ894Rs2VdZRsyOPo+jyOrM/GUu2YQrhNQluGDh7KoIED6dGjB2lpaVoYkPMf7/phcAGaWNPQ8Axuq3jr169n0qRJHDx0kG73XUjcZedPJ2xzuZHtzy6meGMugy4ewqxPv/QKz0hmZiavvvoqH330EcqgI/HqdBIn9UAf7LoO9paqOva+s4aD8/cQ0jqEQY/2o21/1wUu/iMU7S7h54eXYyw30e2+obQenepRe+xWO1VZJVTsOELZrnxKdhzGVFoLgE6no0PnDvTu2ZuePXoeF3BRUU2d6U/DC9DEmoaGhktwecUzm8289NJLzJgxg6CYUNKfvJTgLuffC0jsQt7cnex9dw0+Bh+e/PuT3H/Pffj5uXdQhIiwcuVK3njjDebOnYveoKftmFQ6TumLIdJ1ni0R4ciKLHb/awWWCiNdJ3Wh163d8Qnw7g70xrI6lk5fSf7mI7Qb14Xku4ah9/WOZncRoa6omsp9xdTuL6Uss5DyzCLqiquPp4lpFUtatzR6dE8nLS2NtLQ0kpOT8fV1z4hXjbNCE2saGhouwaUVb9WqVUybNo09e/bQ9uJkUu8bhi7EuwYSnC01h8rZ+9ZqCtfnEJfQhqf/PoMbrr/B5aLtwIED/Oc//+GTTz4hKyuLgLAg2o7vSsIVaRhc3PxoLKpm9xvLKVqTQ0TnCC54fAAxKZEuLfNcYrfa2fzOVrZ/tpsWKdGk/2MMAbHuj+XXVEzlRir3FWPMLqMq+yhlWUVUHyjFbrEBoDcY6Ni5Iz27O7xv3bp1Iy0tjdatW3tdE/2fjGZ/8zWxpqHhGVxS8Xbs2MGTTz7J3LlzCWnZgq73DqXFgLauKMpjFG/MJfO9dVTsLyYiJpLbbp3GdZOuo0uXLuckf7PZzC+//MKCBQuYN28e27dvByCmZzzxo1KJuKAdhgDXCl8RIX9RBrvfXIFYbPT6WzrdJqV4fT/DxshZmsuKp9eiM+hIe2IE0X0TPG1Sk7FbbdQcLKc6u5TanDLK9xdRmV2CsbDqeJqwFuF0T0sjrVvacS9camoqwcGuC9micRKaWNPQ0HAJ56zi2Ww2Fi1axDvvvMO8efPwCw4g8Zp0Eq5JR+flTWW/FxGhZPNB8v63ncJNB0CgY0onRlx0CRdccAHp6ekkJiaescmqqqqKjIwM9uzZw+7du1m/fj0bN26krq4OpVNEdWtN7KAkYoe0x6+Ve168prJadr26jMJV2cR0j2HokwMJd8P0VK6mPLeSnx9ZTll2OZ1u6kP7Kf08Onr1j2KpMlGVXUJdTgUV2SWU7y+iOucollrz8TRJ7ZPontb9JC9cUlISer13NAc3I87fB6mJaGLtLFFKPQ5cB9gAO/A3EdmglLoXeF9Eat1oS0fgdSAFKAcqgadEZKVS6iagt4jc6S57fg9KqU+AH0RkdgPHHgRuBqw47verIvKZG237AHhNRPa4IPs/VPEsFgurV69mzpw5fPfddxw8eJDAiBDaju1CwoR09CF/nn41dUdrKFqeReGaHEp352OrswKg1+uJaRlDixYRtAgPx8fgg9VqxWw2U1RcRGFhEcbaE9VVZ9AR3jGW8K4tiUlrS0j3GHzcHHriyMosdr26DGuNiV7T0km7vgs6N8YrczUWo4XVz29g/8JsR3iPx0fiG37+BT5uDLELxiOVGHPKHc2o+wupzi6l+lAZYndU+YDAALqmdj2pH1y7du2Ij48/L4NAewmaWNM4gVJqAPAaMExETEqpKMBXRPKVUgdwiKMSN9niD+wAHhSR7537ujpt+OR8F2tKqWnAFcAEEalUSoUB40Xk0ybmaxAR6zk3+NzR5IpXVVVFZmYmmZmZ7Ny5k3Xr1rFx40Zqa2sx+PkQ1Tue+BEpRAyKR+fj+v/Y7RYbZbsKKP+1kNqCSux1FgxBfgQnRNCia0tC2kd5rP+O3Wqjcn8JxtxyjIerMBZXYq4yYaoygghKr0MZdPiFBhAQGUxARBBBbVrg1zaEgNah6Aye8XhYqkzseWslh3/aS2TnCIbMGERUh9834bq3Uz+8h39EAOn/GE14SktPm+VSbHUWqg+UHvfCOUTcUUzlxpPSRUZH0a5dOxLbJdCmTRtiYmKIjo4+aYmKiiIkJOS8n47tHKOJNY0TKKWuBP4iImNP2X838AqQAZSIyIVKqUnAdBwP0XwRecSZthr4F3AZYAQuF5FCpVQ08C5wbEbke0VkzWls+SswRERubOT4TTjFmlJqLPAE4AscBa53ljnUaQs4xMMQIBiYBYQCBuA2EVl1GjtuAW515r0fmCwitU4RVgn0BloCD4vIbOV4i78FXATkOO/PRw2ItTzgQhHJaqDMXjhEczBQAtwkIgVKqeXAWmAQ8D2Q2ch1zwASgVZAJ+B+oD8wCjgMjBURizO/B0Vks1LqUuA5QI/jO764ofsnIic6spyGMU9fL1aTBYvJgrXOgtVswWqyYDGaMZbVUFtWTW1pFTVlVdSVn/D+KL0itGMMLVJbEpnehsg+bV3ef+oYdcXVZM/aSv6ivZgr6gDwb+GPwV+PqdKMpcYCQEi7FrS5LJX4cV3R+2svlDNRvCmPnS8uwVRaQ/ebutHzr93Qu0F0e5riPSX8/OgKaouNdL6lPwnX9Dyvm0XPFhHBVFpL7aFyjEeqqCuqxnikktrCKoyFldQV12AzWho9X+ejxzfQD99AP3yOrf190fvo0Rn09dYGdAYdeh8DeoMenUGHUjqUTjkWpcC51ul1x/c51jrHsfr76qVF1T928rkoheN/Nsd3evz/t+P7T+w8OZ3zoDp527FSJ2SZOpH+f7e/0+wfHE2snQVKqWBgNRAI/AzMEpEVzmMHcHrWlFJxwHqgF1AGLALeFJE5SikBxonIPKXUS0CliDyjlPoS+D8RWa2Uigd+EpFGA2IppV4DckXkX40cv4kTYq0FUC4iopS6GUgRkQeUUvOAF0RkjfPa6oB7AH8ReVYppQcCTydAlFKRInLUuf0MUCgibznFWhAwEUgGvheRDk7BextwKRAL7AFuri/WlFIhQJ6I/Ma1oJTyAVbgELnFSqmJwEgRmeoUV3tE5HZn2sauewYwHLgQ6AKsA64SkYVKqe+AT53f1XLgQSAX2IJDjOUopSJEpLSh+9dUb57zOTiBTqH3M6D31eMTFoBfiwB8wwPwDQ/EPyaY4Phwgtq0ILB1GHo/9/ZDs9VZ2PfpRg7M3o7Y7CQMjSfp0kTiesTgH+4YDSkiVOVXc3hDAZk/ZFG0sxj/yEA63TqA1iNTtJFyDWA1Wtj77hry5uwkLCGMoTMGEZt6/oVW+SPUVZhY+cw6cpfnEdUzjm6PjSAgxntHi7obm8mKucKIubzeUlmHzWjBWmt2ri1YjRZstWZsJit2qx2x2rFbbc61HbHasFvt2C12xGYHEUezrAhiB7HbPTxb8R9j9Iq7Lpo/5M1lnrbDlTTP3scuQkSqnV6dC3C86GcppR4VkU9OSdoHWC4ixQBKqS9weK3mAGbgB2e6X4BLnNvDgS71XmqhSqmQpnpqnCKjI5ApIleecriN09ZWOLxMOc79a4DXnPZ9KyKHlFKbgI+comiOiGw7Q9FdnSItHIen66d6x+aIiB3Yo5Q6FsZ8CPCViNiAfKXU0oYuh8Z/OjoDXYHFznulBwrqHZ/VhOsGWOj0nu105vGjc/9OIOGUMvsDK0UkB0BESp37f3P/GrH5N7y9+nPWVu7EL8CfgAB/Anz98Tf4EaD3I1DvT7AhkGBDIDoPi5y9m3bxzoOvcuRAPp3GtKfnLemEtA76TTqlFKGtQwi9MoSUKztRsKWQTf/ewo7nl2BbU8QdLz1CZCv3z1nprWRs3s3bD7xCUW4B3a5Lpfdt3TH4//l+jv3D/LjkpaFkfL+fda9uYt3U/3Lr8/cyaOyFnjbtvMSOYLFbsditWMWKxW7DJjasYsNmt2FHsIkNuwg2sSMIdufaZrdjt9uw2+3ObbvjHOf2scVma2Cf3Q52caS32RERxzGxA45/5gSnKAQEQURAwC5O0ei8BsHxGXu9z848jiU67mQSCND7gaOVqlnz5/t1+IM4RcZyYLnzRX8j8MkpyU73hrXICXemjRPfgQ4YICJNfeh24xA+x+y6QinVG0dz7Km8haOj/PdKqWHADOc5Lyil5gOjgfVKqeHOwQlDgDHA50qpl8/Qqf8THH3Jtju9ecPqHTPV265/T077P5yzj1qNUipJRLJPOayA3SIyoJHTa+ptN3jd9W0TEbtSqv53Yue39aJB8djI/dt7ums7xu2DbuD2piT0ECLCq6++yj8eeYSwuFAuf2c0Mb2b7vVp1TOWsR9cyu6v97Lp31t5ePQ0Zs+azcjhI11otfdjMpl46qmnePnllwlpGcy490YT0+P8iZvmCpRSJF/ekVY9Yln+5BrevPMFclf+ysx/zyQ6WhP4Gk1ivacNcDXNZ5iRG1BKdXaOwDxGOo4mMoAq4Jj/fgMwVCkV5WxKnISj6e50LAKODwZQSqU7132VUg2JpS+BQUqpcfX2NTbBXRiOvljgEJfHymgvIjtF5EVgM5CslGoHFInITOBDoKcz7WdKqb4N5B0CFDg9cdef4RoBVgLXKqX0To9XY/9CPw+8rZQKdZYfqpS6FUe/wGjnYA+UUj5Kqcbmsmnwun8H63B8n4nOMiOc69/cvz9QhtdQW1vLtddey0MPPUTihe0Y/58xZyXUjqF0iq4TU7ji8zH4hBsYNXIUM16YceK/4j8Z27Zto3fv3rz44ot0HteB8V+O+dMLtfqExYcy9oOR9Ly1O/O+nUdSpyQ+/PjDP+3zoqFRH02snR3BwKdKqT1KqR04+jvNcB57H1iolFomIgXAY8AyYDuwRUTmniHvu4HeSqkdSqk9wDTn/ngacPE6PXCXAdOUUtlKqXU4OtM/00DeM4CvlVKrcHTIP8a9SqldSqntzjIW4vCMbVNKbQWu4kQH+jRObm48xt9xiNPFQFO8St8B+3A0N75D4yL2HRz3b5NSapczXa2ImIGrgReddm8DBjaSxwwavu6zwtmcfSvwrbPMY02tDd2/85rS0lKGDx/O7NmzGXBXHy58fjCGoD/W2T08IYxxH40i4cJ4/vHYP7julknYbLZzZLH3Y7VaeeaZZ+jTpw8HjuQw5o0RDH68P75B2uCLU9EZdPS6pTtXfnEZwe0CuXnqzQy+eDCZmZmeNk1Dw6NoAwy8HKXUy8DnIrLDgzaEAh+KyARP2dAM8bqKd/DgQUaOHMm+rH0Mf3YobYed2wnTRYRNb29l+6e7GDLqAhbO/pHAwMacwc2DjIwMpkyZwsaNG+k4MokBD/bBL9y9c5o2hs1sw1RlxlxtAREM/np8g33xdeFk9GeD2IVfv81k07+3YDXZuHXaLTwz41kiIzVvpMZvaPYjmDSxpqHhGbyq4u3Zs4eRI0dSUl7Cpa9eRHRP141K3P2/vax9ZSMpPZNZ9dPqZvnytdvtvPXWWzz66KPo/HUMfqQ/7Ya38Zg9FqOFwh3FFPxSSMmvRyk/UEH1kZoG0/oG+xDaOpiIzhHEdo2mZc+WhLfz3AwKxlIjW97bwa9zMgkKDeKpvz/Jnbffhb+/a+dl1Tiv0MSahoaGS/Cairdu3TrGjBmDVW9h1JvDCevo+hdzztJclv19NbFtY1nz8xoSEhJcXqa7OHDgAFOnTmXZsmUkDI7ngscH4B/lfm+atc5K3prDZC/KIW/NYWwmG0qviO0YSnRSMBHtgghs4Yt/sA9KgaXOhrHSQkWBkdK8GvL3lGMsd8T5Cm8XQvwFbWk/MpGoZM+I69L9ZWz81xYOrj9MZGwkjz3yGLf97bZm753VaBKaWNPQ0HAJXlHx5s+fz4QJEwiI9mfUm8MJbO2+6W4Kthay+IFlBAQGsHzRCrqndXdb2a5ARHjvvfd46KGHsIiFgff3pf3YBLfHmKsurGHP1xnsnZOJqcJMUKQfqSNa0XFILO16ROAX1LQgACJCaV4N+9eWkLH8CDkbS7BbhejkFnQa15EOo5Lc3mQqIhT8Usi2D3dyeHMBLaJacM/d9zDt1mnExsaeOQON5oom1jQ0NFyCxyvexx9/zC233EJ05yhGvnERvi3c3+G9dH8ZP96zBLvRzg/fz+eiYRe53YZzQW5uLjfffDM///wz8X3bMPTvA/Fv6d5muqqCarZ8sIN987NAhOQLW9J7YgJJfaPQ6f/4u8xYYWbHgsP88k0ehRmV+AX7kHJ1Z1KvTSEw0v1zWh7ZVsj2j3eTt/YQBh8DV1x1BXffcTeDBg3SgjD/+Wj2X7gm1jQ0PIPHKp6I8MILLzB9+nTa9W/LRS8M+cMjPv8I1UeqWXjXEqrza/jsi8+YdPUkj9lytogIM2fO5MEHH8RsM9Pv7t50ujLJrWLBWGpky4c72PvtPpQOel3djgGTk4ho45rmQRHh8K5y1nycxZ6fC9D76Og8rgM9/ppGYJT7myTLcyvJ+GYfe7/PxFxjoXV8a26YdAPXXXcd3bp104Tbn4Nm/yVrYk1DwzN4pOLZ7Xbuu+8+3nzzTTqP6sDgv/dH5+P5CD515XUsemA5hTuLeOVfr/DAXQ942qQz8uuvv3L77bezfPly4vu2YcgTAwlo5T5vmt1qZ883Gfzy7jYsRis9rmjL0Fs7Ed7KfV6ukgPVrP4oi+3zDqIz6Oh6bTJpU7rhF+L+EaWWWgsHlueRsyiPvPWHEJvQul1rxo4ay+jRo7nooosICvrt7BsazQJNrGloaLgEt1e8qqoqJk+ezNy5c+l+fVf63N3DqybOttZZWTp9FbmrDjLtvmm89dJbGAzeN8lKbW0tzzzzDK+88go+AQb63NGTjuOT3Hovj2wvYs2LGyjdV0ZS/yhGPdaVmCTPzalZerCGpf/OYOeCw/iH+pB2YzdSJ6Zg8POMx9ZYVkfusoMcWpvPwY2HsRqt6A16uvdI44KBQxg8eDADBgwgLi5O87w1D5r9l6iJNQ0Nz+DWipeVlcXll1/Or3t/ZeB9fUmZ2MmdxTcZu9XOulc3sWd2Bn2H9OGH2fO9ZsohEWHOnDncf//9HDhwgOTLOtHv7l5u7etnMVrY9PZWdv9vL6GxAYx8sAupI1p5jeAo2FvBz//ay/7VRYS1CaLP3b1JGBbvUftsZhtHthVxZFMRR3YUUri7GJvJEZQ5MjqS9O7p9OzRk/T0dNLT0+nUqZNX/pOgcVq8owK4EE2saWh4BrdVvDlz5jB16lRMdhPDXxhKbG/vED+nI3Pefla/sIEWUeH874uvuXCYZyf2XrNmDQ8//DBr164lun0Ugx/tT1R6hFttKNhayMqn11J5qIo+kxIYfk8K/k0c2elustYVs/DF3RRnVdGmTyz97u9LRIcWnjYLAJvFxtHMMkp2HaVsXzlFGSWUZZVhszhmDvfz96NL1xR69+hDjx496NGjB926ddOaUL0bTaxpaGi4BJdXvNraWh544AHeffddWqbEcvHzQ9wamuOPUrL3KEseW0XV4UpuvfNvvPbCa26PqbVx40aeeeYZ5s2bR2h0CL3+1p2kMQnoDO7r52cz29j49hZ2ffUr4XGBXP50d5L6ui5o8bnCZrWz+etclr2dQV2VhZQrO9Lrbz3wD/e+YLZ2q53yAxWUZpZTlllBcWYJJRklmCrNAOh0OhI7JNCzRy969+xNeno6ffr0oUUL7xCgGppY09DQcA0urXgLFizgzjvvJCcnhx5TutFzWnevGEhwtliMFja9tZXdX+8ltm0sr7/0OtdOvNalzWp2u53Fixfz4osvsmzZMgLDAul6XQqpkzpjCHCvJ6viYCVLp6+kZG8pvScmcMl93utNa4zaCjPL/i+TTbMO4BtooOct3ekyIdmtgvf3ICLUFNZQklFKeWYlJRmlFGcWU11wYuaHDp07cMGgCxg0cBADBw6kc+fO6HTefV3NFE2saWhouASXVLw9e/bw+OOPM2fOHKISIxn8aH+ie57/0znl/3KE9a9t5mhmKd17p/HU9BmMGzcOvf7cdWDPz8/nk08+4YMPPiAnJ4fQmBC6XpdCp/Ed8PGAQMpalMOq59aj18P4f6aTclFLt9twLinaX8XCl3aRva6EFgmh9LuvN20Hem4Krt9LXYWJoxmllOwqpWhnMQU7CzFVmAAICQuhX/9+DBk0hAEDBtC3b19CQz03VdefCE2saWhouIRzWvG2bNnCa6+9xpdffolfkB/dp6TS9YaU89Kb1hh2m51987PY9tEuKg9X0TaxLX+98a9cc801pKSknH1+dju//vorCxcuZM6cOaxduxYRoW2f1qSM70ybYa3Q+7p/NKO1zsq6Vzexd84+2qS34OoXe9IirnlMqSQiZK4o5MeX91CaV0P8oDj63duH8IQwT5v2uxERKnIrKdpRTMmuUvK3H6EspxwElFJ07tKZwQMGM3DgQAYMGECnTp0079u5RxNrGhreilIqElji/NgSsAHFzs99RcTchDymi8hz9T6vFZGBSqkE4AcR6XpurT7OH654BQUFzJ07l08++YQNGzbgG+BL6oTOpE3uim+4+2cjcBd2q50DKw7y6/8yyd9aAAJtE9syZNAQ+vXtR1JSEu3atSMsLAxfX1/sdjsVFRWUlJSQlZXFvn372L59O2vXrqW0tBSA2OQY4oe0ocOliQS39VxH8rLscpZMX0lZVjmD/9qBi+7ojL4ZCe5jWC121v8nh5XvZ2Kps9H1mmTSb+7ukfhsrsBUZaZ4dwlHd5VyZEcRR3YWYa52/ByFhYfSr18/Bg4YRFpaGmlpaSQmJmoC7o+hiTUNjfMBpdQMoFpEXjnL86pFJLiB/Ql4mVgrLy9n/fr1rFmzhqVLl7Ju3TpEhKikSJKv7EiH0Yn4hDRfkdYQNcW15C49SMEvhRzZUUjtUeMZz9HpdYTHhxHTLYrWPeKI6RVNcCvPeq5EhH0/ZLHmpQ34Bui54rkedBoc41Gb3EF1iYklb+1ly3d5BIT50eu2dDpf3hGdvnkJF7EL5bkVlOw8SvHOo+TvOOF9AwgICqBLly6kp6XTuXNnkpKSSExMJCkpifDwcM8af36giTUNjfOBY2INWAa8BgQDJcBNQC2wERgnIhlKqa+ApUB74CFgJ7BbRK4/Jt7qizWllB54ARgG+AFvi8h7SqlWwCwgFDAAt4nIqiaaLCKC2Wymtrb2+FJRUUFhYeHx5eDBg2RkZLB3717y8/Md16pTxCRH025IWxKHxROSFOy2OFbmGgvVBdWYKkwYAgwExQR6ZIqhhhARjEeNVBXUUHvEiN1ow25x/L75hvjgE+JLYFwAoa2Dvapzu6XWwuoXN7B/QTYJfSK58oWehMV434hJV1LwawULXthF3pZSojqF0+/+vsT1Or/76J0JS62FsuxyyrMqKd9fQfG+Ekr3l1Hn7P92jLAWYcTFxdGqZStiY2KJiYkhNjaWqKgoQkNDCQkJITg4mJCQkOPbfn5++Pr64uPjg4+Pj9fE4XMhzf8CNbGm0RxwirUa4ArgchEpVkpNBEaKyFSl1CXA08C/gJtE5FLneSd51hoRa7cCMSLyjFLKD1gDTACuBPxF5FmnoAsUkaqm2OsX5CeWOgtiP3398w3xJTwhlLD4MMITQonuEk1M10h8At3nQasurCHzhywOLMujdF/Zb2wOjg2kTf84Oo3tQExa9J/hxXDOOJpZypLHVlJ5qJKh0zoz9NaO52TS9fMREWHPogJ+enUPFQVGki5qS5+7exPa2nMzM3gCoX85ggAAIABJREFUU5WZqvwqqg5XH19qjtZiPFpHXVkdxlIjllrrWeWpM+jQ++jRO9dKp0MpQKkTa075rBx97pRS4Nw+vvYyxs8a7fd+70/P2O3lfOb8GgOuoXF6/ICuwGLnD4oeKAAQkcVKqQnA20D3s8x3BJCmlLra+TkM6AhsAj5SSvkAc0RkW1MzTB7fEb2/DoO/wbnoMfgb8An0ISDSn4CIAAIi/DH4O6qo8sA/jjVFNfwyczsZ8/YjNiG+RwSpt3QkpmMIgaE+WOpslB2uJW9LKfsW5bB37n5iu0bS+/aetO4T53Z7zydEhF+/yWDd65sICPNlyswB50XsNFeilCJ1ZBydhsay5tMsVn+wn9xVc+l6TTLd/5KGf5ifp010C/4hfvh39iO682+fB3G2m1rrrNSV12GusWKptWCttWCuPbFts9ix2+zYLXbs1hNrm3MtNuGYo0bE+Uec24hzn2O/1D8m4plJjU+Hw6A7cbSoNFs0z5pGs8DpWbMBo0VkQAPHdcAKINGZZodzf1M8a98A74vITw3kGweMAe4GXhaRz5postdWPLvdzltvvcVjjz2GxWqmz4QE+t/QnvC2jb8sTTVWtv9wiNUz91NRaGTc1aOZ+fbHxMQ0/35XZ0tFRQU333wzs2fPptPgVlz5bDoBEdr/zadSccTI8rcz2To3j6DQIB6f/jj33n0f/v5/riZijSbhfe6+c4wm1jSaBU6xVgvcCkwWkXVOj1cnEdmtlHoA6Ax8DrwODBARi1KqDEcTp8WZT2PNoKOBCc5zOgGHgSjgsIhYlVL3Agkicm8TTfbKipeXl8eNN97I8uXLSR4ax+jHuhHWuukj9CwmG2s+zmLl+/sIDArg008+44rLr3ShxecX69evZ9KkSeQdzOOSe7rQ/8YEdG6cAP58pDCzkiVvZJCx6ggtW0fz3DMvMmXylHMaY0/jvKfZVyJNrGk0C+oNMPgZeBNHU6UBeAOHR20ujnAeVUqp14AqEXlKKfUiMA7YcpoBBjrgGWAsjh+FYmC8c3kIsDjLniIiOU002esq3oYNGxg3bhxVtRWMergraeN//wThRVlVfDd9G/l7yrnzgdt4/YU3/9STY9vtdl5++WWeeOIJwmIDmfBiL1p1/80gZI3TkLOphJ9f28uhXWV0Tu3A6y+/yaWXXuqVfag03E6zfwg0saah4Rm8quJ988033HDDDQRF+zD57f60SPzjTU0Wk40fX9zN5q9z6Te0Jwu/+/lPOZfikSNHmDJlCosXL6bbiLaMfaobfqHu9wqJCBVHjBRmVlFZaKTmqBmb1Y7SKQLCfAiL9Se8dSAxHUMxeGlsNxFh908FLHlzL6UHaxg0tD9vvPIWvXv39rRpGp5FE2saGhouwSsqnojw8ssv88gjj9AuPZJr/9WHwIhzO9J063d5zHt6B3EJLVn240rat+9wTvP3ZhYtWsTkyZMpryxj1CNd6XFVa7d6giwmGxnLCslcWcj+NUXUlJ48YE7pQOwnn6P3UbRKDiWxfzSdh7akdbdwr2uqtVrsbP5fLivey6S2zMzocSN54ZmX6datm6dN0/AM3vWAugBNrGloeAaPVzyLxcIdd9zBzJkz6XZpGy5/Jg0fP9d4fHI2lTDr3s34+Pgwb858hgwe5pJyvAWj0cj06dN54403aNUxggkv9SKyg/s6xpcerGH9FznsmHcIY6WF4BYGug4Kp0PPEOKTA4lu609ICwMGX51jwvJyK6VHzBzJqSN7ZzVZ26rI2laF3QYhUb6kjW1DzyvaEZXoXU23ddUWNvznAGs+3Y+5xsYVEy7nuadfoHPnzp42TcO9aGJNQ0PDJXi04lVUVDBhwgQWL17MsFuTGXpHB5d7T0oOVPPlHRupOFLHzI/e56brp7q0PE+xceNGpkyZQkZGBv2ubc8l9yfjE+CeZsWyQ7WseC+T7fMOodNBzxERXHB1DKn9w846flt1uYWdq8rZuKCU7ctLsdsgoWcL+k9pT+cLW3qVt622wsy6T7NZ/59srCY7114/kX/OeJakpCRPm6bhHrznYXQRmljT0PAMHqt4ubm5jBkzhr0ZvzL+qZ6kjW/ltrJry838957N5G45ymNPPcSzT73YbDqIm81mnn76aZ5//nnCY4MZ/3R32vV3z1RBljobqz7cz5qP9qMUDLs2ltE3x9Ei9tzMtVlebGbNd8Us+28hJYdMRCcEMuCmDnQf2waDBya7b4zqoybWfpTNhlnZiA2m3DSZGX9/mvj4eE+bpuFamsePyGnQxJqGhmfwSMXbuHHj8RGfk97oS3zfMLfbYDXb+P6pHWz/4RBXThrHlx//Dz+/8zvg6Zo1a5g2bRq7du2i1/gELn04Fd8Q93jTstYVM+8fOyg7XEv/y6K45uF2RLR0zYToNquw+aejzJ+ZT96eGsJb+TP0tk50H9sWvRdN4VVZVMfqmVlsnp0DKCZdfy1PPPak1jzafNHEmoaGhktwe8X75ptvmDx5MoGRPtzwdj8ikjwXXFREWPHePpa9nUHvgd358fslREZGesye30tpaSmPPPIIH3zwARGtQhjzeDc6DHXPdVhMNpb8ay/rPs8mNjGAKTMSSR3gHvEtIuxeU8E3r+eRs7OG6MRALrwjmZRL4ryqebS8oJZ1n+Sw+ZsD2MzCuCsu48nHZ9CzZ09Pm6ZxbvGeh85FaGJNQ8MzuK3iiQj//Oc/eeqpp0hIj+baN/oQEOkdTVc7Fxzmuye20bJNNIvnLyMlJcXTJjUJm83Gxx9/zPTp0zlaepSBk9sz9LZO+Aa6x7tUnF3F1w/+QuG+Ki6+oSUTHozHP9Az4UC2/FzGt2/kcXifkdZdQhnxYCoJfbxr6qzqoyY2fHGADV9lY6q2cuElQ5n+8BNcfPHFzaYZ/k9Os/8SNbGmoeEZ3FLxamtrmTp1KrNmzaLnuATGPJmKwc97mqsA8raW8tU9m7CbYeb7M7nhuimeNqlRRISFCxfy8MMPs3v3bhJ6RDP28e5EdQ5wmw1Za4uZ9cBmfP0Uf32+PenDPB+7zm4T1s0r4ZvX8ygtMJM6PJbh96cS0TbI06adRF2VhU2zcln3eTY1pSY6dE7i3rvu58YbbyQ42LtGumqcFZpY09DQcAkur3i//vorEydOZNeuXYy4L5UBNyV4rReh4oiR2Q9tIW9bKTfdegNvv/4egYGBnjbrJFavXs1TTz3F0qVLiWkXzvB7k+l0cZRb7+nmr3OZ/+xO4joEcO97yUTFeVdfP3OdjYUfFrBg5mFsFmHADYkMvrUT/sHnNnbfH8VisrH7p3w2fpnL4d1lBIUE8pe//IW/3TKNrl27eto8jbPHO3/YziGaWNPQ8Awuq3giwscff8xdd92FIUBx5XM9SBzoee/LmbBZ7Cx5ay9rPs6ibWIrPv/4K4YOHepRm0SERYsW8eyzz7Jq1SpCIgMZemtHekxoi8HHfe8Hu01Y/Poe1n6aTdrQcKa91onAEO9oym6IskIz37yex+pviwmO8OGiO5PpcWW7sw4f4mpEhEPby9j4VR67Fh3CbhXSenTllql/Y9KkSedlP8o/Kd71YLkATaxpaHgGl1S83Nxcbr/9dhYsWECH/i256vkeBEadX3NyZm8o4fsZOyg7VMP1N17LS8+9SlxcnFttqKys5IsvvuDdd99lx44dtGgZzMAbk+hxVRt8Atwrksy1Vr55bAt7lxZy8Q0tuW56AnrD+fFuOrCrmi+fO0Dm5ipadQpm5CNdSewb7WmzGqSm1MTOBflsm3uIgr3lGHwMjBg5nAlXTWTs2LGacPNuzo8K8QfQxJqGhmc4pxXPaDTy5ptv8s9//hObWLjormT6TIr3Ok9GUzHXWln2diYbvszG4OPDPffcw/33PkBsbKzLyrRaraxYsYL//ve/fPXVV9TU1NCmSyR9r00kdUyMR+KJVRbV8dVdGynYW8Gk6QmMmOK+mHjnChFh04+lzHopl6OHTV7bn60+BXsr2PF9PrsXH6biiBG9XsegIYO4avzVXHLJJSQnJ3ttl4I/Kc3+y9DEmoaGZzgnFa+uro7PPvuMp59+msOHD5MyNI4xj6cR0sq7+gj9XkoP1rD0X5ns/OkQPr4GJl47kZun3sLgwYPR6/+4eKqoqGDFihUsWLCAb7/9luLiYvwCfUkd0Yp+E9sTmxrosZfykYwKvrhjI6YqC9Ne70iPC72/Kft0mOts/PhRAfPfd/Znm5LEBbd0wi/Iez2/IkL+ngoylhSxZ0k+xdlVAMS2imH4RcMZPvwSBg0aRIcOHTTx5lma/c3XxJrGWaGUigSWOD+2BGxAsfNzXxExN3iiB1BKpQNxIrLgbNIppcYBXUTkBRea94cqXnZ2Np988gnvvvsuxcXFxKdFMfK+rrTpHXKu7PMqSg5Us/GLXLbMzcVitBEdG8mY0WMZOmQo/fv3p3379vj4nF6g1tTUsG/fPrZt28bWrVtZv349mzdvxm634xfgQ6ehsaSNjCdhUBi+AZ4VEJkrC/n6oV8ICtVz73vJtEvxXi/U2VJ2xMT/Xs1j3dwSQqJ8ufieFLqPa+tV8dkao/RgDTkbjnJgYylZG4qoKTUBEBoeQu9evenfbwA9e/akS5cudOjQ4YzPpMY5w/sfnj+IJtY0fjdKqRlAtYi8Um+fQUSsnrPqhB3ADUBvEbnzDGlvakq6c8xZVTybzcb27dtZsmQJX3/9NZs2bUIpRfLQVgya3JE2fULc/p+9iFB91ISpyopPgJ7gSD/0Pq4NC2KqtbJvZRG/Li4ka30hxkoLAHq9ntZt44iJiiEsLJzAwEDMZjNGo5Hy8jLyDh6kvKz8eD6+AT60Sg4jqV8U7fu1pFVaoNdMm7T+ixx+fGkX8SlB3PNOsstmI/A0Wdur+OKZA2Rvr6ZNaigjH+1GfHqEp81qMna7ULy/isM7KyjYXUnezqMU7avEbnNUbYNBT2L7RLqmdqNjh47Ex8fTrl274+uwMPfPHtKM0cSahkZjHBNrQFegFOgBbAFmAW8AAYAR+IuIZDhF0TggEGgPfCciDyul9MCHQG8cIuYjEXldKbUc2Ab0BUKBqSKyUSkVAXwEJAG1wK0issNpTxyQAJQAg502HAaeB3JOtcu5b/8p6QJwijelVDtnWdE4PIh/EZE8pdQnQKXT5pbAwyIy+yxuX4MVz263U1RUxMGDB8nIyGDHjh3s3LmT9evXU17uEBttUiPpOjKO1JFxhMa590VuNlrZu/QIu37M5+C2UmrLLcePGfx0tE4No9OwlqSPbUtwlGvDStjtQklONfm7Kqg4aOLowWpqKuow1Viw1tkx+OrR+yr8gg2EtwyiRctgWrQJJLpTIC3iA72uP5/dJvz40m42fJlDj4tbMO3Vjvh5INCtO7HbhfXzSvjfy7mUF1lIG9WK4fenEtbSfXHrziWWOhtFWVUcza7haI6RoqwKirIrKTtci81iPyltcEgQ0dHRxMbGEhMdS0xMDDExMURHRxMZGUlYWBihoaEnLWFhYef91GwuwrsqswvQxJrG7+YUsRYFXC4iNqVUKFArIlal1HDgNhG5yinWnsQh6kxABg5BFQO8ICKXOPMNF5Fyp1jbJyK3KKWGAP8nIl2VUm8BJSLyD6XURcBrIpLutGcsMFhEjKd6zM5gV/10xz8rpeYBs0XkU6XUVGCciIx3irUgYCKQDHwvIh2aeu8untxLjNUm6qrNGKtMGKtNVJUZqSiqxmY98aOu99ERnRRCXGoYiX2iaNc7wiMvMqvZxqZZuaz6YB81pWYi4vxIHRBK25RggsL0mIx2juQYydxUyYFdNegMit5XtWXI3zoTEu25aa3OF0w1VmY//AuZK4sY8ZdWXPuw94W5cCWmWhvz3z/Mwg/zQSkGT+3AwJvae7w5+lxhtws1pSYq8o1UFBgpL6ij8oiRmlKTYykzU1NqorbMfNwz1xgGHx1+wb74+fvg42fAx9+Ar5/BsX3q4qtH76NDp9Oh0yt0ep1zcWzr9afs1ymUszn6JEe9OnnfcS9+vTSKU85TDX/+Td7ngA8fmd/sK0vzqAka3sDXImJzbocBnyqlOuLwINXvuLFERCoAlFJ7gHbAbiDJKcLmA4vqpf8KQERWKqVClVLhOATeVc79S5VSkUqpY20K34uIsREbT2dXYwwArnRufw68VO/YHBGxA3uUUmc1THHdvF34BxvwCzbgF2TAL9JAeFIoqbExhMYGEBrrT0R8EJHxQeh9dMd/CD3Bwe2lzHlyG8XZ1aQMCOOyv3UgpX9oo32M8rOMLP6sgJVfH2T7vMOMfKALvSZ4b0BeT1NxxMgXd26gaH8Vk2ckcvF1LT1tktvxC9Rz5b3xDJkQy6yXcln2f5ls/TaP4fd1oduo1uf9s6PXKUKjAgiNCqBt2m+PH5NndruduioLxnIzphqrY6m2Yqq2UFdd/7MVq8mG1WTHYrJhNVkxmc3UVDj2WU02rGY7ljobYhfsthOL2AS7XRD7b+04X2k3Ztz4J7t+P8fTdrgSTaxpnCtq6m3/E1gmIlcopRKA5fWOmept2wCDiJQppboDI4E7gGuAqc40p/6bKTTs8j6WrqaBY02xq6nUt6f+tZzV22Rz7lLyjfvx1fnhpwvETx+IwrumgbLb7f/f3n3HN1W9Dxz/nO69aEtpQYbsIRtkCyqiIkOUIQjIVpYI/FgqAoKgCKgIqF9EFAUExC8gWwFlKrIKyB6yWwrdbebz+yMBK19GgaZJy3m/XmmSO859btKTPDnn3HuZNelrZn+4nNCCPrzxRUUeaXTnAxiiH/aly5gSNOtWiLlvn2LZuFgu/GZm0ufvEhYekguR5x0H9xxhQKdRpKdn8MYXFahYP38eIJJd4THe9P2oNIc7JfPd+NMsHraLw4uTGT7xDSpULePs8FyaYMVsNWIWE2YxYRETFjFjETNWsWAVMxax2B5jwWq1YLFYMJnMWKwWLGYzFosFqwhWsYKIrVR775uI2D78RODaY0AQ+7LX77jeY3fj8yzL5BQPN0+ucvRQzpbqenSypjlCMLbxXwBd77SwUiocMIrIEqXUceCrLLPbARuUUvWBJBFJUkr9CnQEximlHsPWJZp8k1/fKUDWb79bxXXjclltBdpja1XrCGy+0/5kR/ngepQPrpcTRTlEYmIiHTt3ZOXKldRvHUWnt4riE3B3yWTBor4M/aosG+ZfYv57h+nQuBv/Xbqa2jUfdVDUecuSJUvo0XkwAWFuvLmgMtGl9JGD15SpGcToJRX57Yd4lkw5TcfHX6NT53a8P3EqhQrlvXPNaQ6X75M11/opr+UX7wPvKaW2ANkZIR0DbFRK7cGWqI3IMu+qUmorMAvobp/2DlBDKbUPmAh0uUW5G4DySqk9Sql2t4nrxuWyGgC8Yt/Wy8DAbOxPnnb69Glq167N2nVr6PJOKbpPLHbXido1SimavBTFqAUVsJBJgwb1mDvvixyOOG8REcaNG8cLL7xATBlv3vq+ok7UbsLNXdHoxUgmravCMz0KM3/+95QsVZxx498hLe12Deialv/oAww0l2U/wGCIiOx0diwO4JIV78CBAzRt2pTktARen1mekjVy7uCAlCsmPh1wlEO/JzH2vRG8OWx8nh+LdLcyMjLo1q0bCxYsoH6rKLqMK46nPrgvWy6dzmDhpDPsWp9AeMEQxox+l549eulzmWmgjwbVNOfRyVru2rZtG88++yzKM5MhX1YgunTOfwmajFa+GHqM31cl0LPvS8z6+Bvc3B6MBv7z58/TqlUrdu7cSdvBxWnWM/KBS1ZzwpGdySz+8CxH/kyiaPFo3hs/mXbt2j0w/0faTeX7iqSTNU1zDpeqeGvWrOH5558nKMKNIbPLEf6Q44azWq3CgomnWfvVBZ5t/RiLv1uFj0/+Pr3Hzz//zEsvvURKWiJ9PixD5SYBDt9maqKJiyczuRpnJDPNgljBx9+dwDAPoor5EhLpmWeTRRFh78ZElkw5w5nDaVSsXIbJkz6iadOmeXaftPuS7990naxpmnO4TMVbsGABnTt3JrqkL2/8pxzBEbnTQrFq9nkWTjpNrXoVWbPiN0JC8t+RolarlfHjxzN69GhiHg6i38eliSrpmETYZLSyb+NV9m5M5OC2RC6fu/2V33wD3ChVNZCyjwZTqWEIhUs77zqo98pqEbavuMzSj84SfzaTug1qMH7sBzRq1CjP7Yt2X/L9m62TNU1zDpeoeDNmzKBfv36UrRnKgJml8Q3M3c+8bcvj+c/w45QoFcOGtduJiYnJ1e070qVLl+jcuTNr166lXosoOo8pjrcDLvF55aKB1V9eYMuP8aQlmgkIcqPqo76Ur+7LQyU8KRjtiX+gGyjISLNyJd7C38eNnDxsZN/ODE4ftSV1hUv6UPOZcOq3iaRAobw1kM5stLJhwSVWfHaepHgjtetWY9w7E3niiSd00vZgyPdvsk7WNM05nFrxRIQxY8YwZswYqjWJoM+0Enj5OGfMz4EtiXzS7wghoUH8vOY3ypev4JQ4ctKSJUvo06cPySmJdHyzBA3bhuV40pAYZ2Tpx2fYvDQeRGjYLICn2gRRo74fHh7Z31ZCvJnfVqfyy4pUYv/IQLlB9SdCeaJzNKVr5P41Z++HMdPCr4viWfnFea5cNFC95iOMfec9nn766Ty1H9pdy/dvrk7WNM05nFbxLBYL/fv3Z+bMmTR8vhBd3i2K+118uTvC6YNpTOlxCKvZjZ9WrKFBvYb3VZ6IsHbtWubOncv+/bF4e3tQv34j+vXrz8MPP5xDUf+vxMRE+vfvz7x58yhRMZSe75ekUA53e5qNVtZ9c5H/Tj+D2Sg82y6I9r1DKVT4/g8IuXDWxI/fJLFyYRIpSVZKVfGnRf8iVKwfkqeSHZPRyuYf4vnps/NcPpdJhUdK83+DR9G+fXu8vHL3erparsg7/5z3SCdrmuYcTql4BoOBl19+mUWLFvFsz4d4YUi0y3wJx5/J5MPuh7hywcjcr+fQvu3L91ROQkICXbt2ZcWKFYSHe1G5ihvp6fDnzkysVjfefnsoo0ZNyNGjB0WE7777jsGDB3P5cjwtXivCs30K4eGZs6/t2SPpfDbkKGcOpfNoE3/6vhlOkeI5n3xkZlhZsySZb2deJe68mZKV/Wk1sAgV64fm+LYcyWyysvW/l1k9+wLnj6cTGRXGwP5v0KfPq4SFhTk7PC3nuMaHmAPpZE3TnCPXK96lS5d4/vnn2bp1K+2HlaBZ97u6nGmuSL5i4uNXj3BsdzKvD3mVyRM/wd09O+dVtjl37hxNmzbl+PHDDB0ezMudPfHysn2Ox12yMG5MKiuWZ9C5czPmzPkpRxK2gwcP0rdvXzZu3EjJR0LpMuZhilTI2dOeWK3CurkXWPzh3/gHujF4QiQNmjr+iFKTUVi9OJlvPr1C3Hkzj9QP4sX/K0aRsg4YfOdAIkLsb4ms+yqO2M1X8PH1omOnl3i1dz+qV6/u7PC0+6eTNU3THCJXK97u3btp2bIlcZcv0uO9UtR8JvjOKzmJyWjlu/Gn2DD/EvUb12DRd8uJirrzxc2Tk5OpW7cup04d4T9zCvBonf9dRkSY+mEqn3yURq/ezfls1vJ7jvPs2bOMGzeO2bNn4xfoyQuDH6LBi2G3vMD9vcpINfP50GPs/vkqdZ/wZ8iESMIicvdKgSaj8OM3iXz9yRVSk600bBNOq4FFCS2Y97oUzxxOY93cOLYtj8NksFKpSjn69OxHx44dCQ523Xqh3ZZO1jRNc4hcqXgiwuzZsxkwYAD+Ie4MnFE2x1t9HOXXxXF8884J/AL8+Hzmf2jbtv0tl7VarbRq1YqVK3/im+8iqVP31uWKCOPHpTD7i3Q+/3w0PXu+c1dxnT9/nilTpjB9+nQsVjON20fRom9hAsNy/gCN88cz+Pi1Q8T9nclroyJo0zXYqd3WyYkWvpl+haVfJ+LuoXiuTwxPdY/B0yvvnZA2LdnM9mUJbPo+jr8PpeLj60XLVi15qX0nnnrqKby989YRsQ84naxpmuYQDq94V69epXfv3ixatIgKdQrQe3IpgiLy1mfa+WPpfDHsBCdjU2je8kk+nvoZxYsX/5/lZsyYQd++fXlnbBhdXrlza4/ZLHTueJVdu0zs+nMr5cvf+eLysbGxTJkyhW+//RaLxUy9lgVpPaAoYTGOSVR2/3KFzwYfxdtb8c6nUVR91M8h27kX504bmTnhMpvXphFV1IsOo4pT+bG8OQZMRDi1P43fFiWwY3UcaYlmAoP9ad2qNe3adqBx48b4+vo6O0zt9vLWB9s90MmapjmHwyqeiPDtt98yePBgEq5c5oVBxXiqe2SOd8/lFrPJyqr/nGf5rHNgdWPAgH4MHTKCyMhIAE6cOEGlSpWoXhPmfpP9U03EXbLw5OOXKV8unC1bLt50/FpycjILFy5kzpw5bNu2DR9fTxq8EMlTXWMIL5L9sXR365f5F/lmzElKVfBh7MwoomJcszX0j1/T+HhMPGdOmKjWJJj2I0sQ+VDevRqF2WTl4NYk/liZxM51cWSkWvDx9eaxxxrS/NmWPP3005QoUcLZYWr/K29+uN0FnaxpmnM4pOJt3bqVkSNHsmnTJkpVCaXrmIeJKeeaX/R368pFA4s/PMu2ZXF4eXvycudO9OnVl+HDh7NjxyZWr48gOtp6V2UuWpjO/w1JZuq0V3l94AwA4uLiWLFiBcuWLWPt2rVkZGRQuGQQ9Z8Pp8ELEfiHOK7LT0T44aMzLJ9xjkcb+/P2J1H4+bt2F6PJKCyZk8jcTxIwm+CZntE80ysGb1/HJbO5wWS08tf2JPb/msreTZe5dDoTgMIPFaJhg8do2KARDRo0oGzZsvq6pM6nkzVN0xwixyqe1Wrl559/ZsqUKaxevZqQcF9a9S9Mw7YFcHPP/c8wESEp3kTSZRNu7hAW5Y1/cM4NiL9wIoM1cy6x+YeLmE22l/HN0cF073FcPKWEAAAgAElEQVT3XVUiwssvXWV/rJn27TuxbdseYmNjEREiYvyp3CSY+i0LUbSS46+jaTZZmTv6BL8tjueZtkG8MT7yrk5u62zxF83Meu8yPy9LITzak/YjilO9ac6fDNhZLp7KYP+vyRzZmcrhnVdJumwCICg4gMqVK1O9Wk2qVKlC1apVKVeuHJ6e+eNHUh6RP/7JbkMna/mMUmoj8J6IrMky7XWgtIi8lkPbqAJEi8jKOyzXFaghIv1uMi9VRLJ97gGl1CkgBbACl4DOInLxbuLOUtZXwAoRWXwP644UkQn3st0b3FfFExEOHjzI0qVLmTt3LseOHSM4zIdm3aN5vGMkXn65+9klIhzZmcLGhZc4sCWR5ATzv+ZHFvaicpMwHmtfkJiSOTP2KjHOwFst9lEgWFj7czie93hOs0N/mXi2WQI1anqR7hFA2ZrBVGkcRkzZ3LvQuSHdwqcDj7BvUyKd+4fxyqC8m+Ts3ZHBR6PjOHHYSKV6QbQfVTzH3nNXISLE/Z3JkZ2pnIrN4NSBZM4cTsOYaWvZ9fBwp1jxhyhduhxlSpehdOnSlC5dmuLFixMTE6NPzJvz8mZluQs6WctnlFK9gUdF5JUs07YDQ0XktxzaRldukYRld7l7TNZqiMhlpdQEIEBEBmSZr7D9P9+xH+w+k7W7ivs27qrimc1mTpw4wfbt29m6dSu//PILR48eBaBMjVCatI+mWrMApxyVd2RnMvPfO8XJ2DQCgtyo08SfslV8CC/ogdUiXDhjYt8fmfy5OR2TUaj+eAgvDitGVLH7G7S9/psLzBt3itlfh9Kk8f0duTdsaBJLl2Tw/qpKhD7k+POXZZV8xcS0Xn9xan8aA8dG0rJj3j99hNksLJuXxOwpCWSkW3m8QyQt+z9EQGj+bW2yWoSLJzM4/VcGF44auXgqjQsn07h0OvN6EndNZMFwihQpQpHCRSlSpAiFCxcmIiKCiIgIwsPDr98HBQXl2aQ9l+X7F0kna/mMUqoAcAgoLCIGpVQx4FegKPAkMAbwBo4Dr4hIqlLqGWAKcBnYBZQQkeZKKX/gE6AS4AG8A6wCjgG+wDngPeAkMM0+LcNe7mF7stbavr3iwHciMsYe5/WkRyk1FGhrX26piIy+yX6d4p9krRkwAHjNHs8GoA7QCugHPI0tGXpXRBbaE7lPgCb2WBXwpYgsvqHcGsBkEXlMKRVgX6eGvawxQE1gKBALHAB6Ad8DhQF3YJyILMzO+5SSkiLp6elkvWVkZJCUlMSlS5e4dOkScXFxnDlzhsOHD3Ps2DGMRtsFt/0CvShZLYBqjSOo8ngQIQVz95xb1xjSLcx/7xQbF8YRHuVB5wFhNG0ViI/vzRPGxCsWls5NZNGXiRiNQqu+MTzTq/A9ddWaTVaGPbmbYjGw+If7Pwox7pKFRvXjafx0AO0mVbrv8rK93b8z+bDHX1y9YOCtj6Ny5US3uSnxioU5UxNY/l0SvgHutOpfmMYvReHh+eCM8bJahauXjFw6mUnCeTNXL5q5cjGThAsZXLlo4MoFIxmp5puu6+npQYHwMEJCQwkKDCI4KITAwEACAwMJCgq6fu/n54ePjw/e3t54e3tff3zjNC8vL9zd3XF3d8fNze3645vdrs3PI+PxdLKm5T1KqZ+Az0Xkv0qp4UABYBLwA/C0iKQppYZhS47eB44CDUXkpFJqPhBoT9YmAAdFZJ5SKgT4HagKvEiWFjOlVBCQLiJmpdQTwKsi0saerL0HVATSgT+AriKy81qyppRqCrwA9MZW4ZYB74vIrzfs0yn+SaqmA2nATOAEUFdEtiul2gB9gGZAuH17tbElcq/apxcEDgI97pCsTQK8ReR1+/ZDReTqDUlmG6CZiPS0Pw8WkaRsvkd3rHi+ge6ERHgRVdyHQiV8iSruS/FK/sSU9HPKWLSszh5JZ3r/w1w6lUnbnqF0HRiGr1/2PtQT4sx8MjaejT+lUrFOAD0+KENI5N11C235MZ4v/u8Yn88J5ckncuZ8WO+OTWbO7HSmrK1IyEOBOVLm7Zzan8qUnocQi5XxXxTikRr59/QQJw4b+PTdy/y5OZ3oEt60HVaMyo+F6lYju8w0CylXTKRcNdvusz6+aiI92UJmmu2Wkfrvx3fuS7h/bu6KrG/V9fct67Qb52WZeNN1szM/m2b8WSOsS6mtV+96xTzEOT/JNUebD7QH/mu/7wY8CpQHttgrgxewDSgLnBCRk1nW7WV/3BRooZQaYn/uAzx0k+0FA3OVUqWwtUJl7etYJyIJAEqpH4D6wM4s85vab7vtzwOAUthaA2+0QSllAfYBbwIhwGkR2W6fXx+YLyIW4JJSahO21rCGWaafV0r9cpOyb/QEttcOABG52QdBLDDZntituJtu5g7DSuLhY8HL1w1vHze8fN3x8nHDx9+d4HBPAgt44uVtS37c8ABc59ft3k0JfPr6X/j5Kz74JoYa9e5uPFKBSA9GfxJF7UbJTHs7nrFt9jLos0coWj57CZLVKqz64jyly3jwxOM5N/andx9/5n2dzvpZp2k7oVqOlXsz+367wvQBBwkOcWPSV4UpVjJ/j2EqUcabyV9Hs31DOjPGxzOt92HK1w6izaASlKqW97t975efP/j5+1KwyJ2WFAQrgtX2WARjphVDhhWz0YrZKJiMVkyG/31sNloxGQWrVRCrrdvWahWsFhCr2J/bposV+7x/lskSgu0uS0PPzdp85CbLZR38cX3yTWbfQyNSW+Czu10pL9HJWv70IzBFKVUN8BWRXUqpGGyJU4esCyqlqt6mHAW0EZHDN6xT+4blxgEbRKS1vdt1Y5Z5N9a6G58rbAdEZKeiNRaRy1niCMHWwpa1rFu5Ve03808mlPUEUeo269gKFDmilKoOPAO8p5RaKyJjb7fONd9NPJqdxVzOzJkzmdqvHyXL+zHhi2jCo+6tZV4pxdMvBlOmkg/Du19gwkt7WbBgPi2ee/GO6y5fvpyzR1sw7eOIHG2ZiYh0p2MnP+Z+lcLk8WMpU7phjpWd1VdffcXUXj0oUcaPiV8WokDBB6N3QylFnSb+1Gzgx7Lvkpg3/Srj2u+h6VMNeW/CVKpVc2yCrOVr+TpRA1f6ua7lGBFJxZYwfYmtpQxgO1BPKVUSQCnlp5QqjW18Wwl7kgXQLktRa4D+9jFfWRO7FCBrM0gwtvFrAF1vCOdJpVSYUsoX25iyLTfMXwN0s48RQykVo5SKvJv9zeJXoJ1Syl0pFYGtRe13+/T29umFgMZZ1jkFXLuSc5ss09diG/+GPa5Q+0OTUsrTPi0aW/fvPGAykK+/bT788ENee+01Hm0cyLQFhe45UcuqRFlvZvxQmCIlPGndqi3/+XLaHdeZOHEChYt48uxzOf/x1auPP+4eMG5snxwvW0QYN24cr7zyCtXqBvDRggcnUcvKw1PxfJcQvt1UlF7Dwtm2fQvVq1enZaun2L59+50L0LQHkE7W8q/5QGVgAYCIxGNLpOYrpfZhS97KikgGtoH6q5VSm7GdFuPauKtx2Lo09yml9tufg21Af3ml1B6lVDts497eU0ptwTbQPqvNwDfAHmCJiGTtAkVE1gLfAduUUrHAYv6dCN6Npdi6SPcCvwD/Zz+9x1Js4/JisY1z25RlnTHAR0qp34Csjf3vAqFKqf1Kqb38k+B9ju31+BbbgRe/K6X2AKPs6+RLEydOZMiQITR+NoSxMyPw88+5ssMLejBtQQxV6/jRs/sgPpo+7pbLbt68ma1bt9OzV5BDzkFWMMqddu39+P77v/j7zO47r5BNZrOZ3r178/bbb9Ps+TAm/CcSv8AHL1HLytfPjZf6hDL/16J0GViAXzasp06dOtStV51ly5ZhtebCYCxNyyP0AQYaSqkA+1GhCvgUOCoiU50dVz6XZyre2LFjGT16NE+0DGH45HCHnajVYLDyzmsX2fZLGuMnDmXksPf/Z5nmzZ9l27Y1bN4ejq+vY+L4+7SZxg0v069/HT6atvW+y0tMTKRDhw6sXr2al/tG0G2wcy/G7qrSU6389H0yi79M5NI5Ew+XKsKrvQfSpUsXwsPDnR2e5tryfYXSyZqGUmoQ0AXbQQe7gZ4iku7cqPI9l694IsLbb7/Nu+++S7M2oQydVAB3Bx+FajYJ4wddZMNPqYx481XGj/30emKzb98+KleuzOChYfQb4NgB+X1fTeS3X438/fdpQoIL33M5hw8fpkWLFpw4cYxB4wrxbPv8dXJYRzCbhI0rU/jx6xT270rHy8uDlq2eo1fP12jcuDHu7nn7MlaaQ+hkTdM0h3DpiicijBgxgkmTJtG8fRhvjA/LtQvBWyzC5BFxrFqUzGv9OzL9o29QStGpUyd+/HEBW7YXINiB1+cE2LvHRKvnEhg/oRUjRyy9pzJWrVpFhw4dcPMwMHZmDJVq6lEnd+vEYQM/LUhj7dJEUpIsRESE0KZNW9q2bU/Dhg114qZdo5M1TdMcwmUrnogwePBgpk6dSqtOBRgwJjTXErVrrFbh03GXWfJVIh1fbs47b0+lbNmyvNI9gFFv5c75yNq9kMDZM8LJk4l4eWV/kJ7FYmHChAm88847lCjjz4QvChEZ47Jvd55gMFjZtj6NTasy2fZLEpkZQnh4CM2aPcPTTz/Lk08+SUREhLPD1JxHJ2uapjmES1Y8EWHgwIF88skntOlagH5vO+/EpSLCVx9dYe5HVyhWPJpzZy+waUsEhQrlTgvVz+sz6fFKIl/M7kePbp9ka50LFy7QqVMnfvnlF55sGcqg8RH4+bvkW51nZaRb2bExjc1rDPzxWzJJVy0opaharSKPN2lGgwYNqFu3LgUKFHB2qFru0cmapmkO4XIVz2q10rdvX2bNmkW7nuH0GRHiEgPhv56ewJwpV3j+BV8mT8m9E6harcJTT1zGy9OL2NjUO152Z9WqVXTp0oXUtEQGvhPJUy/4usTrl5cYMq0c3J3Jkf0G4i6YSU224OWtCAnzoEQZLypU8yEy+p9zblsswtH9Bv74zcjvm1L4a28GZpOtapUp+zAN6jemXr161KxZk7Jly+pu0/wr31c0naxpmnO4VMUzmUz07NmTuXPn0vHVCHoMdZ0jFmd/mMC8T6+wcm0BypbN3QuBL1yQzvChySxf8T7Nnx1602WuXLnCoEGD+PrrrylZNoC3pxfioYdzNcw8TUTYtTWDnxYmse2XNDLSbFXDP0ARFKQwGCAp0YrFfmKdMhW9eKpNEM1eCMYv4N8JtCHTyqG9Bg78aWbfzjT270wjNcV2ChA/Px+qVHmEmjXrUL16dWrUqEHp0qV1Apc/uMaHlQPpZE3TnMNlKl5qaiovvvgiq1evptugSF7uH+QyiVp6qpW29U5Sr54nsz4PvfMKOcxgEBrUjadcuTA2bYz/1zwRYdGiRQwYMICEhHheerUAnfoG4+XtGq9dXrDtlzTmTEvgSKyBkFA3mjXz5omm3lSu4kl4+D9JlMEgHD1iZvNvBlb+lEnsPjMBgYqOr4Xx/CsheHvfvNXTahX+Pm7kSKyRI7EWDsWmcvSAAUOmLYHz9/ehatUq1KxZhxo1alCjRg1KliyZVy5erv0j31c6naxpmnO4RMW7ePEizz33HLt2/cng8dEud2qJhV9cZeaEy/ywLIyqVZ1z/cyZn6by/sRUtm9fRO3aLwDwxx9/8MYbb7B582bKVApg2KRClCjnlPDypLOnjEwfG8/2Dek8VNSd3q/606aNL94+2fvO3b3LyCcfpbHhFwPRhd0ZNL4gNRtm7yAQs9mWwB2ONXJ0v5lD+9I4djATo8FWJYOC/alWrQo1a9SlZs2a1KxZk6JFi7rMDxjtpvL9m6OTNU1zDqdXvG3bttGmTRsSky4z+pMYHm2Su12Md2I0WHmp0SlKPuzO/IVhTosjOclKvUfjefyJ4ox/dxnjx49n/vz5hIX70H1wAZq96Ovw88/lFyLC8vnJzHg3Hnd3GDgogC5d/fDyurfXb8tmA6PfSub4MQutOgbSZ1QkPr533ypmNgmnjho5HGuwtcDtS+P4oczr49/CCgRRvXp1atWsS40aNahZsyYxMTH3FLPmEPm+AupkTdOcw2kVz2q18umnnzJ48GAKRnsxblYhipd1vc+6ld8n8f6wOL6aF0qjRt5OjeW98Sn85/M0QsMU6eketOkaTMdXQ/ENcGpYeUpyooUJgy+y/Zd06jXwYtLkYGKi73+8WGaG8OHkFGZ/kU6psp68Myua6IfuvxXWaLBy4rCtBe5IrJlDe1M5ddRwfexc4SJR1Ktbn7p1bUefVq5cGU9P1/rB8wBxvQ+wHKaTNU1zDqdUvDNnztCtWzfWr19P3SbBjJwSRUCw612D0WIRujY9TaCfsGJlAad3QV26aKFB3Xgee9yXfhMKE5z7w+fytBOHDLzZ+zxxF8yMGBVI11f8cvzcfRs3GHi9fyIi8NbHUdRslPOZdGaGleN/Gfhrj4mDuwzE7kol/oIZAF9fL2rUrEa9uo9Rr1496tSpo08fknt0sqZpmkPkasUzGAx89NFHvPvuu1gsmbz2ZiTPtnfdU0tsWpXC6Ncu8tH0YFq0zJ2T4N7JsCFJ/PfHDBZuLkZIuG5Bya6NP6UwceglAgMVMz4LoUYNx409/Pu0mT69Ejly2MzQCRE0axvisG1dE3fexIFdmRzcZSZ2VxpHD2RgseVvlCpdjHp1G1GvXn3q1KlDuXLl9MELjuGaH2Q5SCdrmuYcuVLxjEYj8+fPZ+zYsZw4cYK6jwczYHRBooq4br0XEXo9dwZTupn1G8JdZjzY8WNmnmxyme79guj0RkFnh+PyRIT5n13l80kJVK3uycxZIRSMcvxpMlJTrbzW23Zt1+6vh9JpQO62zGZmWDm8z8CBXSYO7Mpg/59pJF219Z0GBPpRs0Z1ateuR61atahVq5Ye+5YzXONDwoF0suYASqmpwGkRmWZ/vgY4IyI97M8/BM6JyJT72MZjwBARaZ4DId+xXKXUbuAVEdmjlPIAkoDeIjLPPv9PbBeA33Uf234HSBWRyTeZ3hOIBzyAkSKy7B638Rj3+LoppVoBR0Tk4L1s+wYOrXhnz55l3rx5TJ8+nXPnzlGqfAB9RkRSvb7rn1Nq+4Y0hnc7z6TJQbRt51pHp/bucZUd243M31IcP3/Xfy2dxWIRpo+NZ+nXSTRv4cMHHwbjk80jPXOCySQMH5rED0syadUhkP7jCjot6RcRzp40cWC3gcN7zRzcm8rxvwzXD14oFB1BrZp1qF37UapUqUKlSpWIiYlx2VZvF5XvXywPZweQT20FXgSmKaXcgHAgKMv8usDrzgjsPmzFFvceoDJw2P58nlLKHygB7HXg9qeKyGSlVDngN6VUpIhcH2yllPIQEbMDtw/QClgB5ESylqNEhH379rFu3TpWrlzJxo0bERGq1Qnk9fHFqdHQPU98+IsI30y/QqEYd1q1do3uz6x6v+rP2jUG1i24Ssvu4c4OxyUZDFYmDLrEplWpdO/px8g3A3P92rKenorJU4MpGOXOzE9TyMywMuSDQnh45H4dUEpRpIQXRUp40awNQCgGg5XjB40c2mvm0L5M/ty9mv/+95/fn0HBAVSsUIFHHqlKhQoVKFWqFCVKlKBo0aJ4eTnnFDaac+lkzTG2AFPtjysA+4FCSqlQIB0oB+xWSj0OTMb2PvwBvCoihttMbwZMAy4DN23BUkoVA74Brp10qJ+IbLW3KL1jX7ci8CfQSUQkO+Xa9+kZYAa2JG0W0NU+rxawS0QsSqk3gG726f/J0rp4q+mjgM7AGWwtZ3/eYvsAiMhfSikzEK6U+h5bElkPWKaU2nM3r9uNLXlKqf1AcxE5pZTqDAzB1gK2D5gJtAAaKaXeBNoAzwJ9ADNwUETa3y72nJCZmcnZs2c5c+YMp0+fZv/+/ezZs4fdu3dx5cpVAIqX9uOV1yN4omUw0UUdHVHO2rM9gwO7MhnzbtA9n87BkapV96L2o57M+yyJp14KxcdXt65llZJk4c1eF9j7ewYj3wqkZ6/snfvMEZRS/N/wQPz9FZPfT8VoOM+IadF4usD/lbe3G+Wr+lC+KkAAEE5KkoWTh42cPGzh5BETxw/tY963O0lNsVxfz83NjZjCUZQo8TAPFSlGVFQUUVFRFCxY8Pp9WFgYQUFB+Pv754kfaFr26GTNAUTkvFLKrJR6CFtisw2IAepg6z7cB7gBXwGPi8gRpdTXwKtKqVm3mf4F0AQ4Biy8xebjgCdFJFMpVQqYD9Swz6uKLXk8jy35qqeU2pnNcrcC79of1wXGAB2UUoH251uUUtWBV4Da2JqldyilNtn39VbT29vj8sCWSN02WVNK1Qas2BI7gBARaaSU8gGO3sfrlnUbFYBRQD0RuayUChORK0qpZcAKEVlsX244UNyeEN7VSObuAypiNlmxWASzyYrZYsVsEiwW6/XphkwLqSkmUpKNpCYbbY+TTP8qx8tLUbysN48+4UWlmlHUqO9LRFTerdbffHqF8Ag32rZ1vVa1a15/I5AOba+w+rurtNKta9fFXTDxf13Pc+6UkWnTg2npIgeG9O0fgK+vYtyYFAyZ53h7RjTePq43yD8w2J1HavnySK1rU0IRES5fsnDhbxMXzpg5f8bEhb9TOf/3Hxz6ZRtX4y0YjTcfUeHmBn4BHvgHeBIQ6Imvvyeenm54ebnj6WW79/B0w8vbDU9P2025KdzcFEqBst+7qRueX5uv/ln2vt1nITM/cGSnjmvIu5/qrm8LtiSmLjAFW7JWF1uythUoA5wUkSP25ecCfYENt5i+0T79KIBSah7Q6ybb9QSmK6WqABagdJZ5v4vIWfv6e4BiQGp2yrW3NnkppaKAsti6Qf/AloDVBT4B6gNLRSTNXtYPQANsCdrNprvZp6fbp99uHNogpVQnIAVoZ28RhH+Sr1u9ntl93bJqAiwWkcv2fb9yi+X2Ad8qpX4EfrxDmf8yd+YBPDwUHp4Kd3dw91C4eyg8PLDfKzw8ISDInchoN4qXccc/0JOQAu5ERntSMNqDyEIeRBXxxMPDDdtLnLd/Re/elsauLRmMeDMQH1/X3ZdH63hRr74XX89Momn7cD12DTh11MDQLmfJSLUw5+tQ6tVz7nnxbtSthz8+voo3RyTzZvdzjPn8Ifz8XS9hu5FSEBHlQUSUd5Yk7hpBxEJaipUr8RauxJu5ctlCarKV9BQraalW0lOtpKVaSE+1kJFmxmQSUtMEU6JgMgpmo2A0CmaTYDIJCFitIGK7Wa03ThPbfZZlXEH7vqVfblTsyDfOjsORdLLmONfGeFXC1g16BhgMJANfcutv1tt9S2WnagwCLmEbV+YGZGaZZ8jy2MI/7392q9w24AXggj1Z2o6tC7IWsB1bEncz97tPYB+zdpPpafexDTO21+ganyxlZSeuZ4GG2LpH31JKVcjuuLn45G0kGf5A4Qa4oZQ7CneU8sQNT9yUF27KGzc3H9yULyqPJ2J3IiK8MaUXhaK96dzZeV1n2fXGkADatLrClu+LMHj4OGeH41Q7tsfyeruheHm6s3BxBOXLu8g3+A1e6uiHr69iyKAk3u6WyqIfvyQ4JNDZYd2/KKBUdhcWrGLEKkZETLZ7TFjFjGABsSBYEKyIWABBsALXMjOxfzDa/14fNvy/77lk86P9vg9yFHfOpc76+f4KcX06WXOcLdiSsxNi+6+/Yu8qq4DtyMZUoJhSqqSIHANeBjYBh24zvbhS6mEROQ50uMV2g4GzImJVSnUB7vSzP7vlXtunQdi6acGWvH0AXBSRRKXUr8BXSqmJ2BKe1vb4VTamewDPAZ/dId7b7cfdvm6ngOYASqlqQHH79J+BpUqpqSKScK0bFFurXqB9eTegiIhsUEptBl7CNvgkMTvBhvo+Sqjvo/e4q/nPDz/8wK6dB5n0QTg+rtF7dlvVqnvxWGMvPv14I28MLEZYWLSzQ3KK5cuX067dIKIKKb6eF07hIpY7r+RErZ/3xddXMaDveVo81Y3163cTGRnp7LC0+1Qy/I3zzo7B0Vy/HTjvisV2FOj2G6YlichlEcnENo5rkVIqFts4rFl3mN4L+MmeHJy+xXZnAF3srV6l+afl6abuolywJWslsCVpiMgFbMngVvvzXdgSud+BHdgOJNh9h+kLsR1hugT47XaxZmM/7vZ1WwKE2buEXwWO2Ms6AIwHNiml9mLrxgZYAAy1n8akFLYjYWOB3dha/rKVqGn/ZjabGTVqFCVL+fH8C3mnS3HosECSkqyMHt3R2aE4xZw5c2jdujWlSrux6IdQl0/Urmn2tA9ffBnK0aMXqFe/AmfOnHF2SJp2R/o8a5rmHLri2X322Wf06dOHWV8U5Klmeau7d9jQJJYuyWDfvu2ULVvb2eHkChFh4sSJjBw5koaNApjxWRD+/q53ybI7+X2HkR6vXCUkJJCff/6DUqVK33klzVXlrQ+Oe6CTNU1zDl3xgMuXL1OmTBlKlzHw3cKAPHeqgfg4C40bXqZBw+KsWnnc2eE4nNFopE+fPsyZM4dWrQOYNDmAvHzar/2xJrp0uoqHhzfr1m3hkUeqOjsk7d7krQ+Oe6C7QTVNc5qRI0eSlJTI2HEheS5RA4iIdOe1fv6sXnWCH3+c7uxwHCohIYGmTZsyZ84cBrwewofT/PN0ogZQsZInCxeHoZSRhg1rs379SmeHpGk3pVvWNM05HviKt2PHDurUqUP3noGMesu1Lit1N4xGocUzCSSnuPHXwYsEB4c6O6Qcd+jQIZo3b87Zs6d5f3IoLVrlnbGF2XH2jJluXZM4ecLMrFnT6N59gLND0u5O3vuld5d0y5qmabkuPT2dLl26EFXImwGvu/6pOm7Hy0vx3gdBXLxgZPDgVs4OJ8ctWrSIWrVqkZh0lu8WRuS7RA2gcBEPFv8QSu06XvToMZDhw1/Fas174/C0/Esna5qm5brhw4dz+HVgxO4AAA26SURBVPBhJk8JJTAw7zcyVq3qxSvd/Jg9+1dWrJjj7HByhNFo5PXXX6dt27aUKm1l2U/hVKue99+rWwkKdmPO3BDav+TLpEmzaP5cPa5everssDQN0N2gmuYsD2zFW7t2LU899RRduwUxekze7f68UWaG0KpFAvFxir17j1C4cDFnh3TPjh07RqdOndixYwfdegQxbIRfnh+fll0iwtdz0xk/NoXo6DCWLFlD9eo17ryi5kz5vhtUJ2ua5hwPZMU7efIkNWrUICIykx+XBePjm79ehuPHzLR4NoHKVQqzaeNxPD09nR3SXbFarcyYMYNhw4bh6WnmvUkhPP3sg9kBs3u3kX59kkhIEMaPH8OgQSNxc3swX4s8IN8na/o/T9O0XJGamkrr1q2xWNKY9XlovkvUAB4u6cH4iUFs23qGHj2fvv9L6eSiI0eO8OSTT9K/f39q1nZj9bqIBzZRA1vX9vJVBWjQ0IshQ96iYcMqHD+e/0/PormmB7cmapqWawwGA61bt2b//limfRJCseJ542z396JVa1/6D/Tn67k/89ZbvZwdzh2lpqYyYsQIKlasyB9/bGbCxALMmetPVKH8+x5lV1iYG5/PDmby1GD2xR7gkUfKMnHSWAwGw51X1rQcpLtBNc05HpiKZzAY6NChA0uXLmXy1HDavJD/L0ksIvzf4GQWL8pg1JuvMm7spy53HjmTycRXX33FmDFjOHfuHG1eDGTY8CAiInWSdjMXL1h4a1Qq69dl8PDDUUyZ8hnPPfecy72vD6h8/yboljVN0xwmJSWF5s2bs3TpUt4ZG/ZAJGoASikmfhDEi219Gf/uTPr27YDJZHJ2WIAtSZs7dy5ly5alV69eREReZfHSaCZP8deJ2m1EFXLniy+D+eqbUJRbAi1btqR+/aqsXbs2T3V3a3mTblnTNOfI9xXv0KFDtGnThsOHD/H+h2E83+bBSNSyslqF98an8J/P02nQsBLzv1tFTEyMU2KJj4/n888/Z8aMGZw/f56KFf0YNCSIxk1Etw7dJZNJWPBdBjM/TePCBQs1a1Vk6JC3adWqVZ47qCSfyPf/wDpZ0zTnyLcVz2KxMGPGDEaMGIG3j5mPp4dSr76zo3KupT9kMHJYMl5eXnwweQrdu/XG3d3xJ5c1GAysXLmSb7/9luXLl2M0GmnYyJ+u3QJ5rLFO0u6XwSAsWZzJrBlpnPnbTMGCoXTv3ptXXulOyZIlnR3egyTf/yPrZE3TnCPfVTwRYf369YwcOZKdO3fSsJE/Ez8IoZAeqA7AyZNmhg9N4fcdBsqUKcLbb0/khRdewCuHT2B28eJF1qxZw+rVq1m9ejWJiYmEh3vTvIUXHTsFUrKUPjN/TrNYhE0bDXw3z8gvP6cjAlWqlOPFFzvRqlUrypUrpxNjx8r3L65O1jSHUUpNBU6LyDT78zXAGRHpYX/+IXBORKZks7yNwBAR2ZlD8UUAKwAvYICI/HaT+eeBfiLy2W3KeR34XETS72Lz+abiJScns2TJEmbNmsXvv/9OoUI+jHwrkGebu+kvqBuICKtXGZgyOY1jR00UCA+ifbuOPPNMcxo2bEhAQMBdlZeWlsbhw4fZuXMnv//+Ozt27GD//v0ARER40egxT55rGUTdelY8PPR7kRvOn7ewcoWRlT9lsnuX7ajRqKgCPPlkMxo3fpxatWpRtmzZXGlZfYDk+39unaxpDqOUehF4UUTaKqXcgD8Ao4jUsc/fBrwuIjuyUZY78DM5m6y1B54WkS63mP8a0AGwiMhjt4nrOFBDRC7fxebzbMVLT0/nwIEDbN68mXXr1rFx40YyMjIoXsKXnr38eP4FT7y9nR2la7NYhM2/Gvl+oZH169MxGgQ3N0XxEg9RsUJloqNjKFCgAMHBwSilsFqtZGRkkJCQwOXLlzl37hxHjx7h/PkL18sMDfOkcmUPatbypdFj3pQrb8XNLd9/h7m08+ct/PariS2bzWzdnE5Cgq1V08/PhypVHqFy5eqUKlXq+q1YsWJ468pzL/L9P7pO1jSHUUpFA7+LSGGlVCVgCFAIaAekA5eASKABMBnwwJbQvSoiBqXUKeBLoCkwHehjL2MXMAc4A4wGZgM1sCVAX4rI1BviKGovJwKIB14BwoBlgC9wDqgjIhk3rPcbMBj4DmgkIufs01OBKcBTwE/Am8Bh4LKINM7Oa5OWliYiwrUbQNbnN5uWU8vcaj2TyURqaiqpqamkpaWRmppKcnIyFy5c4Ny5c5w7d46TJ09w9Oix6+s8/LAv9Rq407J1IFWrWnVL2j3IzBB27jSy8w/h6BETR48auBwvJCVZuPFa4kFBHoSEuhERoShWzJ3iJXwoXsKLChUsPFRUt2S6MqtVOH7MQmyshf2xQuy+DI4cMZGc9O83OSwsmEKFooiKiqFQoWjCwsIICgoiKCiIwMDA6/c+Pj54eXnh5eWFp6fn9cfXniulUErh5uZ2/XHW262mX7vlJf7+/nkr4HugkzXNoewJV0PgaWy/fmKAbUAS8B62ROwo8LiIHFFKfQ3sEpFp9nVniMj79rI2AsOBgcB+ERmvlKoOTBSRJ+3LhIhI4g0xLAcWi8hcpVQ3oIWItFJKdcXWItbvJnEXAX4RkVJKqQnYErEp9nkCtBOR77Ps4121rNnLyBOUgogIN6Ki3IiOcadMWQ/KlvPkkcqeREfrrhxHsVqF9HTbv4mbG3h6Kjw98/130gNFRLh6VTh10szJExbOnbMQH2chPt5KXJyVuDgLyclCaoqgv6pv7eSZqKLFCl/429lxONKDdyy9ltu2AHXttynYkrW62JK1rUAZ4KSIHLEvPxfoC0yzP194Q3mfAd+LyHj78xNACaXUJ9haudbeJIY6wPP2x98A72cj7vbA9/bHC7C13l0bW2cBlmSjjFsaMSoSIQOFLRm69kP22mOluN6wf30a156rfy+Hbdn/Ked/ylbXl7uxXKXA3UPh76/w87Pd+/op/P0UBcLd8PBwBzxRyuOfwDSHcneHwEBnR6E5klJQoIDtdtNrxYsZwYKImYwMC6kpQmqaLXkzGgWTSTCZ+OfeKBjtz0WwJXgCViv254LA9XlizfL42i2XX4P7ZW9wqo+tByTf0sma5mhbsSVnlYD92LouBwPJ2Lom7/TNn3aT8horpT4UkUwRuaqUqoytS7Iv0Bbodocys/N51AEoqJTqaH8erZQqJSJHgUwRua9DHCe8e+l+Vtc0TdP+ka8TNdBXMNAcbwvQHLgiIhYRuQKEYGvt2gYcAooppa6dlOhlYNNtypsNrAQWKaU8lFLhgJuILAHeAqrdZJ2t2FrKADoCm28XsFKqDOAvIjEiUkxEimHrsm1/i1VSAN0GommapjmETtY0R4sFwoHtN0xLEpHLIpKJbcD/IqVULGAFZt2uQPvYsV3YujRjgI1KqT3AV8CIm6wyAHhFKbUPWzI48A4xdwCW3jBtiX36zXwOrFJKbbhDuZqmaZp21/QBBprmHLriaZqm5Yx8P5BWt6xpmqZpmqa5MJ2saZqmaZqmuTCdrGmapmmaprkwnaxpmqZpmqa5MJ2saZpzKGfdlFK9nbl9vX96//T+OT+OfLZ/+Z5O1jTtwdPL2QE4mN6/vE3vX96W3/fPKXSypmmapmma5sJ0sqZpmqZpmubCdLKmaQ+ez50dgIPp/cvb9P7lbfl9/5xCX8FA0zRN0zTNhemWNU3TNE3TNBemkzVNewAppT5QSh1SSu1TSi1VSoU4O6acpJR6USl1QCllVUrVcHY8OUEp1UwpdVgpdUwpNdzZ8eQ0pdSXSqk4pdR+Z8fiCEqpIkqpDUqpv+z/mwOdHVNOUkr5KKV+V0rtte/fGGfHlJ/oZE3THkzrgIoi8ghwBBjh5Hhy2n7geeBXZweSE5RS7sCnwNNAeaCDUqq8c6PKcV8BzZwdhAOZgcEiUg54FOibz95DA9BERCoDVYBmSqlHnRxTvqGTNU17AInIWhEx259uBwo7M56cJiJ/ichhZ8eRg2oBx0TkhIgYgQVASyfHlKNE5FfgirPjcBQRuSAiu+yPU4C/gBjnRpVzxCbV/tTTftOD4nOITtY0TesGrHJ2ENptxQBnsjw/Sz76on/QKKWKAVWBHc6NJGcppdyVUnuAOGCdiOSr/XMmD2cHoGmaYyil1gNRN5k1SkT+a19mFLbumW9zM7ackJ39y0dudkkd3WqRBymlAoAlwOsikuzseHKSiFiAKvYxsEuVUhVFJF+OQcxtOlnTtHxKRJ643XylVBegOfC45MFz+Nxp//KZs0CRLM8LA+edFIt2j5RSntgStW9F5Adnx+MoIpKolNqIbQyiTtZygO4G1bQHkFKqGTAMaCEi6c6OR7ujP4BSSqniSikvoD2wzMkxaXdBKaWA2cBfIjLF2fHkNKVUxLWjypVSvsATwCHnRpV/6GRN0x5M04FAYJ1Sao9SapazA8pJSqnWSqmzQB3gJ6XUGmfHdD/sB4P0A9ZgG5j+vYgccG5UOUspNR/YBpRRSp1VSnV3dkw5rB7wMtDEXuf2KKWecXZQOagQsEEptQ/bj4t1IrLCyTHlG/oKBpqmaZqmaS5Mt6xpmqZpmqa5MJ2saZqmaZqmuTCdrGmapmmaprkwnaxpmqZpmqa5MJ2saZqmaZqmuTCdrGmapmmaprkwnaxpmqZpmqa5MJ2saZqmaZqmubD/B6qFCuPtHtBlAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sector_features_yeo = pd.DataFrame(sector_features_yeo,\n",
" index=sector_features.index,\n",
" columns=sector_features.columns)\n",
"fig, axes = joypy.joyplot(sector_features_yeo, colormap=plt.cm.viridis, figsize=(8,8),\n",
" title='Distribution of mis-invoicing across sectors (Yeo–Johnson transformation)');"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The two figures below display the results of running the PCA analysis on transformations of the data using a modified log and a Yeo-Johnson transformation, respectively.\n",
"\n",
"The top loadings on the second principal component are the same and refer to Works of Art, Pearls, Precious Stones and Metals, and Arms and Ammunitions. These sectors refer to extremely high value-added sectors where the traded commodity is a finished product.\n",
"\n",
"By contrast, the loadings on the first principal component (in either transformation) refer to heavy industries, where the commodity is an intermediate product (as opposed to a finished product). Even after applying normalizing transformations, the first principal component recovers sectors which were responsible for a large amount of the dollar value of mis-invoicing in the continent during 2000-2016. "
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA(sector_features_log, 10, 1, 2, obs='reporter.ISO')"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA(sector_features_yeo, 10, 1, 2, obs='reporter.ISO')"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Finally, transforming the data improves the performance of the PCA analysis, in the sense that the first two principal components now explain 90% of the variance in the data."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"scree_plot(sector_features_yeo)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Country features"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The second view of `IFF_Sector` is to consider the reporter countries as the feature space. Below, I use the function `create_features()` and specify `reporter.ISO` as the features in order to generate the data-set for PCA. In this case, we have $p=46$.\n",
"\n",
"The interpretation in this application is to understand the variation in where the illicit outflows originate. This is because the values have been aggregated using the GER strategy which captures outflows only."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" PC1 PC2 PC3 PC4 PC5 PC6 PC7 \\\n",
"AGO 0.064538 -0.127775 -0.044675 -0.081190 0.015199 -0.030508 -0.020684 \n",
"ALB 0.044858 0.100240 -0.085332 0.010378 0.222166 -0.056160 0.016405 \n",
"AND 0.002434 0.006593 -0.006567 0.005445 -0.015707 0.021064 -0.006253 \n",
"ARE 0.091433 -0.038099 0.067933 -0.046062 0.123878 -0.061712 -0.030800 \n",
"ARG 0.129513 0.139207 -0.082968 0.019367 -0.043149 0.085106 -0.014389 \n",
".. ... ... ... ... ... ... ... \n",
"VUT 0.000000 0.000000 0.000000 0.000000 -0.000000 0.000000 0.000000 \n",
"YEM 0.040005 -0.060918 0.007451 0.143530 0.037673 0.037506 0.085598 \n",
"ZAF 0.008847 0.007834 0.091261 -0.022447 0.026785 0.001632 -0.043753 \n",
"ZMB 0.040152 0.020620 -0.037492 0.009481 0.093282 -0.176393 -0.033166 \n",
"ZWE 0.058102 -0.112442 0.020694 0.215291 0.042842 0.010566 0.044425 \n",
"\n",
" PC8 PC9 PC10 \n",
"AGO -0.075254 0.026087 0.018444 \n",
"ALB -0.068677 0.098802 -0.006931 \n",
"AND -0.004508 0.001468 -0.016877 \n",
"ARE 0.190913 -0.147428 0.060691 \n",
"ARG 0.038525 0.024086 0.000942 \n",
".. ... ... ... \n",
"VUT 0.000000 0.000000 0.000000 \n",
"YEM 0.261330 0.309931 -0.017295 \n",
"ZAF 0.104236 -0.037778 0.124183 \n",
"ZMB 0.069316 -0.109787 0.018559 \n",
"ZWE 0.149634 0.182897 0.017658 \n",
"\n",
"[167 rows x 10 columns]"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"biplot_PCA(partner_features, 10, 1, 2, show_loadings=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"\n",
"*Source*: generated by `Data Visualization.R` in "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The top loadings on the other principal components reveal some unexpected sources of variation for destination countries.\n",
"\n",
"The top loadings are:\n",
"- Second principal component:\n",
" - Top loading 1: El Salvador\n",
" - Top loading 2: Dominican Republic\n",
" - Top loading 3: Nepal\n",
"- Third principal component:\n",
" - Top loading 1: Belgium\n",
" - Top loading 2: Norway\n",
" - Top loading 3: Panama\n",
"- Fourth principal component:\n",
" - Top loading 1: Iran\n",
" - Top loading 2: Suriname\n",
" - Top loading 3: Papua New Guinea\n",
"- Fifth principal component:\n",
" - Top loading 1: Central African Republic\n",
" - Top loading 2: Kuwait\n",
" - Top loading 3: Albania\n",
"- Sixth principal component:\n",
" - Top loading 1: Ecuador\n",
" - Top loading 2: Slovenia\n",
" - Top loading 3: Algeria"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"These dimensions of variation are much harder to interpret. Nevertheless, a few points stand out.\n",
"\n",
"First, apart from the first principal component, the loadings do not appear to be driven by the magnitude of the illicit outflows. Second, the loadings recovered are surprising. One \"usual suspect\" which appears is Panama (on the third principal component) which is one of the oldest and best-known tax haven in the Americas. Third, this suggests that the analysis of the destinations of illicit outflows from Africa merits much deeper analysis to \"follow the money\" (which is outside the scope of this project)."
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA(partner_features, 10, 3, 4)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA(partner_features, 10, 5, 6)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"#### Explained variance"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"With a feature space of $p=167$, 12 principal components are required to explain at least 50% of the variance in the data."
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"scree_plot(partner_features)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"#### Variance-stabilizing and normalizing transformations"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The sections below explore the effect of variance-stabilizing transformations on the `partner_features` data-set.\n",
"\n",
"Korea and Nicaragua appear as top loadings on the first and second principal components, respectively.\n",
"\n",
"When running PCA on the transformed data, the projection of the principal component scores on the first two principal components takes on a half-moon shape.\n",
"\n",
"Expand the code chunks to see the details."
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/plain": [
"['ATG',\n",
" 'BLZ',\n",
" 'BMU',\n",
" 'DMA',\n",
" 'GNB',\n",
" 'GRD',\n",
" 'KGZ',\n",
" 'KNA',\n",
" 'LCA',\n",
" 'SLB',\n",
" 'TON',\n",
" 'VCT',\n",
" 'VUT']"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Figure out which columns are composed of all 0s\n",
"partner_features.apply(lambda x: (x == 0).all(), axis=0)\n",
"noIFFpartner = partner_features.loc[:,partner_features.apply(lambda x: (x == 0).all(), axis=0)].columns.tolist()\n",
"noIFFpartner"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [],
"source": [
"# Drop the corresponding features\n",
"partner_features = partner_features.drop(columns=noIFFpartner)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAI4CAYAAABwVwM/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZhkVX3/8ffHGRCQAURUBBVkUSOIIyqu6LhEjcEYlxiXKBhXEpcY+UUjanBf4haj4i6oAVziSlxQcATcFQcBN0BQEBABgRkWgeH7++Pehpq2a7qqu2c53e/X89TTVffce865dZf61F2qU1VIkiS16CYbugOSJEkzZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg8x6lOR9SV45R3XdPsmqJIv618uTPGsu6u7r+0qS/eeqvjHafV2Si5JcMAd1vTzJh2Yw3VOTHDPb9kdoZ1WSXaYZZ43lrHUjyWFJXreh+7E+JNk5SSVZvA7qPjDJ7/t19hZzXb+Gm8vPl9bE35GZG0nOBm4NXAesBn4GfAz4QFVdP4O6nlVV3xhjmuXAJ6pqJh/chwC7VdU/jDvtXEpyO+BXwE5VdeGG7IsWliSHAedW1Ss2dF/WtSQ7A2cBm1TVdXNY7ybA5cB9qurkuap3mjYL2L2qzlgf7W0ISQ6g+zx4wIbuy8bKIzJz69FVtQTYCXgT8FLgw3PdyLr4JrWR2Am42BDTlvV9tGger/+tuzWwGXDaum5ofawDLa1nC/6IbVX5mIMHcDbwsEnD9gGuB/bsXx8GvK5/vh1wNHApcAlwAl2w/Hg/zVXAKuDfgJ2BAp4J/BY4fmDY4r6+5cAbgR8AlwFfALbty5bRfdv8s/4CjwSuAa7t2zt5oL5n9c9vArwC+A1wId2Rpq37sol+7N/37SLg4LW8T1v30/+hr+8Vff0P6+f5+r4fh00x7TLg3P49uRA4H/hb4FF0R3IuAV4+MP4hdEepoNvBfgK4uH/PfwjcekgfDwBOHHhdwPOA04E/Au8BAty0r2vPgXFv2c/HrfrXzwbO6Pv2RWCHSfXu1j/fHHhb/55cBpzYD5tqOb8W+DawEjgG2G6gzqf3dVwMvJIp1suBcf8a+Andt+hzgEMmlT8A+E4/j+cABwysx4cCXwau6JfdX/R9u5Tug+xvBup5FN0RypXA74CD1rYNDOlrAf/cL4Oz+mH/1ffrcuDHwL6Tlv2n6Na1lX2f7jlQfnfgpL7sk8BR9NvmiMvtn/q+rOyXx67Ad/u+fArYdMh87AZ8q1/GFwGfHCibbn4+TbcOrwROAe4I/DvdtnAO8PCB8ZczfH+wM2uuU1vTfeE6v18+rwMWDen/TYF3Auf1j3f2w+7YrwtFt/0eN8W0E+0+p5/2fOAlk/aX3+3Xh/OBdw++j5PXAbr9YPXtrgL+nhv3ES/hxn3EMyb1/610+6rfA+8DNp+0f3kpcAHw8SHvwbOBn/fL4WfA3v3wtW0Dy+n3p2PuY/4CuJruKP8q4NK1bIOHseY6vB+wou/Pd4C9Bspe2i/rlcAvgYfO5HNvY3ls8A7MlwdDPjD6DebA/vkNKxrdTuZ9wCb9Y19uPNW3Rl0DO4CPATdj+Afc74A9+3H+lxs/xJcxJMj0zw+ZGHeg/IYND/hHup36LsCWwGcnNvKBfnyw79fdgD8BfzHkffoY3U51ST/tr4BnDuvnpGmX0Z26e1X/nj2bLhAd0de3R7/R7zJ5voDnAl8CtgAWAfcAthrSzgH8+U7maGAb4PZ9m4/syz4CvH5g3H8Gvto/fwjdh9XedDvQ/waOn1TvRJB5T/+e79j37379NFMt5zPpPjg271+/qS+7C93O7gHApnQ77GsZHmSWAXelC5J70e3Y/7Yvuz3dTu7J/Xt9C2DpwHp8GXD/ftol/frx8r7dh/TT3qkf/3z6D2Xg5ty44x+6DUzR1wK+DmzLjR88/9D3azHdB9cFwGYDy/5quhC1qG/re33ZpnRh78V9u0/o36fXjbHcvghsRbfO/Qk4lm772Jruw23/IfNxJHBw/75tBjxgoGyU+XlEX/4xug/zg7lxWzhr0vY7bH+wM2uuU58H3t+Pdyu68PPcIf1/DfC9frxb0n1AvnaqeqeYdqL8yL6tu9JtSxP7oXsA9+nnb2e6sPAv06wDN2xDk/YRr+nfl0cBVwI378vf2S+7benW2y8Bb5w07Zv75b75FPPwd/37ei+6oLEb3ZHkTVj7NrCc6YPMsH3MGuMO2QY3Y83Pl73pgty96db//en2+TcF7kQXfHcYWC67jvI5t7E+NngH5suD4UHme/RHKCataK+h+0Dfbbq6BnYAu0wxbPAD7k0D5XehO9KyiNkHmWOBfxoouxPdjn9ih1PAbQfKfwA8aYr5WkS307/LwLDnAsv753/Wz0nTL6M72rGof72kb/veA+P8mBs/jG+YL7owtsa3krW0s8aOo29j8APnU8DL+ucPA349UPZt4On98w8Dbxko27J/33YeqHc3uh3RVcDdpujLVMv5FQPl/8SNwelVwJEDZVv068CUQWaKtt4JvKN//u/A54aMdxjwsYHX+9J96N5kYNiR9Ed46ML8c5kUHFnLNjBFmwU8ZJpx/jjxHvbL/huTtoer+ucPpDsikIHy73DjtjnKcrv/pHXupQOv3wa8c0gfPwZ8gIHtZYz5+fpA2aPpQuvkbWGbgfVk2P7ghnWK7nTQnxj40KYLr98c0qczgUcNvH4EcPZU6+pa1uU7Dwx7C/DhIeP/y+A6ONU6wNRB5qrBPtB9oN+HLnhcwcCHNnBfbjzCt6x/jzZbyzL5GvCiKYZPtw0sZ/ogM2wfs8a4U22DA8Mm1uFD6QPmQPkvgQfR7XMupNt3bTLdetjCw2tk1r0d6Q5PT/afdAn+mCS/TvKyEeo6Z4zy39B9S9hupF6u3Q59fYN1T+wEJwzeZXQl3c5/su248dvwYF07jtGXi6tqdf/8qv7v7wfKrxrS9sfpdkJHJTkvyVuSbJJk3/4Oi1VJ1nZuf9j8HQdsnuTeSXYClgKf68vWeN+qahXdKZ/J87sd3TeqM9fS/ih92YGBdaCqruzbm1Lf528m+UOSy+gObU+sL7ebpj+D69oOwDm15kXtg8v18XTfjH+T5FtJ7tsPH3cbWGP9T/KSJD9PclmSS+mOhgyu75Pfp8366x52AH5X/d59oL+D8zPdcpu8zo2yDkJ3WjTAD5KcluQfx5ifyW1cNMW2MNjuKPuDiaMJ5ye5tG/3/XRHXKYy1b5ghyHjDjO5XzsAJLljkqOTXJDkcuANU/R3un0gdPuIwYuYJ7aRW9KF+x8PzOtX++ET/lBVV6+l7mHbxXTbwChG2YcOWtt7sRPwkon57Of1dnRHYc6gC4mHABcmOSrJuMtwo2KQWYeS3ItuRT5xcllVrayql1TVLnTfrv41yUMniodUOWz4hNsNPL893bfIi+i+hWwx0K9FrLnxTlfveXQbxmDd17HmjnUUF/V9mlzX78asZ2xVdW1Vvbqq7kJ32mY/uiMnJ1TVlv1jjxnUez3dt6cnA08Bjq6qlX3xGu9bkpvRnTqYPL8X0Z022HXc9ic5H7jtQHub9+0NcwTdYfbbVdXWdKd50pedM01/BteZ84DbJRncn9ywXKvqh1X1GLoPx8/TvV/TbQNrbTPJvnTn+Z9Id9pgG7pD7Rky7aDzgR2TDI57+0nzM8pyG1tVXVBVz66qHeiOUr03yW6znJ9hhu0PBp1Dd0Rmu6rapn9stZZtYap9wXmz7NfE9IcCv6C7C2krutM0k+d/un3V2lxEF/j2GJjXratqMDBMV/+w7WKt2wCT9sHA9mP0eyafB+fQnfLeZuCxRVUdCVBVR1R3F9ROfT1vHqM/Gx2DzDqQZKsk+9FdQPiJqjplinH263dgobu4b3X/gC4grPX3RYb4hyR3SbIF3WH7z/Tf2H5F9230r/tbJF9Bd650wu+BnSdthIOOBF6c5A5JtqT7pvTJGvPWzb4vnwJen2RJfwTjX+kuYFynkjw4yV37EHc53U599TSTjeoIugsNn9o/Hxz+jCRLk9yU7n37flWdPThxH4Y+Arw9yQ5JFiW5bz/NOD4DPDrJ/ZJsCryatX8QLgEuqaqrk+xDF8Qm/A/wsCRPTLI4yS2SLB1Sz/fpdtT/1h/lWkYXTI5Ksmm63+XZuqqu5cZ1fbptYDpL6ML0H4DFSV5Fd83KKL7bT/vCft4eR3eh6YSRlttMJPm7JBNh8490HyKrZzk/wwzbH9ygqs6nu2D8bf1+6yZJdk3yoCF1Hgm8Isktk2xHdzpz3O33lUm2SLIH8Ay6i62hew8uB1YluTNw4Ah1jbyv7LezDwLvSHIrgCQ7JnnEGH3/EHBQknuks1u/Hxu6DfTTrQAe18/3bnQ3bozq98Bt+216VB8EntcfdU2Sm/X7/yVJ7pTkIf26fTVduJurfeEGYZCZW19KspIuDR8MvJ1uQ53K7sA36M5zfxd4b1Ut78veSLezuDTJQWO0/3G686QX0J2qeCFAVV1Gdy3Fh+i+IVxBd3X+hE/3fy9OctIU9X6kr/t4ugsMrwZeMEa/Br2gb//XdEeqjujrX9e2p/ugv5zuIsJvMUcBqqomdmI7AF8ZGH4s3Z1D/0t3FGBX4ElDqjmI7k6UH9KdinwzY26fVXUa3ft7VN/eSrpz4X8aMsk/Aa/p19lX0R8p6ev6Ld3poJf0/VlBdyH3VO1eA/wN8Fd033rfS3e06xf9KE8Dzu5PFzyP7qJWWPs2MJ2v0b3Xv6I7hH81o512mOjv4+iuPfgjXQj97ED5OMttXPcCvp9kFd3RsBdV1VnMYn7WYsr9wRSeTnfK92d078dngNsMGfd1wI+An9Ktryf1w8bxLbpTiscCb62qiR+fPIguTK+k+yD+5NSTr+EQ4PB+X/nEEcZ/ad/29/r18Rt01/yNpKo+Dbyebr+1ku4I47YjbAPvoLv+5vfA4XRfFEZ1HN1dUBckmXxEbVg/f0R3Afi76ZbpGXTrO3RfYt/U9/MCuiOlLx+jPxsdfxBPmqf6o2eX0h2qP2tD90frT2bxA5nrStbRD/FJHpGR5pEkj+4PX9+M7vbrU+juUJOkeckgI80vj+HGHyvbne42eA+7Spq3PLUkSZKa5REZSZLUrFb+KZaHjSRJWriG/pSER2QkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrPGCjJJdk5y6qRhhyQ5KMlhSZ7QD9s2yU+SPKOf5qokK5L8LMnHkmwylzMhSZIWpjk/IpNka+BrwAeq6qP94DOrailwV+C2wBPnul1JkrTwLJ7j+rYEvgIcUVWHTi6sqtVJfgDsOE6ld95m2dz0TpIkNecXly4fWjbXQebtwIeq6h1TFSbZDLg38KJxKr36sjnomSRJatKrQ/1HkanKxg0yNc3w44DHJHlrVV04UL5rkhXA7sBnquqn4zR65jXLuf7aMXsqSZLmhTfcjJsOKxs3yFwM3HzSsG2Bs/rnRwEnAl9O8uCqWtkPP7Oqlia5DbA8yd9U1RdHbXTRJt1DkiQtPP9RXDOsbKyLfatqFXB+kodCd3cS8Ei68DIxzjuBY4HPJdl00vTnAy8D/n2cdiVJkqYyk7uWng68oj9VdBzw6qo6c3CEqnopcA7w8Sna+DywRZJ9Z9C2JEnSDVI17LKXjUoTnZQkSevElBf6gr/sK0mSGmaQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVmzDjJJVidZMfDYOcmyJEf35QckuT7JXgPTnJpk59m2LUmSFrbFc1DHVVW1dHDAFCHlXOBg4O/noD1JkiRg/Z1aOhrYI8md1lN7kiRpAZiLIzKbJ1nRPz+rqh47xTjXA28BXg7sP24Dt912GatXz6KHkiSpWQ+/0zc/c/gP8oSpytbJqaUhjgAOTnKHcRtYvRqqxu+YJEmaFx41rGAugsxIquq6JG8DXjrutOdftnzuOyRJklqxxbCC9X379WHAw4Bbrud2JUnSPLReg0xVXQO8C7jV+mxXkiTNT6k2Lj5popOSJGmdyLACf9lXkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWYtnMlGS7YF3AvcC/gScDXwNeMakuvcA7gLcGvgCcNZA+UFV9Y2ZtC9JkgQzCDJJAnwOOLyqntQPWwosqar/GhjvDcCKqvp5klsDJ1TVfnPUb0mSpBkdkXkwcG1VvW9iQFWtGBwhyQOBJwJ7z657nR13e9BcVCNJkhr0uzO+NbRsJkFmT+DHwwqTbAN8FHh6VV0+ULRvksHA8/iqOnOUBlddOYNeSpKkeWHfA6+pEw7dNFOVzegamWkcCnyiqr49afiMTy2dctJyLrikZt8zSZLUnJf893V7DiubSZA5DXjCVAVJ9gd2Bp42g3qHuv324fbbTxnEJEnSPHfCoZueNqxsJrdfHwfcNMmzJwYkuVeSBwGvB55aVdfNoF5JkqSxpGr8UzZJdqC7/foewNV0t19vRndx728mjf4CYBF/fvv166rqMyM26XklSZIWrqGnZWYUZDaAJjopSZLWiaFBxl/2lSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1Kw5CTJJVvV/b5LkXUlOTXJKkh8muUNfdnaS7eaiPUmSJIDFc1zf3wM7AHtV1fVJbgtcMcdtSJIkAXMfZG4DnF9V1wNU1blzUenKlSvnohpJktSgJUuWDC2b6yDzKeDEJPsCxwKfqKqfzLbSrbbaatYdkyRJbbrNe1e+5LwDt3zbVGVzGmSq6twkdwIe0j+OTfJ3VXXsbOpd8rjXz0n/JElSk94KTBlkUlWzrj3JqqracorhBwE7VdULkpwN3LOqLppBE7PvpCRJalWGFczp7ddJ9k6yQ//8JsBewG/msg1JkqQJc/07MrcCvpTkVOCnwHXAuwfKf5rk3P7x9jluW5IkLTBzcmppPWiik5IkaZ1YP6eWJEmS1ieDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGZNG2SSVJKPD7xenOQPSY7uXx+Q5Pokew2Mc2qSnfvnWyY5NMmZSX6S5MdJnj33syJJkhaaUY7IXAHsmWTz/vVfAr+bNM65wMFDpv8Q8Edg96q6O/BIYNsZ9FWSJGkNi0cc7yvAXwOfAZ4MHAnsO1B+NPDAJHeqql9ODEyyK7AP8JSquh6gqv4AvHmcTm57zweMM7okSZpHLvnRiUPLRg0yRwGv6k8n7QV8hDWDzPXAW4CXA/sPDN8DOHkixMzUpdfVbCaXJEkN2/ybF9ZVD75VpiobKchU1U/7a16eDHx5yGhHAAcnucOwepIcDPwdcKuq2mGUtgE+dcyxnLrqulFHlyRJ88ibf3Pl/sPKUrX2ox1JVlXVlkleBbwIWAbcAjioqvZLcgBwz6p6fpLnAHsDDwD2owtKxwC7DR6VmahzjHnwkIwkSQvXlEdjYLzbrz8CvKaqTlnLOIcBDwNuCVBVZwA/Al6XZBFAks3W1iFJkqRRjRxkqurcqvqvaca5BngXcKuBwc+iO4JzRpIfA98AXjqDvkqSJK1h2lNLG4kmOilJktaJOTm1JEmStFExyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg4wkSWrWyEEmyS2SrOgfFyT5Xf/80iQ/mzTuIUkO6p8f1o970/71dknOntO5kCRJC9LIQaaqLq6qpVW1FHgf8I7++VLg+mkmXw3848y7KUmS9OcWr6d23gm8OMkHZzLxLe9732mTkiRJmp+2/5//2fe0XXY5Yaqy9RVkfgucCDwN+NK4E19ZNecdkiRJzTgeyFQFcxFkhqWMycPfAHwR+L9xG7jie98bdxJJkjR/TBliYG7uWroYuPmkYdsCFw0OqKozgBXAE+egTUmSpNkHmapaBZyf5KEASbYFHkl3Kmmy1wMHzbZNSZIkmLvfkXk68IokK4DjgFdX1ZmTR6qq04CT5qhNSZK0wKXauJC2iU5KkqR1Yp1eIyNJkrRBGGQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElq1khBJsn2SY5KcmaSnyX5cpI7JtkjyXFJfpXk9CSvTJJ+mgOSVJKHDtTz2H7YE9bVDEmSpIVj2iDTB5PPAcuratequgvwcuDWwBeBN1XVHYG7AfcD/mlg8lOAJw+8fhJw8hz1XZIkLXCLRxjnwcC1VfW+iQFVtSLJM4FvV9Ux/bArkzwfWA68px/1BGDfJJsANwV2A1aM28mdHnjvcSeRJEnzxG+O//7QslGCzJ7Aj6cYvsfk4VV1ZpItk2w1MQj4BvAIYGu6Izh3GKHNNVxRq8edRJIkzRN/s+on9cUt756pykYJMsOELqhMZXD4UcAL6YLMS+hOS43lP7/xBX65+oqxOyhJktr3s+uveP+wslGCzGnAVBfnngY8cHBAkl2AVVW1sr/ml6r6QZI9gauq6lcTw8fxjJvuOPY0kiRp3njesIJR7lo6DrhpkmdPDEhyL+B04AFJHtYP2xx4F/CWKer4d2ZwJEaSJGltpg0yVVXAY4G/7G+/Pg04BDgPeAzwiiS/pLtD6YfAu6eo4ytV9c257LgkSVK6nLLRa6KTkiRpnRh6XYq/7CtJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktSsGQWZJAcnOS3JT5OsSHLvJIuTvCHJ6f2wFUkOHphmdT/s1CSfTrLF3M2GJElaiMYOMknuC+wH7F1VewEPA84BXgfsANy1qpYC+wKbDEx6VVUtrao9gWuA582285IkaWFbPINpbgNcVFV/Aqiqi/qjK88Gdq6qq/vhK4FDhtRxArDXqA3utuweM+imJEmaD/b75lu3fWcefMlUZTMJMscAr0ryK+AbwCeBPwK/7cPLWiVZDPwV8NVRG7ya1TPopiRJmicuBjJVQapq7NqSLKI7dfRg4LnAG4BnVNXd+/JnAC8CbgHcr6rOSbIaOKWv4gTgJVV1zYhNjt9JSZI0X0wZYmCGQWaNCpIn0IWZvelOLa0cKDsV2K+qzk6yqqq2nGEzBhlJkhauoUFmJhf73inJ7gODlgK/BD4MvDvJZv14i4BNx61fkiRpVDO5RmZL4L+TbANcB5wBPAe4DHgtcGqSlcBVwOHAeXPUV0mSpDXM+tTSetJEJyVJ0joxd6eWJEmSNhYGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpo1dpBJsjrJiiSnJvlSkm364cuSHD1p3MOSPKF/vl+SnyQ5OcnPkjx3bmZBkiQtVDM5InNVVS2tqj2BS4B/nm6CJJsAHwAeXVV3A+4OLJ9B25IkSTdYPMvpvwvsNcJ4S/q2Lgaoqj8Bvxy1kT2WLZ1R5yRJUvtOW75iaNmMg0ySRcBDgQ9PN25VXZLki8BvkhwLHA0cWVXXj9LWtVxHUTPtqiRJati76jMnvzBPuNtUZTMJMpsnWQHsDPwY+Ho/fFjSKICqelaSuwIPAw4C/hI4YJQG3/DNd3MeF82gq5IkaT5L1XhHOpKsqqotk2xNd2Tl01X1riR7Au+vqvsPjPtF4G1V9a1JdWwHnFVVS0Zs1sMxkiQtXBlWMOPbr6vqMuCFwEH9xbynAzsk+QuAJDsBdwNWJNkyybKByZcCv5lp25IkSTDLi32r6idJTgaeVFUfT/IPwEeTbAZcCzyrqi5LsgT4tyTvB64CrmDE00qSJEnDjH1qaQNpopOSJGmdmPtTS5IkSRuaQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzxg4ySW6d5H4VKeUAABJUSURBVIgkv07y4yTfTfLYJMuSXJbkJ0l+keStA9NsmeT9Sc5MclqS45Pce25nRZIkLTRjBZkkAT4PHF9Vu1TVPYAnAbftRzmhqu4O3B3YL8n9++EfAi4Bdq+qPYADgO3moP+SJGkBWzzm+A8Brqmq900MqKrfAP+dZNnAsKuSrAB2TLIrcG/gqVV1fV/+a+DXoza69wP3HLObkiRpvjjp+FOHlo0bZPYATppupCQ3B3YHjgf2AVZU1eox27rBtXXNTCeVJEmNO3rVobXflgdmqrJxg8wakrwHeABwDfD/gH2T/BS4E/CmqrqgOxs1OycdfwrXGWYkSVqQjr3yE9sOK0tVjVxRkocCr6qqBw0M2w74Ed11LwdV1X5J7gicCDwcWAl8Hdht4tTSDIzeSUmSNN8MPSoy7l1LxwGbJTlwYNgWk0eqql8BbwReWlVn0gWdV/cXC5Nk9ySPGbNtSZKkNYwVZKo7fPO3wIOSnJXkB8DhwEunGP19wAOT3AF4FrA9cEaSU4APAufNqueSJGnBG+vU0gbURCclSdI6MWenliRJkjYaBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaNVaQSbI6yYokJyc5Kcn9Bsr2SbI8yel92f8luWtfdkiS3/XT/izJk+d6RiRJ0sKTqhp95GRVVW3ZP38E8PKqelCSWwPfB55SVd/pyx8AbFdVn09yCLCqqt6aZHfgx8AtquraEZsevZOSJGm+ybCCxbOodCvgj/3z5wOHT4QYgKo6caqJqur0JFcCNwcunEX7kiRpgRs3yGyeZAWwGXAb4CH98D2Aw0epIMnewOlVNXKI2ec+uwHXj9lVSZI0H3z0iP3fv8cu//HcqcrGDTJXVdVSgCT3BT6WZM/JIyX5Pt0Rm2Oq6kX94BcneTawC/DIcRotVuPZJUmSFqznAHMSZG5QVd9Nsh1wS+A0YG/gC33ZvZM8AdhvYJJ39NfIPI4uAO1aVVeP0tYPv3fWTLspSZLaN/QamRnffp3kzsAi4GLgPcABg3cxAVtMNV1VfRb4EbD/TNuWJEmCmV8jA1062r+qVgMXJPl74M1JdqS7iPci4DVD6nkNcESSD1aVF79IkqQZGev26w2oiU5KkqR1Yu5PLUmSJG1oBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNmlWQSVJJ3jbw+qAkh/TPD0ly0KSyXyQ5NcnJSZ4+m7YlSZJme0TmT8Djkmy3tpGSPA/4S2CfqtoTeCCQWbYtSZIWuMWznP464APAi4GD1zLey4EHV9XlAFV1GXD4qI088J67zaaPkiSpYcf/6IyhZbMNMgDvAX6a5C1TFSZZAiypqjNn3MJ1V854UkmS1Larvnlgbf7gQ6c8kzPrIFNVlyf5GPBC4KopRglQs2lj+fHf4forfz+bKiRJUqOu/flh+w4rm4sjMgDvBE4CPjq5oA86VyTZpap+PZPKb7LVztxkq51n2UVJktSixdvf+8RhZXNy+3VVXQJ8CnjmkFHeCLwnyVYASbZK8py5aFuSJC1cc/k7Mm8Dht29dCjwTeCHSU4FvgV44YskSZqVVM3q8pX1pYlOSpKkdWLoT7b4y76SJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNGjnIJFmdZEWSk5OclOR+A2X7JFme5PS+7P+S3LUvOyTJ7/ppT0/y2SR3WRczI0mSFpbFY4x7VVUtBUjyCOCNwIOS3Br4FPCUqvpOX/4AYFfglH7ad1TVW/uyvweOS3LXqvrDKA2vXr16jG5KkqT5ZNGiRUPLxgkyg7YC/tg/fz5w+ESIAaiqE4dNWFWfTPLXwFOA/xqlscWLZ9pNSZLUunrvYw7gwM8fNlXZOAlh8yQrgM2A2wAP6YfvARw+Zp9OAu486siv2W/kUSVJ0vzzUeCwqQpmemrpvsDHkuw5eaQk36c7YnNMVb1oSF0Zo11e+aWfjzO6JEmaX4bmhhndtVRV3wW2A24JnAbsPVB2b+CVwNZrqeLugOlEkiTNyoyCTJI7A4uAi4H3AAcM3sUEbLGWaR8PPBw4ciZtS5IkTZjJNTLQHeLZv6pWAxf0dyK9OcmOwIXARcBrBqZ9cZJ/AG4GnAo8ZNQ7liRJkoZJVW3oPoyiiU5KkqR1Ym6vkZEkSdoYGGQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElq1oyCTJLVSVYMPF7WD1+c5A1JTh8oOzjJw5N8N0n68Rb1Zfeby5mRJEkLy+IZTndVVS2dYvjrgO2Bu1bV1UmWAC+pqmOS/CPwTOBDwAuAH1bVd2bYviRJEqmq8SdKVlXVlpOGbQGcA+xcVSunmOY2wInA3wBfAPapqktGaW/ZbjuM30lJkjQvLD/jvAwrm+kRmc2TrBh4/Ubg58BvpwoxAFV1fpJ3At8FXjhqiAHgylUz7KYkSWregfsUh/5gyjAzl0dk9gIOr6q796+fAbwIuAVwv6o6J8lNgJVVdbOxGjzhs8U5vxy7n5IkaR444XP/yqE/eMdURev81FKSU4H9qursYdOOwFNLkiQtXENPLc3Z7ddVdSXwYeDdSTaD7u4kYNO5akOSJGnQXF0j89WqehlwMPBa4NQkK4GrgMOB82bXTUmSpD83o1NLG0ATnZQkSevEuj+1JEmStL4ZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDVr5CCTZOckp04adkiSg/rn/5rkF0lOSXJykrcn2WRg3LsnqSSPmLvuS5KkhWxOjsgkeR7wcOA+VXVX4F7AhcDmA6M9GTix/ytJkjRri+eonoOBB1bVpQBVdQ3wponCJAGeAPwlcEKSzarq6lErX7b9LaCun6OuSpKklizf6WZ78oNzT52qbC6CzObAllV11lrGuT9wVlWdmWQ58CjgsyO3cOWqWXVQkiS17GanAJmqZJwgU0OG32SwrL8G5s3ANsBTquo7dKeTjupHOQp4GmMEmeWX/2mMbkqSpHlmyhAD410jczFw80nDtgXOBq5IcgeAqvpaVS0FTgU2TbIIeDzwqiRnA/8N/FWSJWO0LUmS9GdGDjJVtQo4P8lDAZJsCzyS7gLeNwKHJtmmLwuwWT/pw4CTq+p2VbVzVe0E/C/wt3M3G5IkaSEa9xqZpwPvSfK2/vWr++teDgW2AL6f5E/AKuDbwE+A/wI+N6me/wUOBD4+455LkqQFL1XDLn3ZqDTRSUmStE7MyTUykiRJGxWDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmGWQkSVKzDDKSJKlZBhlJktQsg4wkSWqWQUaSJDXLICNJkpplkJEkSc0yyEiSpGYZZCRJUrMMMpIkqVkGGUmS1CyDjCRJapZBRpIkNcsgI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElqlkFGkiQ1yyAjSZKaZZCRJEnNMshIkqRmtRJkMsojyXNHHXe+PRbyvC/0+XfeN3w/nH/n3Xlf54+hWgkyo3rOhu7ABrSQ5x0W9vw77wvXQp5/513A/AsykiRpATHISJKkZs23IPOBDd2BDWghzzss7Pl33heuhTz/zrsASFVt6D5IkiTNyHw7IiNJkhYQg4wkSWpWc0EmybZJvp7k9P7vzacY53ZJvpnk50lOS/KigbJDkvwuyYr+8aj1OwfjS/LIJL9MckaSl01RniTv6st/mmTvUafd2I0w70/t5/mnSb6T5G4DZWcnOaVfzj9avz2fGyPM/7Iklw2sz68addqN3Qjz/v8G5vvUJKuTbNuXNb3sk3wkyYVJTh1SPp+3+enmfd5u8yPM+7zd3melqpp6AG8BXtY/fxnw5inGuQ2wd/98CfAr4C7960OAgzb0fIwxv4uAM4FdgE2BkyfmZWCcRwFfofvRoPsA3x912o35MeK83w+4ef/8rybmvX99NrDdhp6PdTz/y4CjZzLtxvwYt//Ao4Hj5tGyfyCwN3DqkPJ5uc2POO/zeZufbt7n5fY+20dzR2SAxwCH988PB/528ghVdX5VndQ/Xwn8HNhxvfVwbu0DnFFVv66qa4Cj6N6DQY8BPlad7wHbJLnNiNNuzKbtf1V9p6r+2L/8HnDb9dzHdWk2y2/eL/tJngwcuV56th5U1fHAJWsZZb5u89PO+3ze5kdY7sM0v9xno8Ugc+uqOh+6wALcam0jJ9kZuDvw/YHBz+8PS35kqlNTG5kdgXMGXp/Ln4eyYeOMMu3GbNz+P5PuW+qEAo5J8uMkLf4S5qjzf98kJyf5SpI9xpx2YzVy/5NsATwS+N+Bwa0v++nM121+XPNtmx/FfNzeZ2Xxhu7AVJJ8A9h+iqKDx6xnS7qd279U1eX94EOB19Kt8K8F3gb848x7u85N9T8mJt8zP2ycUabdmI3c/yQPptupPWBg8P2r6rwktwK+nuQX/TeeVowy/ycBO1XVqv56r88Du4847cZsnP4/Gvh2VQ1+k2192U9nvm7zI5un2/x05uv2Pisb5RGZqnpYVe05xeMLwO/7Q6j0fy+cqo4km9CFmP+pqs8O1P37qlpdVdcDH6Q7JLcxOxe43cDr2wLnjTjOKNNuzEbqf5K9gA8Bj6mqiyeGV9V5/d8Lgc+x8S/ryaad/6q6vKpW9c+/DGySZLtRpt3IjdP/JzHptNI8WPbTma/b/Ejm8Ta/VvN4e5+VjTLITOOLwP798/2BL0weIUmADwM/r6q3Tyq7zcDLxwJTXh2+EfkhsHuSOyTZlG6n/cVJ43wReHp/J8N9gMv6026jTLsxm7b/SW4PfBZ4WlX9amD4zZIsmXgOPJyNf1lPNsr8b9+v7yTZh26bvniUaTdyI/U/ydbAgxjYD8yTZT+d+brNT2ueb/NrNY+391nZKE8tTeNNwKeSPBP4LfB3AEl2AD5UVY8C7g88DTglyYp+upf3CfYtSZbSHXY7G3jueu7/WKrquiTPB75Gd2X6R6rqtCTP68vfB3yZ7i6GM4ArgWesbdoNMBszMuK8vwq4BfDefvu+rqruCdwa+Fw/bDFwRFV9dQPMxoyNOP9PAA5Mch1wFfCkqipgISx76L6MHFNVVwxM3vyyT3Ik3R0q2yU5F/gPYBOY39s8jDTv83abH2He5+X2Plv+iwJJktSsFk8tSZIkAQYZSZLUMIOMJElqlkFGkiQ1yyAjSZLWiUzzjzAnjbtTkmP7X95fnmSkfz9hkJEkSevKYXT/QmQUb6X7H2J7Aa8B3jjKRAYZSZK0Tkz1jzCT7Jrkq/3/xDohyZ37orsAx/bPv8mI//jSICNJktanDwAvqKp7AAcB7+2Hnww8vn/+WGBJkltMV1mLv+wrSZIa1P8z5/sBn+5/hRngpv3fg4B3JzkAOB74HXDddHUaZCRJ0vpyE+DSqlo6uaD/p5+PgxsCz+Or6rJRKpQkSVrnqupy4KwkE/8nMUnu1j/fLslELvl34COj1GmQkSRJ60T/jzC/C9wpybn9P3x+KvDMJCcDp3HjRb3LgF8m+RXdPwF9/Uht+E8jJUlSqzwiI0mSmmWQkSRJzTLISJKkZhlkJElSswwykiSpWQYZSZLULIOMJElq1v8HlIhHTDdmCf8AAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Plot the distribution of illicit flows for a random sample of partner countries\n",
"fig, axes = joypy.joyplot(partner_features.sample(n=15, axis=1, random_state=234), \n",
" colormap=plt.cm.rainbow, figsize=(8,8),\n",
" title='Distribution of mis-invoicing across random sample of partner countries');"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [],
"source": [
"# Apply a modified log transformation\n",
"partner_features_log = partner_features.apply(lambda x: np.log(x+1) if np.issubdtype(x.dtype, np.number) else x, axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAI2CAYAAAC7VjnCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdebwkVX3//9enqrvvOjPsq8CwCAiyiBJXDG7RKImJazRR1MREY77ZMDERY0yCJvHngknUxGiCOy6JRomoUcQlcRcEBhRBQJaBWRhm7n67qz6/P87pvtV9u+/tO3Pv3Jlb7yePok6dc+rU6epaPrX0HXN3RERERNa6ZLU7ICIiIrI3KOgRERGRUlDQIyIiIqWgoEdERERKQUGPiIiIlIKCHhERESmFZQl6zOyfzewvlqmtY81s3MzSOH21mf3WcrQd27vSzC5crvaWsNxLzGybmd27DG291szeuxvz/bqZfXFPl9/HcsbN7IRF6rR9z7IyzOwyM7tktfuxN5jZRjNzM6usQNuvNLP74jZ78HK3L70t5/mlo91fMLNPF6bdzE5a7uWsJjMbMrPPmtlOM/vEaven03Kdk8zscDO7ycwGFq272N/pMbPbgcOBBpABNwIfAN7j7vkSO3Y78Fvu/qUlzHM18CF3352T/BuAk9z9N5Y673Iys2OAm4Hj3H3LavZFysXMLgPucvfXrXZfVpqZbQRuA6ru3ljGdqvALuBR7v7D5Wp3kWU68GB3v2VvLG81mNlLCOeDx63S8r8H/J67fytOr8g6353z3jIu+0XA/wMes5z7xG72ZSMrsH8W2n8XcJO7/+NC9fq90/NL7r4OOA74O+A1wPv2rIvzrcQV2j7iOGC7Ap79y96+C7WGt//93eHAILBppRe0N7aB/Wk7W6l90MzOBTY0A57VtMLfx3HAzbsTZOxP20n0YeB3Fq3l7gsOwO3Akzvyfg7IgYfG6cuAS2L6EOAK4AHgfuDrhODqg3GeKWAc+FNgI+DAbwI/A75WyKvE9q4G/hb4DrAT+C/goFh2PuEqdl5/gacBs0A9Lu+HhfZ+K6YT4HXAHcAWwh2sDbGs2Y8LY9+2ARcvsJ42xPm3xvZeF9t/cvzMeezHZV3mPR+4K66TLcBm4FeApxPuEN0PvLZQ/w2Eu18QDsYfArbHdf5d4PAefXwJ8I3CtAOvAH4C7ADeCRgwENt6aKHuofFzHBanXw7cEvv2GeCojnZPiukh4K1xnewEvhHzun3PfwP8LzAGfBE4pNDmi2Mb24G/oMt2Waj7DOAawtX5ncAbOsofB/xf/Ix3Ai8pbMfvBj4HTMTv7iGxbw8QTnq/XGjn6YQ7n2PA3cCrF9oHevTVgVfF7+C2mPeO2K9dwPeB8zq++48TtrWx2KdHFMofBvwgln0MuJy4b/b5vf1u7MtY/D5OBL4Z+/JxoNbjc5wEfDV+x9uAjxXKFvs8nyBsw2PA9cDJwJ8T9oU7gV8o1L+a3seDjbRvUxsIF2eb4/dzCZD26P8AcClwTxwujXknx23BCfvvVV3mbS73t+O8m4GLOo6X34zbw2bgn4rrsXMbIBwHPS53HHg+c8eIi5g7Rry0o/9vIRyr7gP+GRjqOL68BrgX+GCPdfBy4Kb4PdwInBPzF9oHriYeT5d4jHkIME14ejAOPLDAPngZ7dvwBcC1sT//B5xZKHtN/K7HgB8DT+rxWV8PvLfLvtg8bnU9nseylHBM2xa/r9+jsN11tNnXeS/W/UT8fnbGbeD0QjuXxXX33/GzfRs4MZYZ8Pa4XewErgMeCvwV7efA36S/c17xfPwSwjH57XF9/xR4TMy/M7ZxYT/H3thmcz8aBx7N/O3lMYRz2M44fkzHtrbQOaICTBKeqPSOaRYqjA3dTpeTS/wAryx8Ic2g528JO1w1Ducx9xitra3CSv4AMELvk+Hd8UscAf6DuRP++fQIegoH1A91lF/NXNDzMsIJ4ARgFPhP4gGh0I9/jf06C5gBHtJjPX2AcABeF+e9GfjNXv3smPd8wuPD18d19nLCzvaR2N7phAPECZ2fixDZfhYYJuyMDwfW91jOS5h/QLoCOAA4Ni7zabHs34A3Fuq+Cvh8TD+RsMOfQzjY/iNxx+1y8HhnXOdHx/49Js7T7Xu+lXCSGYrTfxfLTiPsJI8DaoSDe53eQc/5wBmEHfxMwkngV2LZsYQd5gVxXR8MnF3YjncCj43zrovbx2vjcp8Y5z0l1t9MPIEDBzJ3kui5D3TpqwP/AxzE3EnqN2K/KoST3L3AYOG7nyYEXGlc1rdiWY1wMPujuNznxPV0yRK+t88A6wnb3AzwZcL+sYFwIrywx+f4KHBxXG+DwOMKZf18nqfG8g8QTiQXM7cv3Nax//Y6HmykfZv6NPAvsd5hhEDpd3r0/6+Bb8V6hxJOpn/Trd0u8zbLPxqXdQZhX2oehx4OPCp+vo2EwOIPF9kGWvtQxzHir+N6eTrhAH9gLL80fncHEbbbzwJ/2zHv38fvfajLZ3huXK/nEk6iJxHuElRZeB+4msWDnl7HmLa6PfbBQdrPL+cQTrSPJGz/FxKO+QPAKYQT7VGF7+XEHt/ZJ4A/6bIvNo9bCx3PX0HYFx5E2O+/xMLbx+0sct4rnI/WMReAX9uxXu4nBNAVwl2Ny2PZUwkXEwcwF1Ae2e0cSH/nvOL5+CWEbeelcX1fQjj3vzP28xcI28NoH8feZvuVQn9a2wBh290BvCh+xhfE6YMXO0cU2ruOQlDe9ftYqLDbF1bI/xbxzgftG+Vfx43lpMXaKqyEE7rkFU+Gf1coP40QvabsedDzZeB3C2WnEE4SzYOTAw8qlH8H+LUunyslnCBOK+T9DnB1YUNYLOiZIl6FEjZ8Bx5ZqPP9wsbT+lyEjbjtameB5bQ2sMJOXjw5fRz4s5h+MvDTQtn/Ai+O6fcBby6Ujcb1trF48CBs+FPAWV360u17fl2h/HeZC7JeD3y0UDYct4GuQU+XZV0KvD2m/xz4VI96lwEfKEyfRzhBJ4W8jxKvXgg7/+/QEWSywD7QZZkOPHGROjua6zB+91/q2B+mYvrxhDsNVij/P+b2zX6+t8d2bHOvKUy/Fbi0Rx8/ALyHwv6yhM/zP4WyXyIEuJ37wgGF7aTX8aC1TREeSc1QOMETDqJf6dGnW4GnF6afCtzebVtdYFs+tZD3ZuB9Per/YXEb7LYN0D3omaL9hLGFEEwZ4a7IiYWyRzN35/D8uI4GF/hOvgD8QZf8xfaBq1k86Ol1jGmr220fLOQ1t+F3E4PRQvmPgZ8nHHO2EI5d1UW2wf8BXtFtnbP48fwqCsFzXN7uBD0nLNC/A2Kd5l2YyyjcmSIEvT+K6ScSgrJH0XFHmflBTz/nvOL5+CXATwrTZ8Q6hxfythMvHLt8juKxt9l+r6DnRcB3Oub/JnN34q+mxzmikNc6T/Ua9uTXW0cTIs9O/x8hkvyimf3UzP6sj7buXEL5HYSrj0P66uXCjortFdtuHjCbir+2miScKDodwtxVdrGto5fQl+3unsX0VBzfVyif6rHsDxIOWJeb2T1m9mYzq5rZefGXJuNmttC7CL0+31XAkJk90syOA84GPhXL2tabu48TNvzOz3sI4Urt1gWW309fjqKwDbj7ZFxeV7HPXzGzrWa2k3Bl1txejlmkP8Vt7SjgTm9/Yb/4vT6bcPC5w8y+amaPjvlL3Qfatn8zuyj+EmGnmT1AuMtS3N4719NgfP5+FHC3x72/0N/i51nse+vc5vrZBiHctjfgO2a2ycxetoTP07mMbV32heJy+zkeHBfzN5vZA3G5/0K4k9NNt2PBUT3q9tLZr6MAzOxkM7vCzO41s13Am7r0d7FjIIRjRPHdjOY+cijhQuD7hc/6+ZjftNXdpxdou9d+sdg+0I9+jqFFC62L44CLmp8zftZjCHd3biEElG8AtpjZ5WbW6zvcQQiou1nseN52PFqkvwtpzWdmqZn9nZndGreR2wt9aeq6Ht39KsIj03cC95nZe8xsfY9l9nPO6/w8nfsn7t71uLDIsXcxnX1r9q+4rS22La0jPIbrabeCnvgS2NGE9zPauPuYu1/k7icQrtr+2Mye1Czu0WSv/KZjCuljCZHpNsLVzXChXyntO/pi7d5D2ImKbTdo/5L7sS32qbOtu5fYzpK5e93d/8rdTyM8OrqAEOl+3d1H43D6brSbE67KXgC8ELjC3cdicdt6M7MRwuOLzs+7jfDo4sSlLr/DZsKt5ObyhuLyevkI4Vb/Me6+gfCoyWLZnYv0p7jN3AMcY2bF/aT1vbr7d939mYQT6acJ62uxfWDBZZrZeYT3Ep5HeHRxAOF2v/WYt2gzcLSZFese2/F5+vnelszd73X3l7v7UYSr4neZ2Ul7+Hl66XU8KLqTcLV+iLsfEIf1C+wL3Y4F9+xhv5rzvxv4EeGXQesJj4o6P/9ix6qFbCOceE4vfNYN7l48ISzWfq/9YsF9gI5jMHDEEvq9O+eDOwmP3Q8oDMPu/lEAd/+Ih1+DHRfb+fse7VxHeEzSzWLH87bjEe3fezf9fM4XAs8k3DXaQLgrAn3uJ+7+D+7+cMJj6ZOBP+lRtZ9z3p5siwsde5d6Pm72r6/jU7zwOwlY8BeWSwp6zGy9mV1AeDnyQ+5+fZc6F8SDnRFeZsriAGHFLvj3W3r4DTM7zcyGCY8OPhmvBG8mXOU+I/6s9HWE54xN9wEbO3bYoo8Cf2Rmx5vZKOEK7GO+xDfdY18+DrzRzNbFOyN/THg5c0WZ2RPM7IwY8O0i7KzZIrP16yOElyh/PaaL+S81s7Pj30V4E/Btd7+9OHMMnP4NeJuZHRWvZh7dz99S6PBJ4JfM7DFmViO8oLfQwWAdcL+7T5vZzxEOKE0fBp5sZs8zs4qZHWxmZ/do59uEg/qfxrtn5xOCmMvNrGbhb0xscPc6c9v6YvvAYtYRDkJbgYqZvZ7wjk0/vhnn/f342Z5FeAegqa/vbXeY2XPNrHki2EE4wGV7+Hl66XU8aHH3zYQXHd8aj1uJmZ1oZj/fo82PAq8zs0PN7BDCI9Wl7r9/YWbDZnY64R2Ij8X8dYTtYNzMTgVe2UdbfR8r4372r8DbzewwADM72syeuoS+vxd4tZk93IKT4nGs5z4Q57sWeFb83CcRXoLt133Ag+I+3a9/BV4R7yiYmY3E4/86MzvFzJ4Yt+1pQiDYa7/7HOGR2Dx9HM8/DvxBXMcHEIL6xT7nYt/lOkKQvp0QRL5pkfotZnZuXB9VwnfVfEG8m2U55y1goWPvVsJL3b3WxeeAk83shfH49XzC4+sr+lz2zxEeSXfeLWrTb9DzWTMbI0TZFwNvI+zU3TyY8GLXOOEg/C53vzqW/S3hwPKAmb26z2VDeIRzGfEFSOD3Adx9J+G53nsJ0eAE4VcKTc0/xrTdzH7Qpd1/i21/jfDy5DThbxrsjv8Xl/9Twh2wj8T2V9oRhKBgF+EFya+yTMGWuzcPeEcBVxbyv0z4BdV/EK56TgR+rUczryb8Iue7hMehf88Sg21330RYv5fH5Y0Rnt3P9Jjld4G/jtvs64l3YGJbPyM8kroo9udawkvq3ZY7C/wy8IuEq793Ee6i/ShWeRFwu4Xb0a8gvLALC+8Di/kCYV3fTLi1O02ft89jf59FeE6+gxCw/mehfCnf21KdC3zbzMYJV3p/4O63sQefZwFdjwddvJjwmOJGwvr4JHBkj7qXAN8j3AG4nvALuKX+UcevEh5rfhl4i7s3/+jaqwkH/zHCSftj3Wdv8wbg/fFY+bw+6r8mLvtbcXv8EuF9jb64+yeANxKOW2OEO5cH9bEPvJ3wvtB9wPsJFxX9uorwa7B7zazzTl2vfn6P8HL7PxG+01sI2zuEC96/i/28l3AH9rU92vkBsNPMHtljUQsdz/+VEFBfR/il0ueY+zt23fRz3vsAYf+4m7C9LuWn9Otjn3Yw9wvXt/Sou5znvG4WOvZOErax/43r4lHFGd19O+FJxUXxM/wpcIG797VtEC7O/3mxSov+cUKRfU28QnmA8LjgttXuj+w9tgd/rHSl2Ar/0TVZGWb2C4SXen9lD9v5ReCf3b3z0YzsJfEO51eBhy3y7pr+7S3ZP5jZL8Vb6COEq5jrmXvZT0RkSdz9i7sT8Fj4px2eHh/BHA38JXM/8pBV4O5b3P0hiwU8oKBH9h/PZO4Pxz2Y8KcDdJtSRPY2I7xXuIPweOsmwqMc2Q/o8ZaIiIiUgu70iIiISCko6BEREZFS2N/+FdV9nZ4ViojIStiTP+gpke70iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFBT0iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFBT0iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFBT0iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFBT0iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFBT0iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFBT0iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFBT0iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKazLoMbONZnZDR94bzOzVZnaZmT0n5h1kZteY2UvjPFNmdq2Z3WhmHzCz6up8AhEREVluldXuwGoxsw3AF4D3uPu/m9lG4FZ3P9vMUuB/gOcBH169Xi6duzMzM8Pk5CQTExOLDpOTk0xNTTE7O0u9Xl9wcHeSJMHMuo6TJKFSqTAwMMDg4OCC45GREUZHR1vj4jAyMkKtVlvtVSkiImtMWYOeUeBK4CPu/u7OQnfPzOw7wNEr1YFGo8H09DRTU1NMTEwwPj7eGjeHzumueWMTjI+F/InJCaamJ8mybEl9qdgAKVUSq4YxVRKvzKUJ+bgBHv/LYzrHzYEcJyenQYMZMmZoME3DZ2gws+T1U61UGR4aZXQkBkKjI6xbP8q69SEoag7Dw8NLnq7VapjZkvska4e7k+c5WZaRZVlbunO6mS6OO4du+f3mLVbX3QEwsz0e0jSlUqm0xp3p3S1LkjX50EDWoLIGPW8D3uvub+9WaGaDwCOBP1hKo4849NnU8+nuQzZN3eemQ9DQvwqD1Bilxgg1RqkyGqcPYZgRDmCEmo1QLY4ZoeqFdJdxlWESjwcsX1KX5iwyn+NkzNJoBkJMU2eSOhPMMj432PhcXjbO7Hgc7p1gjHG2M84s9zBLqFdnklkmyJhdUncTUmrJMJVkgIrVwjipUbEaaVKjGvPTmFdNBlrpxCoklpCQYpaQWIrRYxzrFdN7I9hyD2FpK0D1vDWdewxWY15neWc+MZQNZTHIxcG753ddVrHdbnnk5J7hnpOTzUvnnrXqdC3rZz5imWc4WeyjLBfDMFJSq5BYGvYT4tjCPpBaJdRJupe15iuOO9vsUmad8xf2OcNavWtON9Nz+YYR6xbSYV81EpKYH8us2WYS5431Cm0W10zbeirs/73qFfOL9d+56bnL8E3JWg16eh3RmvlXAc80s7e4+5ZC+Ylmdi3wYOCT7n7dUhZ65/abqfggFQapMMwABzFCmE4ZiPmdw0AMXkZjMDJaGEZa+Wnxq1rKeXMfuKFhGBUGqDAArN+dBrqL32ZGoy0ICoHTxIJ59XySRj5DxmxhmJueYpaMXfGu1Vx5TvOkmcd03nU6J2P3o8i9pXCw75E2CieHRdMLt7VQu0Y4ibWnU4xaOImRUiEp5M+l58/X2cbyzNdtujgkXfPn53Wv17tu2AHaA9ndHTe3zZxGTDfiUEzvflnuDdy7LaM4Pb/MyWi06s3gTLaVzW9j8bJ9f/9bmsPMn/2Xzn+sdj/2d2s16NkOHNiRdxBwW0xfDnwD+JyZPcHdx2J+852eI4GrzeyX3f0z/S70qsuvZ9uPIK1BOgDJWl27+5wKsCEOy8Ahq0M2C3k9pFvjRvvgWRjyOPY8pnPIs3A3I8tysjw8Kmk7DocbJq10WxcK011vDllHWcdFo5mRWLy6jY82mu9fhbTFenQfx5t/Fi5yiRex7eXWXt4rry2/OBhYWhh3lhfnl7XN4z6Vte9bzeniPtbKyzv2v7yQl8/tg3nueO4xnZPnHoccb5bl8c6kO7k7eRYeKzaH3GNdL9619Nbjx9bdT89bnyfUmft8zZ3cY1lnfkgV5inkJzWHm7ln5b6A8liTp2V3HzezzWb2JHf/spkdBDwNeAfwhFjn0hjcfMrMnt4x/2Yz+zPgz4G+g57Tn7d8n0HWAgPSOOiHgCJ7X4zS14ZvrnYH1oK1fA31YuB18XHVVcBfufutxQru/hrgTuCDzF8XnwaGzey8vdFZERERWVnmvraee64yrUwREVkJa+aW1Wpay3d6RERERFoU9IiIiEgpKOgRERGRUlDQIyIiIqWgoEdERERKQUGPiIiIlIKCHhERESkFBT0iIiJSCgp6REREpBQU9IiIiEgpKOgRERGRUlDQIyIiIqWgoEdERERKQUGPiIiIlIKCHhERESkFBT0iIiJSCgp6REREpBQU9IiIiEgpKOgRERGRUlDQIyIiIqWgoEdERERKQUGPiIiIlIKCHhERESmF0gQ9ZpaZ2bWFYaOZnW9mV8Tyl5hZbmZnFua5wcw2rlafRUREZPlUVrsDe9GUu59dzOgS0NwFXAw8fy/1adm5O41Gg6mpKaanp5menmZqaorZ2dl5Q71eX3S62Wax/W7pJEmoVqtUq1UqlUor3WsYGBigVqstOk6S0sTlsgLcnSzLaDQaraFzulfectcFMDOSJMHM5g3d8jvz0jSlUqm0Dc19brG8bvnd9tlKpYKZrfI3J7IyyhT09OMK4PFmdoq7/3ipM997772tYKEZQCwlPTMz0wpSigFLr/TU5DSThbzp6SlmZqbJ83wFVs3qqFQq1GpzgdBArcbAYGG6z+Cp37r91GkGYsWTUXF6KWXu3jbkeb7geDnqFE/GWZatSHqhvH4DhkYjo15v0Kg3qDfCOMtiXtu8cf6sQdZohHHWIM8ysjxbha12/xeCoirVSpVKxwVLrVqlWqtSqy18YbOUi6DdHRZqO03TRYNKBXflU6agZ8jMro3p29z9V7vUyYE3A68FLlzqAo488sg96F67xGqkyRBpMkhqg1SSIZJCOk0OJbVB0mSIkWSA9dUh0tpgqN+cr5m2AVIbJElqJFYjsWpo32rz8pKYl1oNswpG86BQPDhYIRXSTkbu9Tg08Fa6fWjmZ/ksuc+Q+yxZPkPuM2Qe8/Jm3ixZc9pnyPMZ8sk69YkZZnyWB2Kd3GfI8l1z7TXreqGdfAZHJ8C9yUgwS+N2lJJYBbNKGBPHsbw9L+SHvBpmw626Cc3yClWrULM0tJ1WsEqFZLBz/kKbnX2wSmyvWx8W61dHHh3txuXN5c3dsXR3nBxwcMfxkMZxz9uncSjkuWdxX2vg3ijsb422PKfRlh/2vZhHcd7ivtktrzA90yCfqjPjdaa77t/TXfd79zo5DfK8vc2wDvYFFo5jZnGbtfY8S+JxzubKLGmr063FXsual9M18Jqf9+wz7jnw/d+xHUv4YNJFmYKeeY+3evgIcLGZHb/UBTz2pHeRN6qFACKmk0K6UGZWjcFFyE+TgVaQUjxINsX9Deu+n62yKjC415bmPjfgi1YHIPcsBEl5R2Dk8wOkuWAqjmPwlftMPBEVT1bQOkE1O1ecLtTzLmVGPIC2DqRJ6wDczG8ddLuUtecbEOp3ljXTxZP6XCCQFk7Sc+lmftc6lmKtoCEtBBDNen1spBYP78XxPrdtLzcD0tXuxPLwuHXHTdz73BcB3POFg6zF8ptBFO3Bmrfys9a+Gva5EGi274N5a7qZ557THnQWgtS2+Zt5nZ+r10rolt9l/t71fhd448JrVRZTpqCnL+7eMLO3Aq9Z6rzf+MkrV6BHsnwqcRhe7Y6ICGkc9t7F0n5OAc8y0Fui3V0GPBk4dJX7ISIiIstEQU8X7j4L/ANw2Gr3RURERJaH9X7+KLtBK1NERFbCmn/bbW/QnR4REREpBQU9IiIiUgoKekRERKQUFPSIiIhIKSjoERERkVJQ0CMiIiKloKBHRERESkFBj4iIiJSCgh4REREpBQU9IiIiUgoKekRERKQUFPSIiIhIKSjoERERkVJQ0CMiIiKloKBHRERESkFBj4iIiJSCgh4REREpBQU9IiIiUgoKekRERKQUFPSIiIhIKSjoERERkVJQ0CMiIiKlUFntDqwkMzsCuBQ4F5gBbge+ALy0UK0CnA6cBhwO/BdwW6H81e7+pb3RXxEREVk5azboMTMDPgW8391/LeadDaxz93cU6r0JuNbdbzKzw4Gvu/sFq9LpvcTdmZmZYXJyksnJSaamplrjmZkZsiyj0WiQZdm84f777+fKK6/kWc96FsPDw6Rp2jZUKpVWemBggMHBQYaGhhgaGmpLp2m62qtBRERKZs0GPcATgLq7/3Mzw92vLVYws8cDzwPO2ct9m8fdqdfr84KQfsa98iYmp5iYmGRyslk2yfT0FDPTU7j7HvX3s3fuIP/B13Z7/rRSYXBgiMGhIQYHBhkaHmJ4eJiR4SFGRoYZGgrT3cYLlXUb12o1QgwsTe5Onuc0Gg0ajQb1er2V7hx6lRXzm4HySg/N5dTrDerFsnooy93xziEP49wdOsoAnC7zxDIzI0mSMFiCmWFJQtrMS5K5Omn7dKtOmpA089KkdWFQqVR6DouV70mdYl6vdD/1kkRvR8j+Zy0HPQ8Fvt+r0MwOAP4deLG77yoUnWdmxeDo2e5+az8LPOWcF5Bls+RZvTU0p9vHDfLGLFleJ2/MkmezNEhOnJwAACAASURBVOqTuOe79UGTyjBpZYikMkxSGSJJm+lB0sqBJNVh0nVDDB04xGhliKQ6TJIOk1YGsea8aZjX0hpmKWYVSNKYTsFSLEnZdMUzmJ3czOCpT+CUky7F8wZ4hucZ7nGIeXk2Q57N4I0p8myKPJsmb8RxM92Yot6YZiab4v4Hpsi2TZE3xskbW8kbk7HeJFljirwxuVvrBzMq1WEq1SHSyhBppUaSpCRplSSpkCQVLK200nPTc3UsqWBYq70wKgZSHWU9psMJNgfP8TzHPY/rLaZbeR7qFIc8a5/ubCPPyPNG2PbyDM8aYTpv4HEcysL0arOkgllct4U0VsGSdC7P0h51algyPNeGJYCBWVjfZnPTxXSxjOJ3OZffquNORk4W1zee43jr+yOL+cx9X61x8bsmD1U8A5/C80ZrX3FvtI/zDFp5HXXy+up8Wd2YYZbO7TPxO2um5/KT1j6UxHxLKySWtvY7s5Qk7nPNem3fZww4saT13VgznXTJa9W3VjutNiDkFdulsI10+Zzzsvqt1/Via/fqffNzf9GljizVWg56FvNu4EPu/r8d+bv9eOvOn34XkipJUsOSajwoV0nSESw5AKvUqCTVEFgkVZKkGuqlNdLKcAxWmkMzkJmbTtKhQl4zwBmc25Hj/1q7ygrc3HALV8CNbbez7qTTl38BAF4YeWsyXIFnM+TZFFl9MgRSMXDKGpOtdJ51TDfz6iHP83rrJJJ7gyxv4FkDb4QTjueTbXXcG3hWb+8cc3fK5u6aeUdRe767tx1sIYnTSQwsi9Od5cV6KUYhP2mmwwkkbQUH1XAimhdYVDumi3WqPYORedMxME6SagxCOtrq1YZV5k5KUa9ttusmvL/ftOtyk3VelvcuC8Hu3LZJMzBqC46a6awjcKrPBVVt8+U92ssK+0EGedY1v1mfVn77cslDfp43yDwE5O4NfCYDn+7obzMobwaNPpcOkWOcDoFmZ1kIMAt5rYDUoVlGx7yxzX3Zea98zSu//u7au1e7H/u7tRz0bAKe063AzC4ENgIvWs4FfucHN3PHvU6aQiWBNLGQTiGNFy37s0a9znnvvi9MTG3lza9ajc2nCoyuSMt5DlkGWR7TuZN7Mx2Oi3k8NubNYy9hPBeYtbfZPK9b57QVBkLcApCEi1QSCwOE7cjCBW3IT9bG9iR7orbaHdgzcR9q27eK+1yc9uLYC+OcVj2IdYj7YnFgLp4Jd1kLF1OFa5TiPjzv2oWOfb3LqwGtR6XdZirIu0a8vdsrrrD//BpfnD+zLJXt6bsd+6r4IvO3gPe6+7/GvHOBYeDDwOPd/acd85xP+LXW7r7IvDZXZnTXXXdxzDHHAJCc+Sga1/6f3pUREdk7dLBdBmv2To+7u5n9KnCpmf0ZME34yfogMAL8Z8cJ+//Fcec7PZe4+yf3Qpf3effff//cxM4dTOYwoh9hiYjIfmLNBj0A7n4P4ddZS7FhJfqyFuzYsQMAO/p4fNd2ttVzRvTTcxER2U/oN4fStwceeABoBj072D6brXKPRERE+qegR/rWutNzxLGQZdzzwPgq90hERKR/Cnqkb62g57CjALhv587V7I6IiMiSKOiRvrUebx0Sgp7tO8dWszsiIiJLoqBH+rZr1y6S4REYWQfAtgd2LTKHiIjIvkNBj/RtfHwcGxqF4fDHAe8fU9AjIiL7DwU90rexsTEYGsFi0LPtAT3eEhGR/YeCHunb+Ph4uMszpDs9IiKy/1HQI30bHx/HB+fu9OzcpTs9IiKy/1DQI33bOTaGFV5knhhX0CMiIvsPBT3St7GxcZKhERgcBjOmxhT0iIjI/kNBj/RtfHycZHgk/MvqQyNMT+gvMouIyP5DQY/0bXx8jGQ4PNpiaJRZBT0iIrIfUdAjfXF3Jsfj4y3Ahkep650eERHZjyjokb5MTk7i7hCDHoZHySZ1p0dERPYfCnqkL+PjIcCx5p2eoRHyyfEQCImIiOwHFPRIX5pBT/FOD5PjTOar1ycREZGlUNAjfRmLP0/P4x8mZHgUpsYZayjqERGR/YOCHulL805PPtB8vDWKT04wmevxloiI7B8U9Ehf5u70xMdbI+vwqXHGMwU9IiKyf6isdgdk35LnOXfccQd333039957b2u45pprQoXCi8zMzvCmt76d02yaI444ojUcf/zxHHLIIeGPGIqIiOwjFPSU2JYtW7j++uu5/vrrueGGG/jhddezadMmpiYn2upZkkKlFtJDhXd6gE989vPk3//KvLZH1x/AiSc9mNNPPZmHPORUzjzzTM4++2yOOeYYBUMiIrIqFPSUwPj4OJs2beKGG27g+uuv57rrr+e6629g+9YtrTrp6MFUjjqdoUe/mHVHPQQOPJZ89HCSDYeTjBzM5Ff/hV2f+NP2X28B6194KYMXPoh8bCvZrvvId24m2X47jW23cvO9t3DD579G9pEPt5azbsOBnHHmWTziYWfysIc9jLPOOouHPOQhDA4O7tV1IiIi5VOqoMfMxt191MwS4FLgiYAD08Dz3P02M7sdeIS7b1vFru6WyclJfvzjH3PjjTdy0003ccMNN3Dd9ddz209/2qqTDAxTOeIhDJz8VA55wmn4EaeTHnU66frD5rWXFtI+0/6T9eYdn3x2DBuqkR54NOmBR7fq14DhmM6nx2jcvYn87hvI77mO7915Pd/89nvx2cnQpzRl4wkP5pyzzuDMM8/gjDPCcPzxx5Mkeu1MRESWR6mCnoLnA0cBZ7p7bmYPAiYWmWfVuTvbt2/njjvu4Pbbb+eOO+7gjjvu4NZbb+XGm27i9ttua/2xQEtSaoefSHLkWRz8zBdSOeo08sNPIz3keGw3Aol8ZgIqVaw2EDLinR6fWfyfokgG11E78VFw4qPCrIDnGdnWW2ncdQN27ybuvWsTn776e3zyk59ozTc4PMKDTz6Fk086gRNPOIET4rBx40aOPPJIRkdHl/w5RESkvMoa9BwJbHb3HMDd71qORrdt20aj0SDLsr7G9XqdiYkJJiYmGB8fb0uPjY2xdevW1rBl6za2bdtKfXa2bZnp0DoqBx9LcvjDOPChL2DgyFPIDzsVO/RELL6H07Qn90x8ehwGR1rT1gp6du+forAkpXL4yVQOPxl4FjGUIp8ep7H5JnzzJvLNN3LLvbdw09evJfv0Z/BG+2cfHBrmsMOP4Kgjj+DIIw7ngAMOYP369axfv55169a10oODgwwMDFCr1ajVam3pWq2GmZEkCWbWGjqnO/PcvTXked423U/Z7syzu/V2d+jVPtB1vFDZ3q7TzWJ/PXxPywGSJGkNzW1mJaZ3Z97mAMzbtvvJ25vz7Sv2pb7oIm95lDXo+TjwDTM7D/gy8CF3v2ZPGz300EP3uGMAWIINriMZPTgOR5Ecdya10w9maMMRpAcdS3pwGGzogHk75ko8EPKZ8VagA7Tu9OS7GfT0kgyOUjv+XDj+XACGmsvPM/IHNtPYdjvZ/XeQ79pCPraFLbu2cO/995Hf/iPy6TF8egyf3gX65zFEZA058l1jD77nlaM/We1+7O9KGfS4+11mdgrhnZ4nAl82s+e6+5f3pN0jf/0tTGSV8PgorYClWByTVsKvoJIUkphOq1htGBsYwWrDJAPD2MAoVAZIEyM1SA0qCaz29cbY7PjcS8zQCnqS2THWVfdGD1I4/EFh4HHzSnOHhkPm0Gjk5LOT+PQY+dROaMzi2Sw0ZvBGPaZn8TiAhyDJ80J6btqdGETFPHcwAwwsAbMwiRXy58qK+dYtv5C2HvmdeV3baRvT3tYCbXav19l2bK+ZFzLi2i9Md8srTFu3+bvO06tOc7KPdrpZ9Mp9kfKF5i9uI3lOvJEMeR63m7DtuLdPN9Ne3O76qZ8Xt8m5Mo/L79qXtn564eLA2/Np3tlauE77tBey5qYXW57Py9tH7Et9CevyiYCCnj1UyqAHwN1ngCuBK83sPuBXCHd9dts9H7poObq2T3raJ6f50uRwa7r5IvOpIxN897f2xduu64EjVrsTIiLL5V9WuwNrQSl/GmNm55jZUTGdAGcCd6xur/ZtY2NjeJfHW2Pjy/t4S0REZKWUMugBDgM+a2Y3ANcBDeCfCuXXmdldcXjbqvRwH7Nj505sZH1r2qo1qNaYHNu1ir0SERHpX6keb7n7aBx/Hvh8jzob92af9hcPPLCT9Nh17ZlDo0xP6E6PiIjsH8p6p0eWaNeunSSjG9rybGSUGT3eEhGR/YSCHllUlmVMjI2RjMy/01OfWPyPE4qIiOwLFPTIosbGQmCTDHcEPcOj1Cd1p0dERPYPCnpkUbt2hZeVbXR9W74Nj5JPjPf1l2pFRERWm4IeWdTOnTsB8M47PUOj+OQ403mXmURERPYxCnpkUa2gZ96dnhGYGmdXpjs9IiKy71PQI4tqBj2Noc53etbB5Di7GrrVIyIi+z4FPbKo1p2ekfY7PQyP4lMTPFBX0CMiIvs+BT2yqGbQYx0/WbehUXDnvgf0s3UREdn3KeiRRTWDHjr/Ts+GAwG4c+u2vdwjERGRpVPQI4vatWsXllZgYKgt3w44BIC77r1vNbolIiKyJAp6ZFE7duwgWbcBM2vLtwMOBmDz1q2r0S0REZElUdAji9q6dSu24eD5BTHvni0KekREZN+noEcWtXXrVrxL0NN8vHXffVv2dpdERESWTEGPLOq+rVthw0HzC4ZGoDbIjm260yMiIvs+BT2yqK1bt1I5oMudHjM44GB2btevt0REZN+noEcWVK/X2bF9O+mBh3Qttw0HM7Vdd3pERGTfp6BHFnTPPffg7qSHHd213A48hPoD2/UvrYuIyD5PQY8s6K677gIgO/So7hUOPBS/fwvb6wp6RERk36agRxZ05513AtA4pHvQkxxxLL5tMz/ZObE3uyUiIrJkCnpkQTfffDOYYUce27XcjtoI7nz7x7fu3Y6JiIgskYIeWdCmTZuoHnkcNjjctdwedDwA3990497sloiIyJKtmaDHzNzMPliYrpjZVjO7Ik6/xMxyMzuzUOcGM9sY06Nm9m4zu9XMrjGz75vZy/f259jX/OCaa8g3ntKz3E44DdIK3/7O9/Zir0RERJZuzQQ9wATwUDNr/quYTwHu7qhzF3Bxj/nfC+wAHuzuDwOeBnT5i3zlcdddd3HLT37C4NmP7lnHBoawkx7KHd/5un7BJSIi+7S1FPQAXAk8I6ZfAHy0o/wK4HQza7t1YWYnAj8HvM7dcwB33+ruf7/C/d2nvec97wmJR/3CgvXSx/0iszd8j09959q90CsREZHdU1ntDiyzy4HXx0daZwL/BpxXKM+BNwOvBS4s5J8O/LAZ8Oyuo3/5ha102z2P4h2QXmnouFPSvZ4vMD895u85z7z555KNiTHu/+7XSH/+l8kedCILSS94MY1P/AvPefL5HHLu46mMjELHv8je1D2XnvVFRATu/q8Pr3YX1oQ1FfS4+3XxHZ0XAJ/rUe0jwMVmdnyvdszsYuC5wGHu3uMP1Mx3z7e/RttpvXAibzunt090LnzxdI9l9D9P+yxd50mrpM9/FZUX/fHitwM3HMTA2z9F/UNvZ9ttN+FTk93r9Xz8pcdiIiILGfrKls1TTzjsyNXux/5uTQU90WeAtwDnA/P+wSh3b5jZW4HXFLJvBM4ys8Tdc3d/I/BGMxtfyoJvvf12bp/ao5tF+wQDqgkcVkuo9nsH5lGPhRc8lvHMub+ekymOWREGpAbVxBhIYMAMM6jnzlQexg1f+TAyMagY1MwYSo2KQeYwnTszsQ/5XuiHSFk844cPPHS1+7AWrMWg59+Ane5+vZmd36POZcCfAusA3P0WM/secImZ/YW7Z2Y2yAJPY7o5YajCCUOL1xMREVmKqScctn21+7AWrLUXmXH3u9z9HYvUmQX+ATiskP1bhDtDt5jZ94Ev0X43SERERPZjpp8ZLyutTBERWQn6tccyWHN3ekRERES6UdAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFBT0iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFBT0iIiISCko6BEREZFSUNAjIiIipaCgR0REREpBQY+IiIiUgoIeERERKQUFPSIiIlIKCnpERESkFCqr3YHlZmYHA1+Ok0cAGbAV2Ajc4+6nFeq+ARh397eY2WXAU4AT3H3GzA4BvufuG/de71eeuzM7O8vExATj4+PzxpOTkzQajdaQZdm8NECapl2HSqVCmqYMDg4yPDzM0NBQayhODw8PMzAwgJmt8hoREZGyWHNBj7tvB86GeUHNRuCKRWbPgJcB717BLvYlyzImJibahsnJyVa6W8DSOR6bmGDX2FiYnphgcmKCqfFxsixb7Y8HgJkxODzM8MgIIyMjDA8Ps25khNE4vdgwPDy8YHmlsuY27zUpz/O2QHs5h2LQvrvzA63g3MzmpRcqS5KESqWybEO1WqVarS4p3bwQEZE1GPTsoUuBPzKzf92dmd/1rncxMzPD7OxsX+OZmRmmp6cZj0FJK7iZmGB2ZmZJy04GBkiGhkiGh7HhYWxoiHR4mPTAA0kf9CDSoSFGRkZYF/MtDgwNwcgINjREMjKCDQ5i1SqWppCmWBxIU6xSgSQ+Ec1zPMsgy/A8bx83GvjsLPnUFD49TT49jU1Pw/Q0zMzg09P41BT59DT51BTZ5CTjU1PsnJzkrqkp8l278Pvuwycn8akpsqkp8qkp8np9SeukVqu1AqrRRYKkWq225BNQkiSLnvT6Tbs7eZ6T53nX9J6WN4ded++WI11vNKgX8uvdgoguY3df0ve6EqxSCdt6YUyaYsncGwDuDs2+FtMLlLX2ieZ+sUoXHGZGpRgIFdK1mK7tRjC11CAsTdPWftPPeCl1i+PivtW5Hnqtn309/5xzzulaV5ZGQU+7nwHfAF4EfHapM7/qVa9qz0jTEEDUam3jZGBgbrpWIxkdxQ47rBW0rGsGL3GcFMbWnB4ZaRtbCe5qeL0egp/JydbYO6bzqal5eRNTU4wV62ze3F5nagpvNGCJQdWaEE/yrQA3BrbWkU+lgsV8ugTCVq1ig4PzytoCiHjSS5ttd5Z31O1ap9ivzr72qttPG3vpMau7t4IgYhDkjUa4iGgGRcX8ZrDUTNfrc9NxXBw68xaano3DeK86s7P41FSYrtfn+lRIe70+18eYT3wELsvrtFtvfdymE074xmr3Y3+39s+Uc3pdTnbmvwn4DPDfS13A4777XR6oVEhqNZJqlaRSwaBtSMzCOA4Wp6UPaQqDg3Dggbs1uwO5exh3TDeHPM/J48E7bzTI40E8z7K2tDca4Sq+29X9AncEetZJkrm7CkkCZmE65rXSZq0yM5ur26xfKGuWF6fb7mg086G1Dc5LN+9KdSvrKJc+7eMXKE7YPov7RXGgo4yOdF4I4PJ6nbwZxNXreLz7SBx7nof54r7U2qfi4HneKsO9NW/X6Wbbnftc64P1OAX0yO95B3KpdyaX2k7vvh+ytAVLN/v23re8tgOdZ8uDgNuKGe5+i5ldCzxvqQv4+iMesfu9ExER6e3Tq92BtaA0P1l393Fgs5k9CcDMDgKeRnic1emNwKv3YvdERERkhZUm6IleDLwu3sm5Cvgrd7+1s5K7bwJ+sLc7JyIiIivH9oVfTqwhWpkiIrIS9OrcMijbnR4REREpKQU9IiIiUgoKekRERKQUFPSIiIhIKSjoERERkVJQ0CMiIiKloKBHRERESkFBj4iIiJSCgh4REREpBQU9IiIiUgoKeqQvu3bt4h3veAdPetKTOPPss3jO857LlVdeif4ZExER2V/o395aXmtyZX7pS1/iwgsv5J577uHAM06hdvTh7Lz2Rqbv3cbPPfHn+a8PX84RRxyx2t0UEVnL9G9vLQMFPctrza3M973vffz2b/826x+8kYe98/WMPvJMAPJ6nZ+9/9Pc+Nq3M3rgAXzzK1/lISefvMq9FRFZsxT0LAMFPctrTa3MD3zgA1x44YUc+ZTHcs4H30wyMjSvzs7rfsy3fvmV1Ko1vnX1Vzn9lFNXoaciImuegp5loKBnea2ZlXnVVVfx1Kc+lYMfew7n/uc/YrVqz7q7bryFbz3jdxgaHeGmb3+fIw47bC/2VESkFBT0LAMFPctrTazMTZs28djHPhY76lAe88X3kR6wbtF5dnzvBv7vF1/OsWedzqarvs7w8PBe6KmISGko6FkG+vWWtNm8eTNPf/rTaQzWeOQn39FXwANw4CMeysPeewm3f+canvLiF5Dn+Qr3VEREZGkU9EjL+Pg4F1xwAfdu38ajPvkOasceuaT5j3rmkzjtb/6A//uPz/CSP/nDFeqliIjI7qmsdgdk3zA7O8tznvMcrr32Wh79sUsZPnv3Xkg+4fdfxOSdm/ng2/6RE445jjf84UXL3FMREZHdo6BHyPOcl73sZXzhC1/gnH96PQc97XG73ZaZ8dC/fzXTd2/hr/74Tzju6Afx0uc+fxl7KyIisnv0eKvkGo0GL3vZy/jwhz/M6X/5exx94a/scZuWppzzb2/kwHPP4Ld+/Te47GMfXYaeioiI7BkFPSW2c+dOnv3sZ/P+97+f0y5+Bcdf9NJlazsdGuSR//mPHPDwh/KyF/4Gb3rH2/RPVoiIyKpaU0GPmR1hZpeb2a1mdqOZfc7MTjaz083sKjO72cx+YmZ/YWYW53mJmbmZPanQzq/GvOes3qdZWd/61rd4+MMfzhX//d+c/dY/48Q/+23iKlk21Q3reOSn38nhT30cF//hRTzj+c9hy5Yty7oMERGRfq2ZoCcGMZ8Crnb3E939NOC1wOHAZ4C/c/eTgbOAxwC/W5j9euAFhelfA364Vzq+l11zzTW88IUv5NGPfjRbpid4/OfeyzG//bwVW15lZIhHXP42Tv3L3+Pzn/oMG09+MH91ySVs3bp1xZYpIiLSzZr544Rm9kTgDe7++I783wR+3t1fXMg7kRAcHWNmLwHOBc4DHg4MAF8lBEJXuPsnl9CNfWZlujvj4+PcfffdbNq0ie9+97t8/vOf54c//CHVoUFO/L3f4IQ/upB03che69PYj2/jR699O/d+8RtUajUef/75/OJTnsJZZ53FqaeeymGHHcbAwMBe64+IyH5Ef5xwGayloOf3gePd/Y868t8G3OHu7+jI3wEcBzwLeAQwC1wFbABOAo5niUHPgx59TlidcZ26eyuNe9t0t3reVpe5NN3bKNYrttGYnGbq/gfI6/W5z1upcNCjzuLIX3oCR7/gAmoHru/3Yy27sR/9lJ+9/9Pc94VvMPGT29vKautHGdiwnrRWDUO1SlKtYEn7Tcmuj+I68no9rWvb5IvfQWdhZ1lb3gJtLNJu8btt5dGt3kJ5HdP99mNe5zt0rrTC9Lx1vtD6nlfWe7q17eZh+/U8x/NmXj6vDGKdJXyMZqaZYZa00iQxL4l5i01bghmtacxIEot1k9Z4mZ8Uy2JKsMLP+eJ708+MPkx/9XUPleEn60bvOzDF/MuB3ycEPRcRHo0tyexgFY8HwtY+GKdD0kJ3jLlpM+LLRa0TQcinfT5rzRSSbdNWWBakg4PUDtpA9aANDBx+MOtOPYHRU46nMjz/HwxdDetOPYHT//aPOf1v/5iZrfczduMtjN/6M2a3PcDsth3Ud47jjQb5bJ18tk5Wr3cNRormZXU7I7q3rbemtu9qXlmrcK4d6yyj7XvszJv7fmgr69bGon3rNq/N79vin6HLSWL+SiwU+cJ1uwSBfc0bv5NWEJEUgpK2YIK2QKS5X3ULfnteyDUDpUIwRe5tQVe4cOgoa86X53F6Lh938tyBQt18bVxI7jfWyIV7HyaBwdXuxP5uLQU9m4BuLx5vAjofeZ0AjLv7WPOg6e7fMbOHAlPufvPuvNS75SvfXvI8pTcKHP+kRauJiJScAp5lsGZeZCY8mhows5c3M8zsXOAnwOPM7Mkxbwj4B+DNXdr4c3bjDo+IiIjs+9ZM0OPhnvavAk+JP1nfBLwBuAd4JvA6M/sx4QXl7wL/1KWNK939K3uv1yIiIrK3rJkXmfcRWpkiIrIS1v7b2nvBmrnTIyIiIrIQBT0iIiJSCgp6REREpBQU9IiIiEgpKOgRERGRUlDQIyIiIqWgoEdERERKQUGPiIiIlIKCHhERESkFBT0iIiJSCgp6REREpBQU9IiIiEgpKOgRERGRUlDQIyIiIqWgoEdERERKQUGPiIiIlIKCHhERESkFBT0iIiJSCgp6REREpBQU9IiIiEgpKOgRERGRUlDQIyIiIqWwpoMeM7vYzDaZ2XVmdq2ZPdLMKmb2JjP7Scy71swuLsyTxbwbzOwTZja8mp9BRERElkdltTuwUszs0cAFwDnuPmNmhwA14BLgCOAMd582s3XARYVZp9z97NjGh4FXAG/bu71fPe5Oo9FgenqamZkZZmZmmJ6ext0xMwDMbN7QzE+ShFqt1jakabqaH0lERARYw0EPcCSwzd1nANx9W7xr83Jgo7tPx/wx4A092vg6cOZe6Ct5nrcCjOK4W95CZZ150zMzTM9MMzU93RoX683OzDAzPcPszAyzM7PMxABnOSVJQrVWo1qtUq1V5wVFAwMDDA0OMTgwwMDAAIODgwysYLpWq7UCNdn/uDtZltFoNGg0GtTr9Va6ON3veHfm6Xc825qepdHIyPMMj5+h+Hk6073KAdI0bQ2VVrpCpVLpyOs+VCqVPRqq1eqKzZumqfZNWVFrOej5IvB6M7sZ+BLwMWAH8LMY6CzIzCrALwKf73eBP/fiC8hm6zRm6jRm6zRmZuP0LI3ZRiEd6mStOg3yLNvNj9kurVVJB+IwWCMdqFKJ41beaI3K4AaqA4cyOFAlHahRKdRvm2ewRjpQo3kc8nDEDgdid/Bmfpj23MnrBEpDZAAAIABJREFU4bNmsw3y2WK6MG5k5LN16jN1pmbqbJ+eJpsZIxufJZuuk83Mks3UaUyHcTPNMgVklfiZK4MDVAeqYXpwIOQN1KgO1mKdGpVmulalOjhAWq1giWFJEsZWSCdJGMza67TymUsnhYN720mOHvk9ToRLnBd38tzxPI9DezrPskKek8+rN1e/1Y7Pby/PHY9tNdvIGxlZvUHeyEK60egynZE3CnmxPGvM5a8GSxOSSkpSrXSM03n5VklJqylWSUlqFZLhlKRSwdLaXHvFk3sh3Up2K3fHs5w8y/Esx7MGeTYb0rNh/XqWddTJ8SxrTYc6eWv9ehznjYy83ljBNdifJI3rs5KSNsfVCkml0pY3fzrkFafTSoWkWshLm/Ur85bRtf00vAHS+q7M2r6f9vzmHW9a35eZdaRppbvNi3Uua27ey1745yuyvstmzQY97j5uZg8HzgOeQAh63lSsY2YvBf4AOBh4jLvfCQyZ2bWxyteB9/W7zB9//fukA1WSZuBRq4Tx8DC1ZroWhqRWpTJQJalVWoFKUqvMCzYqgyEoWSiIqQzUQlmtgiVr9zUtdw8nv5k62fRs18Aoa6VnaRSCp2Z+o1ud2fl1pqenyHbt6rqsvJ7FAG/uBI8Txvu5tiAtnUszL4CbG9MjvzVOQ5CHMRcYVFKSwQpJZYhKc7o6d7KyeMKy4gktzmtd6heDja4BSY9gxeIJtTjuFsQkzc9QAs3gdF5QVAhO5wKlfH7g1CWQWrROr+l6R17We55GI8Mbs+STxeXmCy5nXwv4FnLACx71vEvtCR9f7X7s79Zs0APg7hlwNXC1mV0P/A5wrJmtc/cxd/934N/N7Aag+eJJ652epbr6pz/kLsZIMVKSOA7pBN2y3WMGVOMwurxNO06DnAyPQ0jnhaE47VBI///t3Xu8JHdd5//Xp6q6+1znkkwymZlwvy93FgMiYkDuGxGBSIR1YV0RfSCysAiIumQB8bLwe+hPI95Qwz6W27qALOvv54WNoBKBABGCgCGBkMxkMpPJZM69L/X97B9V3V19O3POzDnTZ7reT6h8v/Wtb1V9u7qr693VfZLCvDshZF9jpHkQCiEl7dz9CPmdlkCahvxTYHYXxqxz42yduwDWfSVlHykBiLofFLufLLGe/mZRp08cR1gUE0VGHMVYFBGZZet0ttqtR4WW9rzl88V6d5kR9dSz+W69dz3ZQSKyXz9WT9fx3PENnIdhSHu2Xnf9bjud87ZYpiG7o9hqtmg1m9kdTM/PcXeCh+wcdQier9Xp027PP/y4530G68WvMbvN3XY8dG/UuhO5UYfvbt8RLg/b6t9v7BRm9jAguPvN+fw7gT3ACrAfeHX+Q+YY+DrwbHf/jpktufuZXlIn82CKiMi46dPBFpjkOz1zwG+b2R6gBXwL+CngFPAO4CYzWwRWgWuBI+MaqIiIiGy/ib3TMyY6mCIish10p2cLlOOXeSIiIlJ6Cj0iIiJSCgo9IiIiUgoKPSIiIlIKCj0iIiJSCgo9IiIiUgoKPSIiIlIKCj0iIiJSCgo9IiIiUgoKPSIiIlIKCj0iIiJSCgo9IiIiUgoKPSIiIlIKCj0iIiJSCgo9IiIiUgoKPSIiIlIKCj0iIiJSCgo9IiIiUgoKPSIiIlIKCj0iIiJSCgo9IiIiUgoKPSIiIlIKCj0iIiJSChMbeswsNbMbzewmM/tfZrYnb7/czD7Z1/dPzewlef0KM/uymf2Tmf2zmb16HOMXERGRrZWMewDbaNXdHwdgZtcCrwF+Zb0VzKwC/AFwmbvfYWY14P7bPdCz4e7U63Xq9Tpra2vr1s9keaPRwN179mlmI+tJklCpVKhWq1QqldPWq9UqtVptYBrWPqwtiiY2t0sJuTtpmhJC6EzF+Y3WzQwzI4qis57iONZ5JhNjkkNP0fXAYzbQb57smJwAcPc68M0N7+T662k0Gp2wcLqyv604dYJIfY21tTXW+kJJfW2NRj3bxlaIk5ikVsmmqbysJSTVBIsiIAs+xfxTDEMGhOCEVkpopqTNlFajRdpsEYr1NGzJeNuSJNlwQDrbgNXfVq1WiaKoc4E528ndxz6FEAbK7Zi2c9vrbX8joaE4n4aUNE1JB/qlPeu0hqzvA+v4kHbHC312qvYHmqRSIUniQj3pfNBp19vzlbxerVSH9hu2Tn89juOBcljb6crN9i2Gxv76sLb16sUPhjJ+Ex96zCwGfhB43+n6uvs9ZvYJ4DYz+xTwSeCD7r6hd6OnPOUpmxpbXM1CRVKrdOt54KjkZTyTULmgSrU2z0ztgm4wKfTphpRCWy0hmapmZU97ZWAfSS0hiuNNjf1MhRDyUNSi1WjRqrdIGy1a9WY+ZfVuW2FZ3n9033afrG213mSxvkirfg+tpXa/we2mjWwssrNZFGGRYVF+Ucnr2ZTP25C2vD8GURwRxVF3WRwRFfpmy7L5Tr3S7ldcJ8GiKkln/azdosJ81L9Ovp98u1H/Ov3r9+2z87jXXd86d2VCCODgIeDBOwHLg+dTtx5GtHsIpK2Ap9kHmdBKSVuB0GxlZSslbWXtodXts9JKCa1GNt9ICSvrrN8srN+3bFJ0XpdmYNlzh9lAe9a3u06x4Vfv+ZOLfs5ecnwc458kkxx6ps3sRrKvp74I/HXe7iP6O4C7/6SZPRp4JvBG4FnAKzeyw9f8xS9jtagbYmpJXlZ6w00tIa4kIz8B5C99JvHzQRTFUIuhVt22feT3pEY+0UPXcR8SnnoDVn84Sxut7oXFHdyzO2GdOyfden+fYf3bb3xmdN8QC3WMnj7D+rf7DOu/0T5RX2AYHTYG6xtZF7MN9+20b8OnZVu3JtvBC7XTnZ/uWegKaSC02mXaW45Y5mk7rAXSfL63z4jt5e0952p+jhfPdQ/ePc9D4RwPoXNOh3afYW0928j3QeFOunvnGBQO3KuAd23Zk1FS1v97jUlhZkvuPmdmu8nu2PwPd/9/zexRwO+7+/cV+n4CeI+7f7pvG/uAb7v7/AZ3O5kHU0RExk2ZfAtM/K/T3P0U8HPAG/MfKt8MHDSzRwCY2f2AxwI3mtmcmV1eWP1xwG3neMgiIiKyDSb5660Od/+ymf0TcJW7/zcz+7fAn5jZFNAEftLdT5nZPPAmM/t9YBVYZoNfbYmIiMjONrFfb42JDqaIiGwHfb21BSb+6y0RERERUOgRERGRklDoERERkVJQ6BEREZFSUOgRERGRUlDoERERkVJQ6BEREZFSUOgRERGRUlDoERERkVJQ6BEREZFSUOgRERGRUlDoERERkVJQ6BEREZFSUOgRERGRUlDoERERkVJQ6BEREZFSUOgRERGRUlDoERERkVJQ6BEREZFSUOgRERGRUlDoERERkVJQ6BEREZFSmNjQY2b7zewDZnarmX3RzK43sx8xs8vN7JSZfdnMvmFm7y6sM2dmv29mt5jZ18zsM2b2pHE+DhEREdkaybgHsB3MzICPA9e6+8vytvsBLwBOAn/n7leY2TTwZTP7mLv/A/BHwLeBh7h7MLMHAo8Yz6PYes1mk5WVFVZXV1lZWemZ2m3NZpM0TWm1WqRp2lNvl+5OHMdDpyiKiOOYJEmYmppienr6tGWSTOTLUEREdphJvdo8A2i4+++1G9z9NuC3zezyQtuqmd0IHDKzBwFPAl7u7iFffitw63YPNk3TgRByJlM7uCyvLLOyslxoW2V1ZZVWq7XdD+WMJEnC9PQU0zMzzMxMMz09w+zMDNPTM8zMZNP09PSG66OWT01NEUUTe3PzrLk7IQRarVZP0C1O/W2b7TMqUJ9NfeN9W4QQCO6dx+uFem+bn2Z5sW4AmBlRFI2cisvjKCKK4pHL+6ckSUiShEql0qkPmz+btmF9NrIsSRKdV3LemNTQ80jgS6frZGZ7gYcAnwEuA2509/RMd/oDL3gyzUaLZqNFq9mi2WjSyuebzVZfvUmz0SJtpqRp2PS+osiozdaoTVWozVapTVepzeTl3iq7D9S4eGa+t71dTidD26vTFeIkJo4jojgiSqK8bkRx3KljRkhDNgXv1gvzaTOl2WjRWG3SqDezcq04tbr11Qb1tSb1lQaNtQb1lSb11TXuXV3grhNN6rc3aOTL2/1ajTMLcNWpClMzNWpTVapTVeIkuzMVJ4UpjnrLJCbK60kSYVGEdS50hY1b9+LX19TT1ml0JwTH8wuxh/z4hW7dQxZEesusPqy9u43uslYrzZ6TVkraysoQ2vPdtjN5HW63OMlfi3HUrUfRYPuwtjgiiix//oyoGmGRYWbd58O6z43lE2Y9z1u23NoL8zbaHTrru2fPV3bcm3hwUndanTbPnvPU8Wb3+fLg+fPvnW2Ewjrtc6v7XAVCK6XVNx+Cn7PnpV/7OGdT+/zJ5pPKkHMrn5IkJq7E+d3hwrpJ3HmuIsvec6L2c9duj/rbI8zolJFF6/QtvA5s+GPqOWc31L657YxaYVT3P3z7B4YvkE2Z1NDTw8yuAZ4KNICfB77fzL4CPAz4NXc/OvKFuQm3f/swcTWiUklIqjHV+YSZSpWkmlCpJtnJX4lJqnFnPqkmJNWE2nRlMJx0yspAe1KJh5xMZ/8YdqbBN/M0DVlYWs3DUqFeX2vkASqfX23QWG1SX+1tb9RbWQBIvXNB6Vxc0gaNRiBdCaRpSmhfXPILEIB7cYQ+MNT+uwQ967hjkXU+4Wf1Yhn1trXfqKOo25Zky5M47ukTRe03e4jaITYPsO0A0L44RUPa4rjQnkSdYNjTpydgdC9WUWz5xS7bZzGAFLfRLfuCSWE8Z3b3YJLOgc2FmCzIdkNQ2soDb6s3MPWG3e58q5mdC+110/a50Cz0TfPzJF+vu/3CPtLC/pvt86p/f92y0WoS6oX9tbIPTZ0Q6d27ap3g2FPSM9/uWwyh7tnx6e/bcxIXj/yIQ++jFpwDP/ym73/NFXM/c83YBjAhJjX0fA14cXvG3V9jZvuAG/Km9m96Hgr8vZl9LF/nsWYWtb/e2qwv3fhFVnyRiAgjIiJist6Ed5jZ7dqw4wS887+QvYHm/6NTMlAWtzGc9dXa/+wts1qhzQzra7P83oR171GInFfa51lWC3S+Vuw71wbOPaenDSgsp6+Nvnr7w0i3PjiuUefvYPt6MWhUSDqT9tv8q3+xzq5kg2ycyXW75D9k/kfgT939vXnbfcm+xnol8EZ3vyJvfz1wmbv/mJl9BPgm8J/d3c3sIcC/cvc/3+CuJ+9giojITqBPNltgIn995lmSeyHwA2b2bTP7PHAt8OYh3X8PeJqZPQD4SeAS4Ftm9lXgD4Ej52jYIiIiso0m8k7PGOlgiojIdtCdni0wkXd6RERERPop9IiIiEgpKPSIiIhIKSj0iIiISCko9IiIiEgpKPSIiIhIKSj0iIiISCko9IiIiEgpKPSIiIhIKSj0iIiISCko9IiIiEgpKPSIiIhIKSj0iIiISCko9IiIiEgpKPSIiIhIKSj0iIiISCko9IiIiEgpKPSIiIhIKSj0iIiISCko9IiIiEgpKPSIiIhIKSj0iIiISCko9IiIiEgpJOMewHYwsxT4KmBACvysu382X3YZ8BvAIWARuBN4i7t/1cyuBl4FHAeqwDvc/YPn/hFsr3q9zuLi4mmnpaUlms0mIQTcnRBCT93dqVQqVKvVzlScr9VqzM3NMT8/z9zc3NCpVqthZuM+JCIiUgLm7uMew5YzsyV3n8vrzwHe6u4/YGb7gc8BLyuEoKcC+9z943noWXL3d5vZQ4AvAhe6e3ODu96Wg9loNFheXt5QUClOCwunWFxc6ASYxaUllhaXaDZbG9pvpZpQqcSYQWRGFBnkZRRlQaXVCjSbKc1mi2Yj3fRjS5KE+fk55ubn2DU/z65du5mf38WuXbuYn58fKIe1tcvp6WkFqAnRDtZpmg5MrVZraHtx2ozNvGbiOCaKIqIo6tTXaxu1TK9TOQN60WyBibzT02cXcDKv/yxwbTvwALj73w9byd1vNrMVYC9wbCM7+tSnPkW9XqfRaPSUw9oajQZra2ssLy+ztLTUVy4W5ldoNjeWuZIkYna2xsxsjZnZCrOzNWZnaxy8tMbs3EXMzl7KzGyN2dkqs7NVZmYTZudqzMxW875VZueycmamSqW6uZeHu5Om7RCU0qi3WFlpsrLSYGW5zspyI5tfbrGy2mB1ucnycj2bluosLa2xtHSMo8fu4JZvN1heqrO83GBpcY2NhPM4jpmfnysEoV09YWl6epparda5C9Uuh7VVKpWBi1X/NKzdzHD3LZmAkRf+nTVlIaSVpqStFmlISVuDy9M0fywhaw+d5cXHmNVDCJt67Z2PeoPQ4OsqjrN6cYrimCROOv2yKRno1+kfDW7jTPpsdb+z3VYU9f4yoxgiR9XPdNlW9ztTu3fvPuttyOSGnmkzuxGYAg4Az8jbHwlcu5ENmNkTgJvdfUOBB+CZz3zmhvrFsVGpxFRrCdPTVWZmq0xPV5iZrTIzX2Xf/iozsxczPX0oX1ZlZqZSCCw1ZueqA/PVajLWT5BmRpLEJEnM9PTWbdfdWV1t5iGoztJiFqCWlrqBKQtHffNLxzh67Ha+dWud5aUGjUaLRiO7I9U4g7tSkyKOjSiOiKMRZWz5xaZQxhFRZPnFua+MjTiKiBKjUs3nO8tjoigZ3r9Y5stPO44oIklGbKOwrQ1/Jt7Evdns7lPflAZCuz31rJ6GwX4h9PYprpv29cmnNA2E1ElDb9num6YtQmiQptm20uA0WoHQyNctbqdQhjRk64R2Waz37bPvscj43HTL1Q975APf9s1xj+N8N6mhZ9XdHwdgZt8LvN/MHtXfycw+R3Yn6K/c/XV58+vN7FXAA4Hnbman137wp0kqTar510LVapx9RVTN6u32OI7I3pWzyci+NurUpZfB3OwUc7Pzm17VccDBPZ/LS3darZRmo5XdlWrkd6caLRqNlFYzJQTvudD1XPTyi5e35wt1s/yTXV4aednfbvkzPqw9L8FGh5QR4eR0/ToHtXiAC3Urttmo5f3tsnN4nuW8p607O2L50HqhtRDW0v4y7Ya23kAVekJZu/T+MLZuuBvcTs+dX+8dY7c+/KgMW8aI9frvMI9aNngjer1lZ+xpgELPWZr43/Tk83cBjwZeCwR3f1th2UuAK9z9lX2/6XkR8NvAg9x9bYO7nryDKSIiO4E+ZWyBif+TdTN7OBADJ4BrgFea2VMKXWaGrefuHwVuAF6x7YMUERGRbTepX2+1f9MDWTp+hbunwFEzeynw62Z2iOwHyncDbx+xnbcDHzCzP3T3yf9lpYiIyASbyK+3xkgHU0REtoO+3toCE//1loiIiAgo9IiIiEhJKPSIiIhIKSj0iIiISCko9IiIiEgpKPSIiIhIKSj0iIiISCko9IiIiEgpKPSIiIhIKSj0iIiISCko9IiIiEgpKPSIiIhIKUzqf2VdtkGz2eTWW29lcXGRAwcOcPDgQcz038ATEZHzg+70yGl99rOf5Ud/9EfZu3cvD3/4w/me7/keLr30Uu5/30O8+U0/z5EjR8Y9RBERkdMydx/3GCbJRB3MI0eO8IY3vIEPf/jD7N01zYsvfxBPftRB5qdj7ji+zN984Xb+8nPfYapW5W3/+Zd4/X96M5VKZdzDFhGZRLqtvgUUerbWxBzMz3zmM1x55ZUsnDrJG1/2BP7jlY9iZmow0Nxy+BRvfu/1/MVnv8OTn/hoPvLR/8197nOfMYxYRGSiKfRsAYWerXXeH0x355prruH1r389Dzy4iw+943k8/D7zp13vf/yfb/Ga93yaWq3GBz74YZ793Oefg9GKiJSGQs8W0G96pGNtbY2f+Imf4LWvfS3Pvuw+fPp3XrihwANw5TMezD/83ou5ZG+N5/2bK/ivv/p2FKhFRGQn0Z2erXXeHszbb7+dF73oRdxwww289RWX8dYffzxRtPkPFsurTV79G3/LRz99C1e95Id437UfYmZmZhtGLCJSKrrTswUUerbWeXkwr7vuOq666ipWlxf4o1/4QX7oKWf3mxx35z0fvJG3ve9zPOaRD+Xj/+svuf/97781gxURKSeFni2gr7dKLITAO9/5Tp75zGeydybwmd998VkHHgAz440vezwffdfzue07t/HExz+GT/3NX2/BiEVERM6cQk9J3XzzzTzrWc/il3/5l7nyGQ/h7373R3jYBn+/s1HPedJ9+czv/ggX76nwnOc+l7f8/OtZXV3d0n2IiIhsVClCj5m5mb2nMP9GM7s6r19tZm/sW/YNM7vJzP7JzP7dGIa8be69917e9ra38ehHP5obPn8917zxGfzxL1zO3FS8Lft78KV7+NvfeSEvf/ZD+fV3/yaP+VcP5SMf+TAhhG3Zn4iIyCilCD1AHXiRme1br5OZ/TTwLOAyd38U8DQm5HvUm266iTe96U3c73734+1vfztXPOW+fPnaq/j3z3/otv+nJOZnqvzez1/OX7z7h0h8mZe+9Coe88iHcc0113DixIlt3beIiEhbKX7IbGZLwK8Ac+7+i/mdnTl3vzq/47Pk7u82s+8CT3f3W85wVzviYJ48eZKbb76Zf/mXf+H666/nuuuu4+tf/zpxHPGCpz6QN//49/CYB+4ey9jSNPDRT9/Kuz94I1+95W4qlYTvfdJlPP0Hn8XjH/94HvGIR/CABzxA/2ZnEZFeE/EBfNzKFHoOAl8BHgu8ir7QA/w+8F1333um+3n5FU909+yvlxynXafTlpfeLYG8b2/78P7eSVXF9mYrcGpxlZOLK5xaXGVppdEZ09x0hSc/6hKe96T78eKnP4iL906f6cPbUu7OV245wUc+9S2u+9Id/NO37qb4UtwzP8WFe2a5YPcstWpCrZpQTWKqlYRKEnXvThXeBtptxRtXhvUs6x9Dp17Iq/2nRM854sPb+8+inmWj1unfT88YTr/+utseNf51x9PXb8Q2Tjee4E4ITgihUM/PibwePHTaQ/7aLvbt1Nuv+zC4HLLn1Sx7njt1y551yxb0tEfW369Qt9Hbi/qXj1q3MCaG7a+z7VHrZW1D1zvNPjGIIusZu0yO//7JG/SMboHS/FfW3X3BzN4P/Bww7Ne0xlneqfmHL96MmRfemAbfCLvz9LwxGe036CFvikPWp7CNShLxgP01HvegXeyZq3LgwlkedOluHnxoNw+97x6SOGKnfUgwMx774It47IMvAmBhuc43vnuSb952ku/etcQ9C2vcfe8aJxfXaLTWWFpIabQCjWZKs5X9HmjYRX7YxbkYLq3vOPQEpCEBqjPP8GUbX+f062fr9CS24euv+xhGjK13N9v6GOLISMyI4kJYiIzIIiIzosiI2hdo69a7y4woyvZe7Ftc3t7n0A8IxXpn2eAHjsEPFvR8WOnfVuhfn8HtMLAsXy+0t7H+Porj7QRFJ/vgtKH1nBB6A7RMhtXrfubY9NPfe/G4x3G+K03oyf0m8CXgT/oX5KFo2cwe6O63nsnGv/2d2wird5/tGEfI008WifLEE4NFEFUgitlpwWYzLsqn7x+61CE0IaTgKXgAD903du/8Q4CB14ENzgyNNgO3Bop302xIX+sro/x1ufNC9oa5A6GvJHvN4YXbXJ0kQue1V1g2EMcHXp56vcrmNL78noeOewyToFShx93vMbOPAP8B+OMhXX4VuMbMXpqHoF3AVe7+BxvZvtX2ENf2bOGIRUREYPrp77133GOYBGX5662i9wCj/orrvcB1wBfM7Cbg08DKuRqYiIiIbJ9S/JD5HNLBFBGR7XCefme8s5TxTo+IiIiUkEKPiIiIlIJCj4iIiJSCQo+IiIiUgkKPiIiIlIJCj4iIiJSCQo+IiIiUgkKPiIiIlIJCj4iIiJSCQo+IiIiUgkKPiIiIlIJCj4iIiJSCQo+IiIiUgkKPiIiIlIJCj4iIiJSCQo+IiIiUgkKPiIiIlIJCj4iIiJSCQo+IiIiUgkKPiIiIlIJCj4iIiJRCMu4ByM7UaDQ4efIkS0tLNJtNGo1Gp0zTlCRJqFarPdP8/Dx79uwhjuNxD19ERGSAQk+JLC4ucvjwYY4cOcKRI0c69cOHD3P06FFO3nOCkydPcu+pU6yurp3xfnbNz7Fn9y727t3LBRfu45IDBzlw4AAHDw6W8/PzW/gIRURERjN3H/cYtpSZpcBXAQNS4Gfd/bP5ssuA3wAOAYvAncBb3P2rZnY18CrgODCbb+OX3P2fN7H7sRzMZrPJ0aNHOXz48MB05MgRjhy+g8OHj7C0vDyw7q7pKof2THFgV40LZqvsmamxZ7bKnukqe2YqzFVjaolRiYxqDJXIiCNoBafRcpoBGsGpt5yFtRYnV5rcu9rg5HI2nVha4+hCnTsX1lhtpAP7n5ud4eCBSzh06X05eOgQhw4d4uDBgz3lgQMHqFar5+JQiojsVDbuAUyCSQw9S+4+l9efA7zV3X/AzPYDnwNeVghBTwX2ufvH89Cz5O7vzpe9FPgt4NHufnyDu9+yg7m2tsbx48e5++67ufvuuwfq7Ts0h++4g7uOHaP/eawmMQf3THNod42Du6c4dMEsB/fMZPPzCQd3T3Fw9xRzU+fmZp97FoqO3LvGnQtrHDlV586lbP7wyRWO3LvM4XvrHDm1SqMVBta/aN+FWRA6dGlPINq3bx8XXHBBdlcpL2dmZjDT+4OITBS9qW2BSQ89VwIvd/cXmtk7gODubxux3tUUQk/e9n7gi+7+WxvZ95/92Z95o9GgONXrdYa1LS8vs7i42JmWlpZYXFhgcXGBxaUl1tbqIx4fXDiXBZZDu2sc2juThZm9WaA5NJ9waM8U++aq5+WF3905sdzg8L1ZMDq80OTIQp3DJ5c5cnKFw/eucfjUGscWRn/9Vq1WuGDPHvbs2cPc/Dwzs7PMzMwyMzPD7GxWtqdqtUqlUiFJknXLKMp+829mneParvfPj6q7+8AUQjijtrM+Ah5OAAASoklEQVRZr93Wrp+L+YG2NMW9XQ+EkObL027/0Dc/sI923Qvrt+dHjckJ3jffXk7fvJPVPXSew8giosiIoqgwtdt7J7P+foUpjoiiuDMfx0lWJnkZx8Rx3Kn3l1u5bLv3UzwXRpn05VvhiU984vn3hr4DTeJveqbN7EZgCjgAPCNvfyRw7Sa39SXg4RvtfOWVV667PImMahJRjSNmazHztYS5WsL8VML9phLm9yXMXzrPXG0vF8xU2DdX5aK5Gvvmqp36npkKcTS5r30zY99cjX1zNR576eh+zTRw56k1Tiw3OLnS5J7lJidX8npenlxZZnltgZWFlBONFrc3UlYaKcuNlJVGi+VGyoRl/i1jBpEZkZFf7EfNW0/fjcxHkWG063mfYfORddaL6S4bOoaIDYwpyueTwvL29grzERi96wIEz0J5cAju+UQepPra8kDlpARPO/P9/dJmoR6yehqcZnDqfW3tPmm+rXTIesV+nTZ3QqBnPb3uzz/+uz/8NH7m458Z9zjOd5MYelbd/XEAZva9wPvN7FH9nczsc8Au4K/c/XUjtrWpdPGVd72YWv3eLNgkcT616wlRHGXvrhhYlE/F+iYfaYlVgPvugvtupLMDHsA9L0PW6E6atmi1As000EpTmqnnZaCVOs28rXO3pL1JB6d78XDofMWYLWv383xZ/lST3/mBzsU/a+9eqLv98otv1F2ezRfW69yBsL7t5+tZVGiPiON2wIi6AaNzsW8HiPw12tb5FGt983mbFZZ15k/XX0byzj/ophMfXh+5fNQ2stLz4JWm2Z2vTkhKQx6aCm0hC2rF0DQsXHVCWV9bOE3COl0AO10+O923Fadff3u3v4X2nLtdTa5JDD0d7n69me0DLgK+BjwB+PN82ZPM7CXAFets4vHADRvd36N/4c/OYrQyDnE+1cY9EJFzyOi+9uW88YlxD2ASTPS/nNDMHk52Xp8ArgFeaWZPKXSZWWfdFwPPBj64rYMUERGRc2IS7/S0f9MD2QeaV7h7ChzN/yLr183sEHAMuBt4e2Hd15vZvyX7k/WbgGds4i+3REREZAebuL/eGjMdTBER2Q76NdwWmOivt0RERETaFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUJjr0mFlqZjcWprfk7YmZvcvMbi4s+0Uze7aZXW9mlveL82VPGe8jERERkbOVjHsA22zV3R83pP2dwCXAo919zczmgf/k7n9lZj8B/Afgj4DXAl9w98+euyFvvxAC9Xqder1Oo9EYqK/X1mq1iKJoQ1OlUqFarVKr1TrlqHq1WiWKJjqDy3nC3Qkh0Gq1eqZmsznQNmo6k74hBKIowswGzqWNtLXPt0qlMlBfb1mxHsfxuA+/yLYydx/3GLaNmS25+1xf2wxwO3B/d18css4B4O+BFwB/Dlzm7vdsZH/u7mma0mw2aTQaZ1RuJIAMLF9bo762SqNep762lpXtfs0G9XqDeqNBo9mk3mySpuHsD+42SJKYqVqNWh6EpqamsnA0NcXU1DS1fL7TPqJ+uuWj6nEcd6Yoigbm8xuA5y1371zQ2+VG62madi7S7fqwttMtP5O2TYWIZjPr22zSarXLVl4v9EtbtFrZudpq7ytNabVSWmk67qdqbKIoolqpUK1W8rLaCUbVao1qrUa1ltd7lg2f1lt+Nsva52T7PJ2E83MDJv4BnguTfqdn2sxuLMz/KvB14LvDAg+Au99pZr8JXA/83EYDD0AcR2xXhowNanFENTZqUbu0bltsVKOI+Thvi4xaJaI2ZVT3JNTiStZWXD6wfjbf3tZAW2wkZjgQHIJ7VpKXhbbUnVZw6sGpp4FGWqxDPQTqqdPI2+ppviw4a61APQ2spUvUmwvU15y1vM+pNHBX3rfe6evUQ2CtFUi3McObQWxGHFleRkSFtshs5BvvsNZR79E24r3N28c5eP4cOMEd9249eHFZftciX36+iQ2SyLLJsrJSqCcR3brl84XlUz198yk2kkp7HUii6uB2+7fVN1+JBvfVs16hbf3xFseRvX7cnQDd55TueTVw3hXaUneaIZsaaaEewpB2Cu0M7dcITiMNNEKgka7SCCs0605jxfM2Zy04C+2+IWTbzc/hRmc7Wd9zwQwiy45jbEaUz7fPzU571F6e9Wmfx8Xz13q229vWPm+L57qdpm/WZuT/P6P1//H594957+fLm8i3yKSHnoGvt8zsMX3z/x54HXAh8BR3vx24Bvg1d//Tzezsl/71ISoG1fzNrhrnZXs+iqjExfliv4hKJ5R0Q0c7oMSRQv5GpHmIWkt7y3raDU6j2lPPpvZFJPVsewNtxX6h2xZGvLcPax51h3XU5cHJfoCXvTGvUzeIyN7Mradueb9N1PP1zehc0OP8Yt0JJPlFJTHrCSmxdS/ww9ehZ93i8jjfVgk+uZeC5+fNqEDUHNLW7Rf6lmdtoXDOBbLzMAuI3XOzp08+hmI5bDlkHy66Y2+39ZWFE7XdP2vzgb692/G++WF9Cn173xDeBbx5A4dc1qGvt7rtNwFXuPt3Rq27AZN7MEVEZJz0KWALlO6Xo+6+ArwP+B0zm4Lsr7SA6lgHJiIiIttq0r/e6v9Nz//v7m8BfhF4B3CTmS0Cq8C1wJExjFFERETOgYn+emsMdDBFRGQ76OutLVC6r7dERESknBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUFHpERESkFBR6REREpBQUekRERKQUknEPQHaeNE05ceIE99xzD/V6nUajQaPRoNls0mg0CCFQqVRIkqRT1mo15ufn2bVrF7t27aJarY77YYiIiPSYuNBjZvcHPunujyq0XQ0sufu7zewNwE8BTSAAnwLe7O7NvO/jgS8Bz3X3vzy3o98+zWaT48ePc9ddd3WmY8eOZfWjR7nr8OGsPH6c4ydPEkI4q/1N1arsmptj7549XLx/P/sPHuLiiy9m//79PeUll1zCgQMHmJmZ2aJHKiIiMtzEhZ71mNlPA88Gnuzu95pZFXgDME0WggB+DPj7vNzRoader/eGl/7pziPcdeRO7jp2jBOnTg3dxlRk7E8i9lcT7ldLuKyasP8+e9lfibkwNqZwqjhVD1TNqBqYQcuzqelOC6gTsehwKsBCcBZSZ6GVcuLUMY4dP8xNX/oCd7UCJ1vDw9T87CyX7L+YSw4e4sDBg1xyySU904EDB7jkkku46KKLiON4G4+qiIhMKnP3cY9hS613pwd4HfA0d//2iHUNuAV4FvB3wAPdfW0Tuz+jg5mmKUtLSywsLLCwsMDi4iL33nsvx48fHz4dO8bx48c4tbA4dHtzccT+SpSFmVqV/bUkm4/IpkrE/krM/krEXGRkD/vcaATneCtwrJlytBm4yyOOps7RRsrRepOj9SZ3tgJHm4GFVjqwfhRFXHThhVkwyoNQe9q/fz979uxh165d7N69u1POzc0RRfr5moic187dG/UEK9OdnmlgblTgyX0f8G13v8XM/hZ4PvDRje7gl57wCNbSlHoaqKcp9RDyej6fBuohsNZKWWq2WGg0WWy2WBpycS9KDC6qxFyUROyLI/51JeKi6Zj9u3Z3w02SBZ2Lk4iZeOde4KuRcagac6h6+rs1K2ngrlbgaDPlaNPzMJRytLHC0du+ydFv/TNfa2ZtzXXipgHzlYTd1YTpOGYqiZmKY6bzciqJsvY4phZHJJERm5FEEbFZ7xQZSV6226JteCtyzxJ0cO+UwcHpK0e1F5ezmX79+/SBcXRKh4B3xlrcl3ceQ289FPr29Okbk4/oF4au11vv9hk+js7yYfspPLaBPkP30f8Yu4+jX2RgGEZ2tzTCMMten1mbEeXl0D55e1Qoo7xPp2599aHLuvPd7WT7HujLqG32tQ/sp7fNNrTOxra13ti28lTcqq1t1WfKl3/q81uzoZKbxNAz6vIXFZeZ2XOAXwf2AC9z98+SfaX1obzLh4AfZxOh59du/AY1M2oGtciyepTPd+rGrggeFEXsmo3ZFVeYj41dsbErjrplZJ2gszvO78Z0zp5yBP6ZJOIBCTxgalSP7CrjHjiZOnc1U06lzqk05JOzkJenWoGF4KyGwFpIWWs5a2vOyeCsBWfNycrgtNxJgdTpqZ/dr5y2V/vCGeUXyKgzb915G9Hes551+m10W1ZYp3sBL9TpXvT6l0ejlg/ZRnv/I/vYkG309cm2YaOX9weRM+jTv7wdpjohkUKoLSzrBKaeefrm26Gzuyzk2+2U/W3e7ldc1tdG9nX1afut1zaw/97t+zrrTtb3Ddvj5Zdd+lI+f8eHxz2O890khp4TwN6+tguALwLLZvYAd/92/iPlvzSzTwJVM4uBFwMvMLNfJHu/utDM5t19+PdIfVr/38fgs9dBkkClCpVKPtWgWoXaVDYlk3jYx8fInuALNrtimkK9Ds0GNNag2YRGA1rNfGplfdIWhIC3WoS0RasVSNMWaQikIcVDKCQiz97doVuOHLj1lu0wm18toyjKLqJRnF2soyhrMyPKv5aMogiL4vyKa9D+Gi+K8raoUC/06bRTqI9oM8sTUNS7/rB2rLCN/IEUl3XGsdknS7ZMcAhpNqUBPGSvdffs9d5eFrzz2u9MHrrLQtq7LKR5sgmFsr0sj3Dtts5yAMfTNLtTGEIWiEIgeMg3HTp3HYOHbNchZKGpsCx17z3nNvvTjUL/rfrVx1aFOa9U4LZv3LpFmyu1iftND4CZ3UD2F1mfMrMLgH8Engc8B3gBcFX+Q2YD/hp4J1AD3uDuzyls51rgb9z9v21w15N3MEVEZCfQR4UtMKm3HP4dcI2ZvSef/y/573TeC8wAnzOzOtmPm/8B+DLwW8DH+rbzP4GfATYaekRERGSHmsg7PWOkgykiIttBd3q2wM79Mx8RERGRLaTQIyIiIqWg0CMiIiKloNAjIiIipaDQIyIiIqWg0CMiIiKloNCztQb+zfSTOJnZq8c9hp026ZjomOiY6Jhs8zGRLaDQI2fip8Y9gB1Ix2SQjskgHZNBOiaDdEy2iUKPiIiIlIJCj4iIiJSCQo+ciT8Y9wB2IB2TQTomg3RMBumYDNIx2Sb6b2+JiIhIKehOj4iIiJSCQo9sipk918y+aWbfMrO3jHs8O4GZfcfMvmpmN5rZDeMezziY2R+b2TEzu6nQdoGZ/bWZ3ZyXe8c5xnNtxDG52swO56+VG83s+eMc47lmZvcxs+vM7Otm9jUze13eXtrXyjrHpNSvle2ir7dkw8wsBv4FeBZwB/AF4Mfc/Z/HOrAxM7PvAE9097vHPZZxMbOnAUvA+939UXnbbwD3uPuv5QF5r7u/eZzjPJdGHJOrgSV3f/c4xzYuZnYAOODuXzKzeeCLwAuBV1LS18o6x+RHKfFrZbvoTo9sxmXAt9z9VndvAB8CfnjMY5IdwN0/A9zT1/zDwLV5/VqyN/LSGHFMSs3d73T3L+X1ReDrwCFK/FpZ55jINlDokc04BNxemL8DnZwADvyVmX3RzPQvFeva7+53QvbGDlw85vHsFD9rZl/Jv/4qzdc4/czs/sDjgc+h1wowcExAr5Utp9AjmzHsX4Wu70fh+9z9CcDzgNfkX2uIDPNe4EHA44A7gfeMdzjjYWZzwP8E/qO7L4x7PDvBkGOi18o2UOiRzbgDuE9h/lLgyJjGsmO4+5G8PAZ8jOxrQIG78t8rtH+3cGzM4xk7d7/L3VN3D8AfUsLXiplVyC7u/93dP5o3l/q1MuyY6LWyPRR6ZDO+ADzEzB5gZlXgKuATYx7TWJnZbP7jQ8xsFng2cNP6a5XGJ4BX5PVXAH8+xrHsCO0Le+5HKNlrxcwMeB/wdXf/fwqLSvtaGXVMyv5a2S766y3ZlPzPJn8TiIE/dvdfGfOQxsrMHkh2dwcgAT5QxmNiZh8ELgf2AXcBbwM+DnwEuC/wXeBKdy/ND3tHHJPLyb6ucOA7wKvbv2UpAzN7KvB3wFeBkDe/lew3LKV8raxzTH6MEr9WtotCj4iIiJSCvt4SERGRUlDoERERkVJQ6BEREZFSUOgRERGRUlDoERERkVJQ6BEREZFSUOgRERGRUlDoERERkVL4vxe+PTQG6friAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Plot the distribution of illicit flows for the transformed data\n",
"fig, axes = joypy.joyplot(partner_features_log.sample(n=15, axis=1, random_state=234), \n",
" colormap=plt.cm.rainbow, figsize=(8,8),\n",
" title='Distribution of mis-invoicing across random sample of partner countries (log transformation)');"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Biplot for the first 2 principal components for the transformed data (modified log)\n",
"biplot_PCA(partner_features_log, 10, 1, 2)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [],
"source": [
"# Apply a modified Yeo-Johnson transformation\n",
"partner_features_yeo = power_transform(partner_features, method='yeo-johnson', standardize=True)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAI2CAYAAADZ+RWoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXxU1f3/8ddnJisJARIIYZMdBERR3HdcuiiutbZa12/br9W2LtW2tmpLW+1iv1brT61Va627rYrWXQFZFEFZZUeQQIAECHvCkmTm/P64NzBJZiaTjZDM+/l45JGZe88953Nnzr3zmXOXMeccIiIiItJ2BVo7ABERERFpGiV0IiIiIm2cEjoRERGRNk4JnYiIiEgbp4ROREREpI1TQiciIiLSxjVLQmdmj5rZXc1U1yFmVmZmQf/5ZDP7XnPU7df3jpld3Vz1NaDdu82s1MxKmqGuX5rZE41Y7jtm9n5T20+gnTIzG1BPmRrvs7QMM3vKzO5u7TgOBDPrZ2bOzFJaoO7rzWyD32fzmrt+ia05P19q1fsVM3utuettLmY2zsyebe04DlZmNtTM5prZTjO7sbXjqa25+q2ZnW9mLyZUtr770JlZIdAdqAJCwGLgaeAx51y4gYEVAt9zzk1owDKTgWedc41JYMYBg5xzVzR02eZkZn2A5UBf59zG1oxFkouZPQWsdc7d2dqxtDQz6wesAlKdc1XNWG8qsAM43jk3v7nqradNBwx2zq04EO21BjO7Bu/z4ORWan8W8CNgJjAFmOCc+23E/KuBXwEjnXO7mqnN0/E+z3onUHYcB8HnVywttb01oP1/ADucc7cc6LajxHINLdiXzWwhcLlz7vN45RIdoTvPOdcR6Av8Efg58I+mhVhXS3yzPkj0BTYrmWtbDvToYTvu/21ddyADWNTSDR2IPtCW+llLbYNmdgzQyTk3w3mjGt8FfmJmI/z53YD/w/uQbpZkLhm1cF/rSyO3yba0DfheAP633lLOubh/QCFwVq1pxwJh4DD/+VPA3f7jrsCbwDZgCzANL3F8xl9mN1AG/AzoB1RvTGuAqRHTUvz6JgN/AD4FtgOvA7n+vNPxRh/qxAt8DagAKv325kfU9z3/cQC4E1gNbMQbeezkz6uO42o/tlLgjjivUyd/+U1+fXf69Z/lr3PYj+OpKMueDqz1X5ONQDFwIXAO3sjeFuCXEeXH4X3LA++D5llgs/+afwZ0jxHjNcBHEc8d8APgC2Ar8DBgQLpf12ERZbv565HvP/8+sMKP7b9Az1r1DvIfZwL3+a/JduAjf1q09/l3wMfATuB9oGtEnVf5dWwG7iJKv4woey4wF29UpQgYV2v+ycB0fx2LgGsi+vHfgLeBcv+9G+bHtg1v53F+RD3n4I1Y7wTWAbfF2wZixOqAH/rvwSp/2l/9uHYAs4FTar33/8brazv9mI6OmH8kMMef9xLwIv62meD7doMfy07//RgIfOLH8m8gLcZ6DMIb5diOt628FDGvvvX5D14f3gksAIYAv8DbFoqAr0SUn0zs/UE/avapTnhfPIv99+duIBgj/nTgAWC9//eAP22I3xcc3vY7Kcqy1e3+r79sMXBrrf3lJ35/KAYeinwda/cBvP2g89stA77F/n3ErezfR1xbK/7/w9tXbQAeBTJr7V9+DpQAz8R4Db4PLPHfh8XAUf70eNvAZPz9aQP3McOAPXhHfcqAbXG2waeo2YfHAvP8eKYDh0fM+7n/Xu8ElgFnxljXXwFP1Jr2U2AG3n77BeDRBNqL+drEaPd0Ij6zgJ542+EWvO3y+w3Y1guB24DP8baFl4CM+vZB9byfT/nv0Vt+mzOBgTHWZQ37t4sy4AT//f8YuN9v9268fcgkvH13KfAc0Lkp6+HXF8LrQ2V422nUz+CIflk7rqeAR4B3/Do+Bgrwtv2twFLgyIg4bwdWsn/7uCji9YzVlxuy762znUTMPwn/8yFu/6q3QIwPTv/NvL524Hg720eBVP/vFPYf2q1RF/t3hE8DWcT+oF8HHOaXeYX9yczpxEjoIjaIZ2vNn8z+hO5//Bd4AJANvIq/s4uI43E/riOAvcCwGK/T03gfLh39ZZcD340VZ5SNvApvJ5Pqv/GbgOf9+kb4HWZA7fUCrgPeADoAQWA0kBOjnWuou7N9E+gMHOK3+TV/3pPAPRFlfwi86z8+A2/DPArvg+T/AVNr1Vud0D3sv+a9/PhO9JeJ9j6vxNswM/3nf/TnDcfbUE4G0vA+uCqJndCdDozE2/APx/uAu9CfdwjeBnmZ/1rnAaMi+vF2vI0n4L/2K4Bf+u2e4S871C9fjJ+cAF3Y/wEYcxuIEqsDPgBy2f8BfIUfVwreB3gJ+3dw4/y+cI7/ev4BmOHPS8Pbkd3it3uJ/zrd3YD37b9ADl6f2wtMxNs+OuHtxK6OsR4vAHf4r1sGcHLEvETW56v+/Kfxkpo72L8trIqoazKx9wf9qNmnXgP+7pfLx0sCr4sR/2/xPszz8b68TAd+F63eKMtWz3/Bb2sk3rZUvR8aDRzvr18/vKTp5nr6wL5tqNY+4rf+63IOsAvo4s9/wH/vcvH67RvAH2ot+yf/fc+Msg7f9F/XY/ASrkF4IyCpxN8GJlN/QhdrH1OjbIxtMIOany9H4SW0x+H1/6vx9vnpwFC8LwA9I96XWMnIf4Cf1poWxEtgXsX7fOtYT3txX5s4+6bIhG4KXlKRAYzyX58z69vWIz7rPsVLCnPx+tUP4u2DEng/n8JLOI7F66/PAS/W0+9TIqZdg9fXfuwvn4nXl872X7NueF9YHmjKesToe/E+g6PF9RTe/nC0//pPwtv3XOW/3ncDH9baRnri9ctv4X3h6FFPX27IvjfqduLPz/XLRP1s31cu3syIFztaQjcDf8SqVuC/9V/UQfXVFdEhBsTqJER8sPvPh+ONvAVpekI3EbghYt5QvA/A6h2vA3pHzP8U+HaU9QriffgNj5h2HTA52kYcYyPfjT96gNchHXBcRJnZ7E9K9q0XXlJa41tjnHZqdDq/jcgP3n8Dt/uPzwK+jJj3MXCV//gfwL0R87L9161fRL2D8Dr+buCI+nYG/vtyZ8T8G9ifQP4KeCFiXge/D0RN6KK09QBwv//4F8D4GOWeAp6OeH4KXvIRiJj2Av6IH95O/zpqbWTE2QaitOmAM+ops7X6NfTf+wm1tofd/uNT8UaIIr/ZTWf/tpnI+3ZSrT7384jn9xGxI64V49PAY0RsLw1Ynw8i5p2Hl7zX3hY6R/STWPuDfX0K7zDpXiKSF7wk/sMYMa0Ezol4/lWgMFpfjdOXD42Ydi/wjxjlb47sg9H6ANETut3U/PDciJcoGt6Hy8CIeSewf8T3dP81yojznrwH3BRlen3bwGTqT+hi7WNqlI22DUZMq+7Df8NPtCPmLwNOw9vnbMTbd6XW0wc/wE8aak0f4cd8QQLtxX1tYrR7Ov5nAdAHb1SnY8T8P+AfxSHOtu4/LwSuqNXnqkcVo+6DEng/nyJi5BIvmVxaT7+vndCtqee1vxCY25T1qN33qP8zuE5c/ro+HvH8x8CSiOcj8UfbYqzHvIh+cg3xE7pE9r1RtxP/eapf5pB4r21TrnLthZfJ1/ZnvG8A75vZl2Z2ewJ1FTVg/mq8leuaUJTx9fTri6y7+sOgWuRVqbvw3ojaurJ/dCSyrl4NiGWzcy7kP97t/98QMX93jLafwdsZv2hm683sXjNLNbNT/Cvyysws3nkGsdZvEpBpZseZWV+8b4/j/Xk1XjfnXBnecHrt9e2K981nZZz2E4mlJxF9wHnntGyOVYkf84dmtsnMtuMNZVf3lz71xBPZ13oCRa7mxT+R7+s38HZ4q81sipmd4E9v6DZQo/+b2a1mtsTMtpvZNrzRscj+Xvt1yvDPCekJrHP+HiAi3sj1qe99q93nEumD4J0uYMCnZrbIzP6nAetTu43SKNtCZLuJ7A/6+tOLzWyb3+7f8Ubgoom2L+gZo2wstePqCWBmQ8zsTTMrMbMdwO+jxFvfPhC8fUTkyefV20g3vC85syPW9V1/erVNzrk9ceqOtV3Utw0kIpF9aKR4r0Vf4Nbq9fTXtQ/eqNwKvGR5HLDRzF40s1jv4Va8Lws1OOeq95XV/2O2Rz2vjb8dVO+DT4kSQ09gi3NuZ7TlfbG29Vjzq1/bWPugRN7Phr5ftdXen+X778U6v/8/S93+39D1qC2Rz+Bo/Srh/Z2ZXWVm8yL6wWFR1iOWRPa98V736r66LV4jjUro/BNKe+GdD1WDc26nc+5W59wAvG/bPzGzM6tnx6gy1vRqfSIeH4KX2ZbifSvtEBFXkJo7sfrqXY+3wUbWXUXNNzURpX5Mteta18B6Gsw5V+mc+41zbjje4cyxeCNp05xz2f7fiEbUG8b7lnAZcDnwZsSOp8brZmZZeIfUaq9vKd4hg4ENbb+WYmDfVWFmlum3F8vzeIef+jjnOuEN2Zs/r6ieeCL7zHqgj5lFbif73lfn3GfOuQvwkoTX8F6v+raBuG36O/6fA5fiHU7rjHcIymIsG6kY6GVmkWUPqbU+ibxvDeacK3HOfd851xPvm/EjZjaoiesTS6z9QaQivG/sXZ1znf2/nDjbQrR9wfomxlW9/N/wzscZ7JzLwTvcVXv969tXxVOK9+EzImJdOznnIj8Q6qs/1nYRdxug1j4Y7xykRDXm86AI71SQzhF/HZxzLwA455533pWGff16/hSjns/xTu+oT7z26ts/jIjYB0+LUvd6INfMOkZbvini7IPqez8b1EyC0//gTzvc7/9XkOD234B9aSKfwY3exvxBjcfxrorO8/djC9m/Hg3KNRqx7x2Gd8RgR7xCDUrozCzHzMbinWj9rHNuQZQyY/0dueGdBB3y/8BLlOLenyyGK8xsuJl1wBuCfdn/Br8c7xvLuf6tBe7EOz5dbQPQr1bnjfQCcIuZ9TezbLxvzi+5Bl6C7cfyb+AeM+vov/k/wfsm0qLMbIyZjfST2R14nTpUz2KJeh7vXIHv+I8jp19rZqPMLB3vdZvpnCuMXNhPCp8E/mJmPc0saGYn+Ms0xMvAeWZ2opmlAb8h/g6hI9433z1mdixeQlrtOeAsM7vUzFLMLM/MRsWoZybeB9bP/FHP0/F2Ki+aWZp59/Xr5JyrZH9fr28bqE9HvC8Vm4AUM/sV3jltifjEX/ZGf90uxjsXplpC71tjmNk3zaw66d6Kt4MLNXF9Yom1P9jHOVeMd2HNff5+K2BmA83stBh1vgDcaWbdzKwr3mH+hm6/d5lZB/OulLwW7+Ru8F6DHUCZmR0KXJ9AXQnvK/3t7HHgfjPLBzCzXmb21QbE/gRwm5mNNs8gfz8Wcxvwl5sHXOyv9yC8C9wStQHo7W/TiXoc+IF5o/BmZln+/r+jefclO8Pv23vwktxY293beIdNG90e9b82cTnnivBOifiDmWWY2eF4r99ziSwfT5x9UJNirmUT3sV+9fXTjvgXC5hZL7yLTxKS6L70AHwGZ+Ht0zb5cV2LN0JXrb6+3NR972l4F2/ElWhC94aZ7cT7tnIH8Be8HVY0g4EJeG/gJ8AjzrnJ/rw/4O00t5nZbQm2Dd5hxafwT6YGbgRwzm3HO9fqCbxMtxzvaq5q//H/bzazOVHqfdKveyreyZB78I6jN8aP/fa/xBu5fN6vv6UV4CU8O/BOJp1CM3Vi51z1xt+TiM7knJuId6XpK3ijQgOBb8eo5ja8Kxc/wztE/yca+EXCPwzyY7ydTjHeSbwb8UZgorkB+K3fZ3+FP3Lm17UG7zDprX488/AueInWbgVwPvB1vG+Aj+CNfi71i1wJFJp3GOEHeN88If42UJ/38F7r5XhD9HtI7HBcdbwX453PsRUvGX81Yn5D3reGOgaYaWZleKOjNznnVtGE9Ykj6v4giqvwDsMsxns9XgZ6xCh7NzALb+RmAd6Vwg29IfMUvMNDE4H/c85V38T7NrwvFTvxEoSXoi9ewzjgX/6+8tIEyv/cb3uG3x8n4J0TnBDn3H+Ae/D2WzvxRpxzE9gG7sc7P28D8C8aloxMwju0WWJmtUdYY8U5C+9CmYfw3tMVeP0dvC/zf/TjLMEbOf9ljHrmANvN7LjGtpfAaxOz2ojHl+Gdi7Ye75SWXzvnPqhn+URE3Qc1IeY6/FNf7gE+9vvp8TGK/gbvYoDteFfPvhqjXMLrEaNsi30GO+cW451D/AleXx+Jd155tbh9uRn2vZfhnTISV703FhY52PijqdvwDmGtau145MCxJtxovKVYK99gVRrHzL6Cd1HchQewzfOB3zrnYh0VEKnBzM4DrnTO1fvFTr/lKm2CmZ3nH9bJwrttyQK8q6NERBrMOff+AU7mUvAupJp1oNqUts8590YiyRwooZO24wL23/R1MN7tYzS8LCIHPTPrhHeKxyF4hyBFmp0OuYqIiIi0cRqhExEREWnjlNCJiIiItHEp9RcRAZp241MREWmaptyMW5KARuhERERE2jgldCIiIiJtnBI6ERERkTZOCZ2IiIhIG6eETkRERKSNU0InIiIi0sYpoRMRERFp45TQiYiIiLRxSuhERERE2jgldCIiIiJtnBI6ERERkTZOCZ2IiIhIG6eETkRERKSNU0InIiIi0sYpoRMRERFp45TQiYiIiLRxSuhERERE2jgldCIiIiJtnBI6ERERkTZOCZ2IiIhIG6eETkRERKSNU0InIiIi0sYpoRMRERFp45TQiYiIiLRxSuhERERE2jgldCIiIiJtnBI6ERERkTZOCZ2IiIhIG6eETpLaM888w/nnn8/ChYtaOxQREZFGM+dca8cgbUO76yhFRUUMHDiQyspK+ueMZsXWzwgErLXDEhGJRjsniUsjdJK0XnrpJSorKzkx8BNW7ZjNB08vbO2QREREGkUJnSStl19+mV7B0RwXvgWAFx5+t5UjEhERaRwldJKUysvLmTVrFoMDX6cTvcnnMKZ//l5rhyUiItIoSugkKX322WeEQiEOCZwAQF9OY3XFTLavDbdyZCIiIg2nhE6S0owZMwAo2HscAD05mgrK+Gj88tYMS0REpFGU0ElSmjt3Lrkp/elAHgA9GQ3ARx/Mbs2wREREGkUJnSSlBZ8vID80ct/zrgwjhQzmzJ7bilGJiIg0jhI6STp79+5l+RfLKUjdn9AFSaErw1i9cXErRiYiItI4Sugk6SxbtoxQKER3O6zG9G4MZ0PVYvZsa6XAREREGkkJnSSdBQsWAJC3d2SN6d0YzjZWUzirrDXCEhERaTQldJJ0Fi5cSNBSyWNIjendGA7Apx8uaY2wREREGk0JnSSdRYsW0TUwhCCpNaZXJ3TzZug8OhERaVuU0EnSWbxoMd3CI+pM78IAgqSxZIkSOhERaVuU0ElS2b17N6sKV9E9dXideUFSyGMohaWLWiEyERGRxlNCJ0ll+fLlhMNhugWGRZ3fjeGUVC6iorz523bO8fHHHzNt2jScc83fgIiIJC0ldJJUFi/2Dqfm7q07QgfVV7oWUjSv+TO6u+66i5NPPplTTz2Vn3x/XLPXLyIiyUsJnSSVxYsXE7AguW5w1Pn5eOfWfTqpea90nTp1Kvfccw9HpVzD4VzJA//4Le//+7NmbUNERJKXEjpJKkuWLCEvOJAU0qPO7+YndHNnNu95dHfeeSedU3vy9apHOJeHyaIbP71+XLO2ISIiyUsJnSSVxYsX0zUU/XArQC6DCJLGooXNl9DNnTuXadOmcZL9jFQySacjo7mOBVveZf6ktc3WjoiIJC8ldJI0Kioq+OKLL8hPiZ3QVV/puqqk+RK6J598ktRAOodVXLVv2iiuwRHmL3c83WztiIhI8lJCJ0ljxYoVVFVV0T0Y/QrXavmMoHjvIqr2Nr3NPXv28Nyzz3EoF5NJl33TcxlIX07lnU+fJlSlK15FRKRplNBJ0qi+wrVLRewROvDOo9vGalbPafpvur722mts3baVo1P/p868w/g2m8LLmPDMwia3IyIiyU0JnSSN+fPnE7AgXcP1j9ABzPig6b8Y8eSTT5Kb2pc+e8+oM28YF2ME+OfD/25yOyIiktyU0EnSmD17Nt2Dw0klM265fEYC8Nm0z5vUXlFRERMmTOCI8NUEomxq2XSnH6czcd6/CYd12FVERBpPCZ0kBeccs2fNpnvoqHrLdmEAGXRmzvym3Sfu2WefxTnHqMBVMcuM4FJKQ8uZ8uqCJrUlIiLJTQmdJIXi4mI2btpIn/TR9ZYNEKAnx7Bi86c09he6nHM89dRT9E89hU6VA2OWqz7s+uSDOuwqIiKNp4ROksLs2bMBKAjXP0IH0Itj2BBeQPHSXY1qb+bMmSxfvpwjA9fELZdFN/oxhvdm/Fu/7yoiIo2mhE6SwsyZM70LIiqOSKh8L44lTIhJ/5nXqPYef/xx0oKZDNl7Sb1lR3Apmyq/YPoHTTtnT0REkpcSOkkKU6ZMoVdwNOlkJ1S+F8cCMOntjxvc1saNG3nuuecYxdVkkFNv+WFcRIAgj/9Zh11FRKRxlNBJu7d7924+/fRT+rrTEl6mIz3oxnCmz5/Q4PYefvhh9u7dywkpNydU3jvsegZvT9VhVxERaRwldNLuTZo0iYqKCgalntmg5QbyFVbumcqmVbsTXmbDhg385S9/YUTKN+iyd2jCy43gUjZVrGDKfxt3iFdERJKbEjpp98aPH09mSg6994xp0HKDOZcq9vDPe99KeJlf/vKX7N61h7ODf2hQW4dyIQGCPPr7lxq0nIiICCihk3Zu165dvPrqqwwOjyWFtAYt258xZFPACy89k1D5V199lSeffJITA7fSee/gBrWVRVeGcB6vf/ooG9dvbdCyIiIiSujaGDPrZ2YLa00bZ2a3mdlTZnaJPy3XzOaa2bX+MrvNbJ6ZLTazp80stXXW4MB67rnn2Lp1K8emX9fgZQMEGcW1zN/6BjMnLI1bdurUqVxxxRX0ST+a06p+26hYT2cce9jOrVfc26jlRUQkeSmha4fMrBPwHvCYc+6f/uSVzrlRwEigN3Bpa8V3oOzcuZNx48bRJ+0Yeu0+pVF1HM/NpJDJdVfdSDgcrjO/srKSv/zlL5x99tl0CvflcvdWg0cCqxVwBIdzJc9/+Gfee21ao+oQEZHkpISu/ckG3gGed879rfZM51wI+BTodaADO5B27tzJpZdeSklxCecEHsSwRtWTTT5f4T7mF3/Auad9m/nz51NSUsJHH33EuHHjGDx4MLfeeisD3Ve4NvwRmRX5TYr7HB6iM/25+JLzefP1d5pUl4iIJI+U1g5Amt1fgCecc/dHm2lmGcBxwE0NqfSHI14GvFtqVN9aw+H2T6sxr+a0yOXqTMNF3KojSr2ubl37HkfMq54WCldQvHspsze9SnnVVsba3+mx5/iGrGodR3Mde9nO+x/dxbuj/rNvumH0tzP5jj3MoMpzGp00Rsoghyv5gOdDYznvwnPo2+FoDs09jdz0PnRI6UTAUghYkKClYPo+JpI0Hlr0jdYOQQ5ypvtetS1m1hd4yzl3WMS0ccBOvMOp2f7/U5xzG/35/YAlwDJgMPCyc+7qBrbbZjpKBp3pxxhO4mf0saYlc5F2uHUUMoW9bCeH3vTiOLLJpxnyuDoq3W5m8zgLeYFi5hCiovkbEZE2Yxzu4V87ftTaccjBSyN0bc9moEutabnAKv/xi8BHwNtmNsY5t9OfvtI5N8rMegCTzex859x/E2103OGfs2ebRYxCef/NokzDaj1uXHmzGHVEKW9mBFOMtA4BuvXoQsEoI7tHomuXqF7A5c1daQyZnMeN4G6kdJlj9aLNbCvdScXeEFVVVYRdlW5CLJJM1qDfBpS4NELXBpnZLODnzrmJZpYLzAC+DtwFvOmce9nM/gSMBs4BevrTD/OXvwj4mXPuhAY0q44iItJ6WuBYgLQnOgmnbboKuNPM5gGTgN8451ZGFnDO/RwoAp6h7vv8GtDBzBp36aeIiIgcVDRCJ4lSRxERaT0aoZO4NEInIiIi0sYpoZOkMWvWLB577DHKy8tbOxQREZFmpUOukqg23VFmzZrFiSeeSGVlJcePHssns95o7ZBERBpCh1wlLo3QSVIYN24cacHOjOhxKzNmv8kzT0xu7ZBERESajUboJFFttqOsWLGCwYMHc9Qh4zi02095ZX5fBh9yBgtWvtTaoYmIJEojdBKXbiws7d4rr7wCwIC8a0gJZNK3yyUsLXyadavL6NU3u1nb2r17N2+//TZr165l5MiRjBkzZt8NkkVERFqKDrlKuzd+/Hjyc46mQ8ohAPTLvZSq8C6eeOj9Zm1n+vTpDB06lEsuuYSbb76ZM888k0MHH8nnn+sG7yIi0rKU0Em7tnXrVj777DN6dT5n37Ru2SeSEsjm7bc+aLZ2PvzwQ8466yx2bk3ja4e9y6WjNnBS/39RVLSBo486njf/O6HZ2hIREalNCZ20a1OnTiUcDtMz58x904KBNApyxrBk1QdUVjT91MBVq1ZxySWX0CG1P1879GPyM79CRmo3Bna9krHD55CdPpCLLj6fqZM/a3JbIiIi0Sihk3Zt4sSJpAYz6Zx+XI3pPXLOYueelXz49pdNqt85x7XXXsvu8hBnDHqNNMuvMT8ztYCzhkwgPdiN8869mHVrS5rUnoiISDRK6KRdmzRpEvkdTyEYSKsxvWfO2QC88lLTDoX+85//ZMqUKYzucy+ZwUFRy2Sm5nP6oPGU7ynl62f+D7qyXEREmpsSOmm3NmzYwKJFi+jV5Yw683IyhpKZ2pNpH09qdP0bN27ktltvo6DTKfTv/N24ZfOyjuSo3n9kwfJ3uOdXTzW6TRERkWiU0Em7NWmSl6wVdKyb0JkZPXLO5MviSewuDzWq/ltuuYWdO8s5sf+jmNW/KR2a/yPys0/h7j/+hLVrNjWqTRERkWiU0Em7NXHiRDLSOpOTdmTU+T1yzmBvVSlvvbqgwXW/++67PP/884zseTvZqcMSWsYswPH9/kZF1U6uvfzXDW5TREQkFiV00m5NnDiR7tljCFgw6vwC/8rX115u2Hl05eXlXH/99eRmD2V4/i8atGznzOEMyf8BEz/+O5MnNDyRFBERiUYJnbRLX09eXloAACAASURBVH75JYWFhfTOrXu4tVpWWm9yMoYwfWbDzqP79a9/TWFhIScO+DvBQHqDYzui1zhSg5247ru3NXhZERGRaJTQSbs0ceJEAPKzz4xbrqDjGRRtmsrmjXsTqnfWrFncf//9HNrjf8lNP7VRsWWk5HF4z7tYvuZ9nnrsvUbVISIiEkkJnbRLH3zwAdmZPclOGRq3XO/O51AVLuepv0+st87Kykq+973vkZXRnaN6/alJ8Q3Nv4Hs9AHcfvvPqKqqalJdIiIiSuik3dmzZw/vvPMOvXLOxczilu2RczapwRz+/dLL9dZ75513Mn/+fI7v9wgp1qlJMQYDaRzV+/ds2Po5fxj3dJPqEhERUUIn7c77779PWVkZA/IvrrdsMJBOn87nM3/Z65TtrIhb57333suhPf6XHlkXNEucfbt8k65Zx3HvfXdRVlbeLHWKiEhyUkIn7c4rr7xCZnpnctPGJFS+X+632Fu1hQf+MD7q/JUrV/Kd73yHbp0O4+je9zdbnGbG6D73UrZnPbdc33z1iohI8jH9DJEkqE10lG3bttGzZ0/6dLyc4/s+ntAyYRfi9QWHkp2Vy9pNMwgE9n/P2bRpEyeddBLrijZz7ojpZAaGNHvMH35xMcU73mfOnHmMPGJws9cvIu1C/PNHJOlphE7alccee4zdu3czvNcNCS8TsCAje95B8ZbPGPfLx/ZNX7lyJaeeeiqFq4o4Y8jrLZLMARzb90EClsaFY6/WBRIiItIoGqFrB8wsBETepfZCoB9wm3NurJldAzwJjHLOfe4vsxAY65wrTLCZg76jlJaWMmTIELLtWMYMfKdByzoXZsLyr7Fh52R+cN2PyMwK8uijjxKuSuXMoa+Tm35KC0Xt+XLz83z05RV884IbeGn8Q/VezCEiSUc7BYkrpbUDkGax2zk3KnKCmfWrVWYtcAfwrQMU0wG1d+9errjiCnbuKGfMEX9u8PJmAU4b9DIzV1/HI4/+FTOjX95FHNfvftKsdwtEXNOAvMvZsmsu/3n9PoKXVvHUsw+Snt7wmxaLiEhyUkKXPN4ETjWzoc65Za0dTHNwzrFx40Y++ugj/vSnP/HZZ59x8qDHyA4e1qj60oI5nDLgBU7o+w/MAgQDGc0ccXyje/8JI8iLL9/L5Knvc+tPf8gZZ5zBkCFDyMrK0qidiIjEpEOu7UCtQ66rnHMXmdnp1DzkejTwKXCmc+7qhh5y7ZjZwzn/qKvXZ/zHONjXhxzVZXARj3G4FigTqUNaL47pcz99cy9JZHUOauu3T2DeursoLZ+5b1rAUkhNycYsgGGYBQDzkzzDdDRGpF27eOS6gn99ahtaOw45eGmErn2oc8g1hueBO8ysf0Mb6NFxLDUTB6P6lI7qpKJ6emSZ/aNKEeUjHmMx6sTAopSvVWd6MJcuHY4gv+PJpKSk0B4GsfrknUWfvLPYXl7I5vJZ7Ny7korQdipDO/ES2erENuwnu/pSJpIEZgF9WjsIOXgpoUsizrkqM7sP+HlDl12+MbFbgEhz6u//iYgomZP4dNuS5PMUcBbQrZXjEBERkWaihC7JOOcqgAeB/NaOpTXMmTOH3/3ud6xdu7a1QxEREWk2uihCEtXmO0pJSQmDBw+mrKyMgt4jWPPlPFJTddaBiLQJ7eAMYWlJGqGTpHHvvfeya9du+h//G0rWLuLXf/p3a4ckIiLSLDRCJ4lq0x2lqqqKgoICgl3GMPjMZ5j9wgg65fWj5MuJrR2aiEgiNEIncWmETpLC1KlT2bx5Mz2GfhOzAF0HfoONhVP4fOnmOmV37drFnDlz0JcdERFpK5TQSVJ49913Caak0aHgKwDk9Tsf50I89q+6v/n67W9/m9GjR/Ozex440GGKiIg0ihI6SQpTp04lu9vRBFM7AJDd7SiCaTlM+nBqjXIrV67kjTfeAOCvf/0rFVXhAx6riIhIQymhk3avvLyc2bNn06XXyfumWSCFnIITWb1sCpVV+w+tTp48GYDsM39IZelqXv6k4T97u2bNGt566y3mz5+vw7YiInJAKKGTdm/GjBlUVVXRqcdJNaZ36nkqu7YtZ9qs4n3Tpk+fTkp2LhnHXgbAa5M+TbidsrIyrrzySvr27cvYsWMZNWoUIw4/lkWLFjXPioiIiMSghE7avWnTpmEWILPrCTWmd+pxKgCvvj5537SPp08npf8xpPQcDqmZfPrZZwm1sWPHDsaMGcNzzz9P39E/ZdRFkxl06kOsWLmaUUcdy9vvfNhs6yMiIlKbEjpp96ZNm0bHboeTkt6pxvTsbkcSSMli6tSPANi7dy9fLF9Oh0OOwIKppPYeyYblc+s9bBoOh7n88suZM2cuh5/zH/occzfZ3U+gYPj3OfKSz0jL6ssFF5zH9BnzWmwdRUQkuSmhk3atoqKC6Z98QqceJ9eZZ4EUcrofx6rlH+GcY+XKlYTDYVILhgCQ0uNQKkq+oHR3/ITuX//6F2+99RaDTv4zHXuPrTEvLasHh419h0BaJ75+7jfYVLql+VZORETEp4RO2rU5c+awZ/ducnvVTegAcnqeQlnpQhYu28qyZd4FEKGugwFIyR9IeOcm5q/ZFrP+7du38/Of307nHsfTbdgNUcukZfXg0LOfZ+e2Ir52wXVNXCMREZG6lNBJuzZ1qndbkvSuJ0adn1NwEuB4+Y1p+xK6YP4gAFL8/9M/Xx6z/t/+9reUlm5i0Cn3Yxb7Ru45BSdwyNG/Ys70l/nzgy82ZlVERERiUkIn7dq0adPomDuYtA7do87v2P1YLJDKhInTWL58OamdCwhk5gD7E7v5i6MndEuXLuXBBx+kx7Brycg9qt5Yeo/6CdndjubO23/E6qKSRq6RiIhIXUropN0Kh8N8/PHHZHWPfrgVIJiSSXa30SxZ8DFr1qwhkHvIvnkpXfsDsPyLFXWWc85x0003EUjJovcxv0koHgukMGTME1Tu3cl5l9yge9SJiEizUUIn7daiRYvYunUrXfucFLdcpx4ns61kFiu+LCSY22ffdEvLJJCTz8b1RXWWeeONN3j//ffpd8ydpGXmJxxTh9xhHHLMr1jw6XgeeOTfia+MiIhIHEropN2aNm0aAJnd4id0OT1OwoWrWFtURHpe7xrzgl36sHNjzYRuz5493HLLLXTMO5Suh17f4Lh6H3EL2d1G84uf/Zjiko0NXl5ERKQ2JXTSbn344Yd0yOlFWnb/uOVyCk4EjFBVBSl5fWrMC+b2pnJLETsr9h8evf/++/nyyy8ZdMp9BIKpDY7LAikMHvM4FXu2cdG3b2rw8iIiIrUpoZN2qaKigvfee49Ovb8a9+pTgJT0zmTlHeE96VR7hK43oS1rWbsjBEBRURH33HMP+QPPJ6vgrEbHl5U7gj6jf8nMKS/y+FOvNboeERERUEIn7dS0adPYuXMn3Qeek1D5rLyRALjOtUfo+uAqdrGkqBSAm266iYrKMANPurfJMfYe9VOy8g7nph9fz6bSzU2uT0REkpcSOmmX3njjDYIp6WTmn5FQ+fRsb2QumFtzhC7QxXu+4Is1vP7664wfP55Djr6TYIf4h3ETEQimMnjM4+zZVcqF39KhVxERaTwldNLuVFZW8uKLL5J7yFcIpmYltEyoqhxLy8Q6dKkxvfqq1/mLl/Dd736Xzt2PoGDEjc0Wa3bXUfQ+8namT3qOu//0WLPVKyIiyUUJnbQ7//3vf9mwYQO9RlyT8DJ7y4oIdulT53y76oRu6sczKCvfy7CvPIcF05ozXA4Z/Us69z6TX9/xYz6cMrNZ6xYRkeSghK4NMrMCM3vRzFaa2WIze9vMbjKzeRF/C83MmdkwMzvdzLbXmt/4M/oPYuFwmHvuuYeOuQPI6vG1hJfbW1ZEMOKmwtUC2V0hNYNdO7cz5Ix/EMwa3JzhAmCBIEPPeoa0Dj0459yxzJ4zv9nbEBGR9k0JXRtj3hDSeGCyc26gc2448EtgjnNuVPUf8F/gOefcEn/RaZHznXMTWmkVWtTDDz/M3LlzOWT0nVggJeHlvBG63nWmmxnBLr0Jl29jy7qZlG9Z1Jzh7pOakceIsW/jSOfkU87gjTffaZF2RESkfVJC1/aMASqdc49WT3DOzXPOTat+bmanApcCN7RCfK0iFArx2GOPccstt9BtwNfpPODyhJcNV+2hctcGgl36RJ0fzO1D5erZrJv/Fz7/+DLCLtxcYdeQ2WkQh53/PsHMHpx/3jlcfMkVzJ07Vz8RJiIi9Up8CEMOFocBs2PNNLPOwD+Bq5xzOyJmnWJm8yKef8M5tzLRRk8453eAl1h4CUbEYz/hcOx/DC4iEYnxuHY91SXqTN9f3kU+9pfZXbaRktUzKdtWROfeYxh4+jP13nsu0t7ytQBRR+gAAp17EV4+FYDQumWUBpaQ70YkXH9DZHYaxOEXfUzRrLt5/fW/Mf6V5+jQsSe5PYaT0+UQUtOzSUnNJJiSHrGO+9c12jQa8FqIyMHpk7fubO0Q5CCnhK79+RvwrHPu41rTpznnxja20hnv/KoRS1lEMmG1kg3/sRkW8Xh/IlKrfJRlzS/v3Rj4KHofcy95Ay4kGGzYwHNFuffTXoG86CN0gawuEA6RcsF3qXr9H2ze8REFnVomoQMIpGUy4MR76H3kTyhd9Qbb101m29Yv2LB2IeHKckJV5dBCo4QicnA65fqfTZn2t7TTWjsOOXgpoWt7FgGXRJthZlcD/YArm7vRJ14vZ0d5xAhQrUSsenpDRsaaKmCQmgLZmUZBHmRlNq7tN8evY8F/IZgXfYSOUKXX3unnwXvPYxWLuPeHB2LT6Q58D/geoRCUbndsL4Pde8JUVoUJhSBMxOFYF2W0Ex2uFWkPxk/l9taOQQ5uSujanknA783s+865xwHM7BigA3APcKpzrqq5G/3u+R2au8qDxnsvrwUzgp16Rp3vdu/wktYhh2OHDGHbl0s4dpgd0OS1pmArtSsireUnl/FJa8cgBzcldG2Mc86Z2UXAA2Z2O7AHKAQygCzg1VqJxo/9/7XPobvbOffyAQj5oLdmzRpSO3XHUtOjzg/v3AT5vbHMLKzfUEKzp1Ba6eiWpnPTRETk4KCErg1yzq3Hu4q1ITq1RCztwerVqwl0jnG4FQjt3IT1HgBAoN9Qqt7/N7OLS/la3/wDFaKIiEhcum2JJL3CwtUE8ureVLhaaMsaLL8XAFbglZv9xaoDEpuIiEgilNBJUguHw6xes5r0rtETuvDuHbjyLVi+N4Jn3b3/C78sPFAhioiI1EsJnSS1kpISKisqSOvaN+r80ObVAAR6evOrE7plq1YfmABFREQSoIROklphYSEAgdzo96CrTuisl3cOHV26QVoGxWvXHIjwREREEqKETpLa6tVewhbqHGOEblsxANbdP4fODMvvxfZ1RQcmQBERkQQooZOkVt8IXXh7MQSC0LnrvmnWvRd7S9YS1m+siojIQUIJnSS1wsJCUjvmEUjPijo/tL0YcvOxYMTNfPMKcFs2UlqphE5ERA4OSugkqRUWFhLMi364FSC8vQTL615jmuXm47ZsZP2eZv9BDhERkUZRQidJbcXKlVhu7IQutL0YyyuoMc3yukNlBctKSls6PBERkYQooZOktXfvXgpXrSKz55CYZWImdMCytetbND4REZFEKaGTpLVixQrC4TBpBdETOle5F1e2JcohV+/5KiV0IiJykFBCJ0lr6dKl3oNug6POD+0o8R7UGqHDT/C+XFfcUqGJiIg0iBI6SVrLli0DwMVI6MLV96Crfcg1Nx+A9SVK6ERE5OCghE6S1tKlS0nP7UUgIzvq/NB2b4TOutU65JqZBR2y2VpS0uIxioiIJEIJnSStZcuWYfnRR+fAv6kw1DmHDrzz6Mo3KaETEZGDgxI6SUpVVVUsWLiQtJ7DY5YJbS+BYArk5NadmdeditINuBb+tYhJkyZx5JFH0qffAO574MEWb09ERNomJXSSlJYuXcruXbvo0P+omGXCO0qwLvlYoO5mYrn5sGUDW6paLsH66KOP+PrXv87SkjJK03pw2y03cdOv/9xi7YmISNulhE6S0qxZswBwvY+MWSa8YyPk5UedZ3ndCW/ZwMaKcIvEV1ZWxuWXX04wtw+5t02i803vkHHkhfy/39/BBzPmtUibIiLSdimhk6Q0Y8YMUjrkYN0GxSwTivKzX9Ustzvs3sWqzdtbJL7f//73FBUV0eXqR3EdumCBAJ0ue4BAhy5ceuV3qarSz46JiMh+SugkKU2YMIG0QSdFPZxaLeQfco2mJX8tYuXKldx3331kH38Zru/x+6YHsvPIueSPbFsxh1vvfazZ2xURkbZLCZ0kncLCQlauXEnW8DExy7hQJW5nKeRGH6GrPhT7ZQskdDfffDMumEbOhb+pMy/j6G+SNvgUHv79nRRv2NTsbYuISNukhE6SziuvvAJAcNhZMcuEd3rJksVI6KqnF65b16yxvf7667z55pt0POd2XE6Puu2akfOt+wjt3sk3r7+9WdsWEZG2SwmdJBXnHE8//TQdBhyNxfiFCIi4qXBut6jzrav36xFF65vv1yJ27NjBjTfeSFaf4aSffkPMcqk9h5F1xg18PP5J3v5werO1LyIibZcSunbCzMr8/wEze9DMFprZAjP7zMz6+/MKzaxr60baut566y0+//xzsk66Om65cHVC1zXGIdesHEjLoGRd8xxyDYfDXHPNNaxdt47Olz8IwdS45bPPuZ1g55586ztXUVpa2iwxiIhI26WErv35FtATONw5NxK4CNjWuiEdHDZu3MiPfvQjMgsGEjz2O3HLhndsAKL/SgR4hz4tL5/StaubfMXprl27uOqqqxg/fjydL76HcN/j6l0mkNGRzt/9F+Wb1nLEyV9h7dq1TYpBRETatpTWDkCaXQ+g2DkXBnDONcsnfVlZ2b5fKWhr/7ds2cL06dO57777KN6wifzb3sXVMwIW8hM6ukQ/5ApAXgHh7VsYdcLp3PGTHzJy5Ejy8vJITU0lJSWFQCBAKBSq81dVVUVFRQWrVq3i008/5YknnvBuUXLhr0mLc6i1trSBx9P5+89S/M//YcCQYXzvu9fy9a+cTf/+/enSpQupqamkpaURDAYxs4TrPdAO5thEDhZZWVmtHYIc5Ew/JdQ+mFmZcy7bzHoDH+GNyk0EnnXOzfXLFAJHO+cafIzOzNp8R0ntdzQ5l/4faf1G11t2+ws3s2v+eDJeWxKzTMW47+EKl2JluwhvafzFEWmDTiL7vDtJH3xyo5av2riSnW/ezZ55/4WqikbHISIHrx6P7Dxt/fXZU1s7Djl4aYSunXHOrTWzocAZ/t9EM/umc25iU+rteNHvAIPq0ZR9oyrmP635vPb8WMvFer5/0Kbp9QXSs0jpOYKUbgPITjMSGQ/asbPE+3mvOCwvn/DsKRzy4GrKln9OaNMqwru2QbgKF6oEF8YCQbAgBLw/CwQgkAKBFFLy+hDsPoT0nG5kpJBQXFH1GkiX6/7Jnl1llK9dTGhzEW7PdlyoCldVAeFQY2s+ANr89wSRA+VXQOxL8yXpKaFrh5xze4F3gHfMbANwId5oXaPtePXO5gitzTj+iVJmxbogwmd5BVC+g2fOMU75n1OBUw9McDFlAwWtHIOItBAlcxKXLopoZ8zsKDPr6T8OAIcDq1s3qrZnXXFxzHvQVau+YGLxmua9F52IiEhDKaFrf/KBN8xsIfA5UAU8FDH/czNb6//9pVUiPMg559hQUkJqXvxDrtW/IrGimW5dIiIi0lg65NpOOOey/f/vAu/GKNPvQMbUVm3ZsoXKigrS87oT74Yk1feo+7JICZ2IiLQujdCJ1LJ+vZegxboHXbV9P/+1XgmdiIi0LiV0IrUUFRUBUNmtV/yCOV0gNY2Nxc33818iIiKNoYROpJbVq71rSFx+77jlvF+L6M62Yl0UISIirUsJnUgta9aswVJSoZ770AFYQR92FxcdgKhERERiU0InUsuaNWtIye/p3QS4Pt37EN6wlu1V4ZYPTEREJAYldCK1rFmzBlff+XM+694HV1rMqh17WjgqERGR2JTQidSyes0ayE80oesNzjF3le7dLCIirUcJnUiEqqoq1q9bR2pB/AsiqllBHwA+X7mqJcMSERGJSwmdSITi4mJCoRApDRmhA5Z9qRE6ERFpPUroRCIUFhYC4BJN6Lr1hECAFas0QiciIq1HCZ1IhOXLlwNQ0WtAQuUtNQ3yCthYpBE6ERFpPUroRCIsX74cS03DuvdJeJlAr/6UrV6Jc64FIxMREYlNCZ1IhOXLl5PSqz8WDCa8jPUdQmj1F5TsDbVgZCIiIrEpoROJsGz5csK9EzvcWs36DILyHcxYpZ8AExGR1qGETsS3d+9evli+nLS+gxq0nPUdDMBHCxa3RFgiIiL1UkIn4lu0aBFVVVWkDBrZoOUC/Q4FYMa8z1siLBERkXopoRPxzZ07F4DKAYc1aDnL6w553Vk6d3ZLhCUiIlIvJXQivrlz5xLIzML16t/gZQNDR7Ft8TxCutJVRERagRI6Ed/UqVMJDjsKCzR8swgMHUW4aAUz1m1ugchERETiU0InAmzatIkFCxaQctTJjVo+MOokcI5/vf1+M0cmIiJSPyV0IsCECRMACB55UqOWt2FHQVZH3nn33eYMS0REJCFK6ESAF154gbT8HlQOHd2o5S0llcAxY1g36W227drTzNGJiIjEp4SuDTAzZ2bPRDxPMbNNZvam//waMwub2eERZRaaWT//cbaZ/c3MVprZXDObbWbfP9DrcbBas2YN77zzDoy5qFHnz1ULfv1y3PbN/Orpl5oxOhERkfopoWsbyoHDzCzTf342UPtnCdYCd8RY/glgKzDYOXck8DUgtyUCbSuqqqpYvnw54XCYX/ziFzgLkH7x95pUZ2D0aVjfIfz97nGUl5c3T6AiIiIJUELXdrwDnOs/vgx4odb8N4ERZjY0cqKZDQSOBe50zoUBnHObnHN/auF4D1rOOcaOHcvQoUM5/PTTef7550m9/MdUduvVpHotECDlx/dQsX41x5x7IcXFxc0UsYiISHwprR2AJOxF4Ff+YdbDgSeBUyLmh4F7gV8CV0dMHwHMr07mGqvX+ZcDsO8ua5H3W6t+HDHN7Xtct5yrZ9nqZeotVz0pShtRY/H/V2wtZcfC2aTk57Poo49Iv/hK3BW3YtTlqioJvfwYgcOPIzD86CglagoedSrulj+z5MFf0LNPH7IGDqdDj94E0tIJpKZBMBi1nYNZzDvrxbvnXqx5cZZxce/h14z1NSbu2K9CM7cTuykXJ4Zmfb0bG3eM+OK+r80Yg8NB2BEOVeGqqnChKu9xKIRZgEBKChYIYMEULBj0/gcCWEoKBIL+tCAWCO4vYwZ2cGyx615/rrVDkIOcEro2wjn3uX9O3GXA2zGKPQ/cYWYx74xrZncA3wTynXM9E21//cypUJ2K+Du4Gvu5fU+s7jSLMq1R5WrPa0B9EbG7kiIsK4u+zz3HyrPPJr1Hd6qCQaKpfPMZqh77LYGsDmS+ugiX2iFquUhpY68kcOTJhN59kd1fLGBX0WqoqoTKClwoVO/yrcNBvFQzxoda3M+6mDMb3k7cefGDaN124s1qTAyNee0O1OtTb1sNXKYx7QSCEEzBgmmQ1gGCQW9aOOz9haogHMJVhmDvbv/5/umE/L9wyNtWm/Y9uFllfrixePeY/B6tHYccvJTQtS3/Bf4POB3Iqz3TOVdlZvcBP4+YvBg4wswCzrmwc+4e4B4zK2tIw7O+WMX2qrb9KwgGhMMhLhjYg7SvfpX0AQPIHD2aqinvsuDeP3jfxmu5bNy7zATC5bv4wbZp/PC8yxNsLQ++4Y3o7Qo5tleFqfQGEOKNs4hIAgwvpwsAQYNUM9ICkBHw/luMRDXkHHvCsDfsqHDe85C/XcLBvW2eO39bw36TUJKOErq25Ulgu3NugZmdHqPMU8DPgI4AzrkVZjYLuNvM7nLOhcwsg7hf9esanZPa+KgPIkuWLKF8x3byTzgBgKyTTqL0oYfYvHMzx3TvXqNsKBRiwexZ9LvmYta88CYfT5/C/116ZWuELSJJbveYfP0MjcSliyLaEOfcWufcX+spUwE8CORHTP4e3ojeCjObDUyg5ihe0pg1axYANmIEAFnHHQfhMC9Onlyn7KJFi9hVXk73k0fTcfhAChcuPpChioiIJEwJXRvgnMuOMm2yc26s//gp59yPIuY96Jwz51yh/3yHc+4651x/59xo59zJzrmHDtgKHERmz55NIDOT9IEDAcgcNQqCQT785JM6ZauTv6zRI+h46AC2LVnJDld1QOMVERFJhBI6SSqfzZ5NxrBh3pVtQCAjg/TBg1k1b16dsl988QWB1FQ69O9F9tAB7Fm/kYVbSg50yCIiIvVSQidJIxQKMWfOHDqOHFljeuZhh1G2YAGlVTVH31asWEFW355YMEjHQwcAMHPxggMWr4iISKKU0EnSWLZsGXt27SL9sJoXi2UcdhhVW7YweeXKGtO/WLGCzAG9AcgadAgAC1csb3C7RUVFzJ07t577rImIiDSeEjpJGtXnxKVESegAJn766b5pzjlWrFhBzgAvkcvsUwDAl6tXN6jNv/71r/Tr14+jjjqK484+mz179jQ6fhERkViU0EnSqH1BRLWMYcMgGGTm7Nn7ppWWllJeVkZ2P+/nwFI6ZJLWtQslq4sSbu+9997j5ptvJufMM+l+2218NnEi5914Y/OsjIiISATdh06SxqzZs8kYPhyr9asQgYwM0gcNYvXnn++btnbtWgAyeu+/N13mIT3YWrQuobaqqqq46aabyBo4kB4PPIBlZFC5cSMT/vEPJtxwA2eNGtUMayQiIuLRCJ0khVAoxNy5c8mudUFEtYzhw9mxcCHlYe+nftavXw9ASo9u+8p06NOD8jXF7HH1/3zXP//5T5YtW0bBz36GZWQAJf/2DQAAIABJREFU0PXGG7H0dG66996mro6IiEgNSugkKSxdupTdu3aRFSuhGzGCqk2bmO6fI1ed0KVHJHSZfXqwe20Jm8IVcdtyzvHAAw+QPXIkaWeeuW96SpcudL74Ypa88goL1iU20iciIpIIJXSSFGb758cF/F+IqK36wogJ/oUT6/yEK6Og674ymb27E9q9hy+3bIzb1pQpU1i8eDFdr7yyzu/D5l59Na6igrv+8Y/GrYiIiEgUSugkKcyaNYtghw6kDRgQdX7GsGEAzPATv/Xr15PRLZdA6v7fsE33k7sV69bGbeuRRx4hrXNnMs49t8689IEDyTjiCD546SXCuo2JiIg0EyV0khRmz55NZpQLIqoFs7NJ69+fZfPnA94IXXrP/BplMgq8w69frot9pev69esZP348nb/5TQL+uXO1db7gAnYtXsyLEVfVioiINIUSOmn3qqqqmDtvHpm17j9XW8bw4WxZsIAq51i7fn2Nw62w//BrYcn6mHU8/vjjhEIhulx2WcwyOeeeC8EgDz79dAPWQkREJDYldNLuLVmyhN27dtX5ya/aMkaMoHLdOmaXlLB+/XqyetQcoUv3R+jWr4ue0FVWVvLYY4/R8dRTCfbtG7OdlK5dyT7lFOa8/DJ7QvVfMSsiIlIfJXTS7s2YMQOAwBFHxC1XfWHEm9OnU7pxI5m1DrmmZGWSkpNNacmGqMu//vrrrF+/nu5XXFFvTJ0uuIDK4mIeef/9RFZBREQkLiV00u598sknpOfmktqvX9xyGcOHAzBp2jTveUG3umUKurK9OHpC99BDD9GhTx9STjut3pg6nn02gawsHn/mmXrLioiI1EcJnbR7n3zyCemjRtW5hUhtKV26kNqnD0v8Eb20nnUTuvSCrpSXbCJU6wrVhQsXMmXKFDpffnnMCy8iBTIz6fjVr/L/2bvv+Kqr+4/jr3Nv9iBkQBYjJIyw91JwoCh1odaKe/Nz1lUXdRTbOutsHYiKSisOHK0DARfIDHtvEiJ7hDASyLzn90eGSci4WWTc9/NRzL1nfq5NzIfz/Z7z3fT11xzIzKzGpxERETmREjpp1g4ePMiGDRsI7tvXrfaBQ4ZwePVqALyjy1mhi25F1p79HLF5pcpff/11nL6+hFx2mduxhVx8Ma6MDJ6bOtXtPiIiIuVRQifN2ty5cwEI6N/frfYBQ4bgOnYMAL8ymyIA/CIjyN5zgIMlnhaxe/du3n//fUIuuggTFuZ2bIFDhuAVFcWHuuwqIiK1pIROmrWZM2fiFRCAs08ft9oHDhkCgPH2wic85IR63+hW5Gdl82v6geKyf/zjH+Tk5hJ1++3Vis04nbS85BJ2z5rFvE2bqtVXRESkJCV00mxZa5k+fToBgwfj8PV1q493VBSOoCB8W4djHCf+eBQfLryr4NFgu3fvZsKECbQcPRoqOaqkIqFXXw3G8Mirr1a7r4iISBEldNJsLV++nK1btxI2cmS1+jlDQvArZ0ME/Ha4cMqugsd/PfDAA+Tk5xN11101itE7OpoW557L/MmT+XX//hqNISIiooROmq0PP/wQh7c3fueeW72ODlPu/XPw2+HCv+7exbRp05gyZQqtbr21RqtzRSLuugvXsWPc9OSTNR5DREQ8mxI6aZaOHDnCO++8Q4tzzsHRsmW1+uYfOoRv6/By64of/5WayrXXXktw166E3nZbrWL169KFlpdeyk8TJ/LzkiW1GktERDyTEromxBgTboxZUfhnjzFmZ+HrQ8aYdWXajjfGPFD4+v3Ctr6F7yOMMdsa4COcNE899RRHjhwhauzYavVzZWbiOpqBX0z5K3ReQQF4BQeybfMWMl0u2v7rXxg/v1rH2/qRR3CGhXHJFVewb9++Wo8nIiKeRQldE2KtTbPW9rHW9gEmAC8Xvu4DuKrong/cVN8xNgZTp07lhRdeIPzyy3FU8fzWsnILkym/NlEVtvGNakXO4aPET54MHTrUKtYiXqGhxL7yCkd27KDXaaexcuXKOhlXREQ8g1dDByAnzSvAfcaYt2vSedmyZdjCpyNYa0u9dresPvu4XC5SU1OZPn0633zzDSH9+hH52GPV/px5ewse6+VXzqHCRfyiIsg5eAjTvVu1x69M4KBBtHv3XXbecw99+/XjtLPP5twzziA+Pp7w8HACAgJwOBw4HA6MMcVfq3oChog0fX3dPBxdPJcSOs/xKzAXuBb4urqd+7t5MG9D82rVioi77ybittvAzaNKSipK6PwrS+hiW3NwwQocBly2wmY1Ejh0KPEzZnBw0iQWTJvG7Jkz63YCEWmSum3deufa+PjXGzoOabyU0DUPFaUVZcufBr4Cvq3uBG0nTABjCv5A6ddFSq4WldeuRHtTWX2JslKrT5X0McbgFRlJYGQkwU4njhquWmUVHh3iX8E9dAV1kWTt2keE02JtPfwIRUQQ/dBD2Ice4kh6Ohl79pB76BA2KwusxbpcYG3BH1dVV9pFpJno2NABSOOmhK55SANCy5SFASklC6y1W4wxK4DLqzvBr7feWvPompD7jh/n9cKNDxXxi2mFzc3jMSecFVvz40rcUovjUESkWbmvoQOQxk2bIpoBa20GsNsYcxaAMSYMGEXBJdayngIeOInhNSk7d+7Ev4Iz6Ir4xUQCsHlH6skISUREpEpK6JqP64DHClfgfgKetNZuLdvIWrsWWHayg2sqdu3ahW8l988B+McWJHTJ27efjJBERESqpEuuTZS1dnyZ9+uAMytoe0OZ95fWW2BN3I6dO/EdUvnuVb/YghW8bTuU0ImISOOgFTqRQtZadu/aRWBU5ZdcfVuFYby82Lljx0mKTEREpHJK6EQKHTx4kJycHAKquORqHA78oiPYv2vPSYpMRESkckroRArt3LkToMLHfpXkFxPJ4Z276zskERERtyihEym0o/ASqld0RJVt/WNbk7lzL7lW58CJiEjDU0InUiglpeDYPr/2MVW29Ss8XPiAK6e+wxIREamSEjqRQikpKXj5+eIbWfUKnV9sa/KPZ5F8cO9JiExERKRySuhECqWkpBDYLsath90XnUW3dltKFS1FRETqnxI6kUIpKSn4xVV9uRUgIC4WgPVbt9RnSCIiIm5RQidSKDklhcD2sW61DUxoB8CGLZvrMyQRERG3KKETAdLT0zl86BDBbiZ03i2C8GkVxq9bTni6moiIyEmnhE6E33a4Bsa1cbtPYHxb9m/ZVk8RiYiIuE8JnQiQnJwMgHdctNt9AhPacTT5V7J1Fp2IiDQwJXQiwLp16zDGENCpvdt9Aju2JWv3frYcPViPkYmIiFRNCZ0IBQldUPtYvAL83e4TVLgxYtGm9fUVloiIiFuU0IkAa9euJTAxvlp9grp0AGDRmpX1EZKIiIjblNCJx8vNzWXjxo2EdE2oVr+gznE4fH1Yvnx5PUUmIiLiHiV04vFWrlxJbm4uYX0Sq9XP4e1Nix6dSF25pp4iExERcY8SOvF4CxcuBCBwYI9q923RqwtpK9dzKD+nrsMSERFxmxI68XgLFy4kMKoVfm2iqt03bGgfcg8d5dvlSfUQmYiIiHuU0IlHc7lc/Pjjj7Q8pS/GmGr3jzhtIABf/fxDXYcmIiLiNiV04tGWLVvGnj17iB11Wo36+8dGEtgpjrnTZtZxZCIiIu5TQice7ZNPPsHhdBI6cmiNx4i5dCS7flnEqp3b6i4wERGRalBC10QYY6KMMR8bY7YaY9YZY6YZYzobY7obY34yxmwyxmw2xjxuCq8dGmNuMMZYY8xZJca5pLDssob7NI1DZmYm7777LjEXjcAnIrTG47QZcx64XPzl9VfrMLrGLysriy1btrBjxw6stQ0djoiIR1NC1wQUJmhfArOstQnW2m7An4FI4CvgWWttZ6A3cApwR4nuq4ErS7y/AtBJuMDjjz9Oeno6ne+6tlbjBHVqT/TFZ/PNvyayevPGOoquccrIyODTTz9lzJgxhEdE0KlTJ9q2bUtoqwiuvfEGpk+fTl5eXkOHKSLicYz+Zt34GWNGAOOttaeVKb8ZON1ae12JsgQKEr+2xpgbgIHAcKA/4AvMpiDJ+8Za+1k1wmg23ygHDhzgxRdf5NlnnyX+5j/Q/ZVxtR7zWOou5gy/mqCQFvznzYmcM3IkTqezDqJtWLm5uaSkpDBr1iy+++47pk+fTlZWFn6twoi5cAThg3uTe+wY6QtXsmv6L+QeziC0VQRXXT6GSy65hL59+xIWFtbQH0OkOaj+ri3xKEromgBjzN1AB2vtfWXKXwJSrbWvlilPB9oDlwIDgBzgJyAE6Ah0oJoJXZuh/SxA8bdL4YtS3z9Fryupc6e/LTNOuf0or02ZsnL652YeI2P3PgDaXTuanq/+GYe3dwWfunrSl6xhyTUPkrVzL05fH1q0i8HLzw8vP18czrpdDLe24B/W2oI3JV4X17lcJ5Zhy+lXfntXXh6Ze/ZjXS6gYANI5AVnEHPx2YQN7YMpk7DmZ+ew//v57Pz0O/Z89wuurGwAfEKC8Q8PxSfAH+N04nA6ir9Sg53FIp6o38x3nF8F9XU1dBzSeHk1dABSK4aKV85Kln8M3E1BQvcnCi7XVku2n/dvv3wLvxb/Li75S7m4rriydLQl64zBlNPflGpDqbqy/cvOf0JMpeoMDh9votvF0LJPIlHnnV7ZR6620AE9GLHyf+z9dhaHlq7l+I495GflkJuVXSq5rDVrCz6XMQUfr/i1AUzB/4zBOBwFX01BWXGb8vo6HKXbYDBOB9GxkQS0jyF0UC+COsdVerSL09eHqAvOIOqCM8g9kkH64tUcWbWRrF37yEk7RN6xLMjPx+VyYfPzsfn63SRSDccAv4YOQhovJXRNw1qgvE0Ma4Gyl2HjgQxr7dGiX77W2kXGmB7AcWvtppqct7b/5+ZxcO7+/fvp168fm595i2dee4lH7ryv6k7VEQRcNxiuq7Jl8xYEjB4Ooxs6EJFmQ8mcVEqbIpqGnwBfY8zYogJjzEBgMzDMGHN2YZk/8E/g+XLGGEcNVuaam1dffZWdO3cS3q094//8OAczjzR0SCIiIrWmhK4JsAU3h10CjCw8tmQtMB7YRcEayGPGmI0UbHZYDLxWzhjfWWt/PnlRNz55eXm8/fbbxF8wlDNeu4fsI5m89N8PGjosERGRWtOmCHFXk/9GmTdvHsOGDWP0p0/S/tJTeS/+KmL7dGH9/35p6NBERKqiHURSKa3QiceYPn06DqeT6LP7YhwO2p87iORZy0jPPdbQoYmIiNSKEjrxGD/++CPRgxLxbRkEQNuz+pFzJJP/La6fK9GzZs3ijjvu4L333sPl0o5OERGpP0roxCPk5OSwbNkyood2Ly5rc0ZvAL6fN6vO55s6dSpnnnkmE956i5tuuolr7761zucQEREpooROPMLKlSvJzs4mZnC34rKA1qG0iItixaKldTrXgQMHuOWWW2hzSg/uOPw1fe75PVNef4fJ0z6v03lERESKKKETj7Bo0SIAwgd3KVUeNbgr2xetI8vW3fNH//73v5ORkcHZbz+AV6A/w577P1p2asODDz5IXn5+nc0jIiJSRAmdeISkpCSCosIJbtu6VHnkoESO/rqXpXu21Mk8aWlpTJgwgW7XjyKkazsAnD7eDH78WvatS2Hi9E/rZB4REZGSlNCJR1iYlETk4MQTHl0VNagrAD8umlsn80yZMoXs7Gz63n1pqfJOY84kKDaCl156qU7mERERKUkJnTR76enpbN60idhB3U6oa92vEw4vJ/OTFtZ6Hmst7777LlH9uxDWO75UndPbi563j2brT0uYt2VVrecSEREpSQmdNHtF98+1HpR4Qp2Xvy8RveLZuGhFredZtmwZK1eupOeNvyu3vut154AxvPTBhFrPJSIiUpISOmn2kpKSMMYQMbBzufWRg7qya/EGDudn1WqeSZMm4e3nS8JVI8qtD27TinYj+/PD5C/Iya+7TRgiIiJK6KTZS0pKIqJbHL4tAsutjxrclZwjmczesKzGcxw/fpwPP/yQjr8fXnxwcXm63TCKI7/u5YNZ/6vxXCIiImUpoZNmzVrLwoULiRxy4v1zRaKHFGyM+GnhnBrP8+WXX3L48GF63nhepe0SRp+KT0ggb78/qcZziYiIlKWETpq1zZs3c/DgQdoM6V5hm5ad2uDbMohFSUk1nufdd98ltEMMUWf0qrSdl78vXa4YwfLPf2TXoQM1nk9ERKQkJXTSrC1cWLB7tfWQEzdEFDEOB1GDu7IlaRXW2mrPkZyczE8//US3G0ZhHFX/SHW7cRR5x7N5+ZN3qz2XiIhIeZTQSbO2cOFC/FoE0bLwkN+KRA7qyoE1KaRk7K/2HBMnTsThdNLtplFutY8cmEh49zg+ef8/1Z5LRESkPEropFlbuHAhkYO6VLlyFnNKd6zLxdfzf6zW+NnZ2UyaNImEC4cSEBvhVh9jDN1uGMX2hWuYvXZJteYTEREpjxI6abbS0tJYuXIlsadWfl8bQMywHjh9vJn+/cxqzfHll1+yf/9+ev/fRdXq1+Was3F4OXnxvTer1U9ERKQ8Suik2frhhx9wuVzEnTugyrbegf5En9KdZT/Mdfs+OmstL7zwAmEJbYg5p1+1YguMDKPDRafw/XufkZ5xpFp9RUREylJCJ83WjBkzCAhtQXgFBwqX1fbs/uxbuYU1e1PcHn/p0qUMfORKtzZDlNXv/j+QdfAIf530arX7ioiIlKSETpoll8vF9OnTaXN2PxxOp1t94n43CID3vvq0yrb5+fmMGzeO0HZRdLr27BrFGHNKD6JP7cF7L71Bdk5OjcYQEREBJXTSTP3yyy/s3r2bzqOHud2nVZ+OhHZpy38/mlpl2wkTJrBixQqGPX8rTh/vGsc58JGrOJy6h7+8/VKNxxAREVFCJ83S+++/j29QAO0uPsXtPsYYEq89h5RZy/h59aIK261evZoHH3yQDmcPoMMfTqtVnHHnDabNmX345xPPsHv/3lqNJSIinksJXRNkjHnUGLPWGLPKGLPCGDPYGONljHnaGLO5sGyFMebREn3yC8vWGGOmGmMCGvIz1Kft27czZcoUul53Dt4BftXq2/PWC/AK8OORvz1Rbv22bdu48MIL8W4RwLmTx2GMqVWsxhhOf/WP5GQc56Ibr8DlctVqPBER8UxK6JoYY8xQ4AKgn7W2F3A2sB34OxAD9LTW9gGGAyWvBR631vax1vYAcoDbTm7kJ4e1lvvvvx9rYOCDY6rd3z88hAEPX8miqTN45f23So377bffMmTIEA4cSWf0N0/jGxVaJzFH9OjA8BduY8m3s7j+nttq9LQKERHxbF4NHYBUWzRwwFqbDWCtPVC42jYWiLPWZhWWHwXGVzDGHKDqw9mamPz8fB577DE+++wzhj81loD2kTUaZ8DDV7Bj9gruu/E2Znz5NR1i27FgwQJWrFhB624d+MMnzxLSvX2dxt7rzos5nLKH/7z8Nr9uTeGdV9+gU6dOdTqHiIg0X0arAU2LMSYImAsEAD8AnwDpwAfW2r6V9Muw1gYZY7yAz4Hp1lq3T7W94aNnLYXfK9ba31aRSr2m3HJrLRQXWyhVXvS6dN/y6iuc32VJS9nJuu/mkZaykx63nM+ICffV6CiRInnHs1n09/+wYcoP5B45Rli39nS56iy63fQ7vHx9ajxuZay1rHr9v8x9eCJ5WTm06Z9Ih0E9adkmEv+WwTh9vHB6e+H09qaWV3rrVqMKRqR5em/Mw/pBk0opoWuCjDFOCi6pngncCjwN3FiU0BljbgTuAcKBU6y1240x+cDqwiHmAH+y1rp9VoYxplF/o/gEBxA5uCu97xhN/OhTq7y3LSv9KL4tg2p9D1x9yNx7kLXvTCN15mIOrEom53BmQ4ckIg3sHtdPE14xZ97e0HFI46WErokzxlxGQVLXj4JLrkdL1K0BLrDWbitaoavpPI+u+9weN/m/JUDG/LYwY0xxuTGmeMXGGEq8dqe8aGzKzFN6TlOi3IHByzgJb9GSaBNIGP5VfpaJjz7Hv5/5F8P/MIqnPn67USZ1ABZLOlnszDzIwaOHOJ6TQ25uLnklzqxr6J9e/fdD5OSw3SJvecWc+W5DxyGNlxK6JsYY0wVwWWs3F77/O9ASOAZEArdaa7MKV/HWA+fURUJHw+cOdSIlJYWEhARCYkI5tPMgH3w7hevOu7KhwxIRqUrj/JunNBra5dr0BAEfGGPWGWNWAd0o2PzwKLAbWGOMWU7BZdUPgF0NFWhjNHHiRIwx3D37bwRGBPPG+xMaOiQREZFa0wqduKtZfKMkJibiaO/PbdMf5bM/vsuCd35kZ9puWgeGN3RoIiKV0QqdVEordOIxtm3bxsaNG+k+qh8A3c/vR152Lv+d+00DRyYiIlI7SujEY/zwww8AdDqnJwDxw7vi9HYy/ccZDRmWiIhIrSmhE4+RlJREYGgwkV1jAfAN9KPdoI6smLNUuzVFRKRJU0InHmPRokW0G5RQ6piS9oM6sX15Cvtz0hswMhERkdpRQiceITMzkzVr1hA3sPTjtOIGdyIvO5dfVs+vl3nXrl3LqFGj6N6zB2++NUErgSIiUi+U0IlHWLp0KS6Xi3aDSid07QZ1BOCXpDl1PufWrVsZPnw4C5YlcdQ3iztuu53nJ7xU5/OIiIgooROPsGjRIgDaDoovVR7WvhVBrUNYtmhpnc6Xl5fHNddcQ47N5f4FT3F/0tMkntubx//0Z7buSKnTuURERJTQiUdYtGgREXGRBLcOKVVujKH9oI5sWbSBfOuqs/kmTZrEwoULufz1sYTGt8bhcHD5G2Ox+S7u/dsDdTaPiIgIKKETD7Fo0SLaDkoot679oE7s3bCT5EO/1slcmZmZjB8/noRTu9L7iqHF5eEdIhlwzWnM+Pc3bE/TAzxERKTuKKGTZm/v3r2kpqYSP7BzufXtBxfcR/fz4l/qZL5XX32V3bt3c9Ez15TaUQtw+j3nkXs8h2ffeaFO5hIREQEldOIBkpKSACpZoeuIMYZ5SfNqPVdaWhrPPfccvS4aSNywExPImJ7t6Xh6N6a+/RF5+fm1nk9ERASU0IkHSEpKwunlJLZ/h3Lr/UMCaZ0Yw4qk5bWe66mnniIjI4MLn7qqwjZDbzmb/Vv3MHX2l7WeT0REBJTQiQdYuHAhsb3i8AnwrbBN3ODObF24gWxXbo3nSUlJ4bXXXmPIDWfSunubCtv1unQQ/i0DmfDuxBrPJSIiUpISOmnW8vPzWbx4cfF9chWJG9KJzLSjLE6u+Srdo48+isPLwXlPjqm0nY+/LwOuHs78z2exO21vjecTEREpooROmrX169dz9OhREoYkVtqu/eCCA4d/XjirRvPMnj2bjz76iDPvu5Dg2NAq2w+95SzysnP553/eqNF8IiIiJSmhk2Zt4cKFALQZXP6GiCJR3dviG+zPnDlzqz3H8ePHGTt2LJHx0Zw1brRbfWJ7x9FuYAIfvjNZjwMTEZFaU0InzdrcuXMJCgsmolNUpe2cXk46ndmd5T8swlXNBOvhhx9m8+bNjJl4Gz6Bfm73G3rzWWxfs41Zi+rmuBQREfFcSuik2bLW8v3339Pp7J4nnAdXnsSRvTmQvJekLe4/BmzKlCn861//YsS9F5Iwolu14ut3xan4BPjyyjv/qlY/ERGRspTQSbO1Zs0adu3aRY9z+rrVvss5vQH4Yub/3Gr/888/c9NNN9FpeHcueK7iY0oq4tcigL6Xn8KMj7/lyNGj1e4vIiJSRAmdNFszZ84EoOM5Pd1q36pjFBEdo5j25TdVtk1KSuKiiy6iVccobv7iAZzeXjWKcegtZ5GdkcXrn+gIExERqTkldNJsffnll7TpGUfLNuFutTfGMOCq4az/aSVrt2+ssN20adM466yzCIxswe0zH8c/PKjGMcYN7Uxk11jemfi2NkeIiEiNKaGTZik5OZl58+bR/8ph1eo36PrTwRj+9srTJ9RZa5kwYULBylyXaO7+5a8ERYfUKk5jDKfffT7Jizfy/v/+U6uxRETEcymhk2bptddew+F00v/q6iV04R0iGXDNcL5442OWr11ZXJ6ens4VV1zB7bffTtdz+nDnz3+pdTJXZMjNI4hMjGXcg4+QkZFRJ2OKiIhnUULXxBhj8o0xK4wxa4wxXxtjWhaWn2GM+aZM2/eNMZcVvr7AGLPcGLPSGLPOGHNrQ8R/Mmzfvp233nqLAVcNI6Ste5dbS7rwmavxDfZj5LkjeeWVV3jooYdISEjg888/Z/TT13DzVw/iE+z+8SRVcXo5uey1m9m3dTdX//EGXXoVEZFqU0LX9By31vax1vYADgJ3VtXBGOMNTAQutNb2BvoCs+o1ygaSnZ3NddddhwsX542v/BFcFQmJDuWOmY/jHeLHfffdx0svv0SbYR15aMnzjHhkNA6ns46jhs4jejLyz5fy1fufc/Mf/4+cnJw6n0NERJqvmm3Nk8ZiAdDLjXbBFPx/nQZgrc0GKr7rvxGz1havYJV8feDAAebNm8czzzzD0qVLuX7yPYR2aFXjeWJ7x/HI6hc5vPMgfiEB+AX710n8lTnvr2PIOZbNey+/wy8/zeKe2+/mtNNOIz4+nqCgILfO0hMREc+khK6JMsY4gbOAd6tqa609aIz5Ckg1xvwIfAN8ZK11uTtfSOuWWMtvlwNLJVZF/yhKsiinjYXirrZEe/fGdFfLNuHcOPVP9Pn9ELf7VMQY4/YO2bpgjOGSF6+n0xnd+eaxj7j77ruL65xeTrz9fXE4DBhT/NU4jBI9EQ/wtz1vR99tLtvd0HFI46WErunxN8asAOKApcD3heUVZT0WwFp7izGmJ3A28AAwErjB3Ul7XjqoIIEwhuL8wZRIJgwlXpffxpiifxS2LW5uSpRXPU7J8qK+fi38ienVnvhhiXh7Ne1v614XDqTnBQPYu3kX25cmc3jnQTIPZpAduj+3AAAgAElEQVR7PKcg6XUVJL7WZbEut3NyEWnaFgLtGzoIabyMbsBuWowxGdbaIGNMCAUrbVOttf80xvQA3rLWnlqi7VfAi9ba2WXGiABSrLXB1Zi62XyjzJs3j+PHj3P22Wc3dCgiIu7SUrxUSpsimihr7WHgbuCBwk0Pm4EYY0xXAGNMe6A3sMIYE2SMOaNE9z5A6kkOuVH49ttvGTZsGCNHjuRfb7/S0OGIiIjUCa3QNTFFK3Ql3n8NfGqt/bcx5lTgRcAPyAX+bK393hgTDHwCJADHgUzgHmvtkmpM3Sy+UQYMGMCeQzvwDfIhM/0YqVt24uvt29BhiYhURSt0UikldOKuJv+Nsnr1anr16sWtz19BWEwwz1zzNu//9y2uH/1/DR2aiEhVlNBJpXTJVTzG119/DcDwy/oycFQP/AJ9+e83XzZwVCIiIrXXtLcDilTDvHnzaJcYQ0irgr0gfc5MZN70JPJcuXg5vBs4OhERkZrTCp14BJfLxYIF8+k6OL64rO9ZXdm/I50VWxY1YGQiIiK1p4ROPMKGDRtITz9E1yEdi8u6DilI7n6c+31F3URERJoEJXTiEebPnw9A4uDfzuVs1zWGgBZ+zJ8/r6HCEhERqRO6h048wrx58wgJDyKmY+viMqfTQeKgeFYuWIfLunCYuvv7zeHDh/nyyy/ZvXs3ffr04dxzz8Xh0N+fRESkfiihE48wb/48EgfHn/Dc08TB8Xz09LdsP5hM+/COFfSunq+//ppbbrmFffv2FZf1GdCLLz79Lx06dKiTOURERErSkoE0e/v372fzps10H9LphLqug+Ox1jJ74U91Mtdnn33GJZdcQkiMPy/++Aif7n6J+yZez6ZNmxh0ygC2pabUyTwiIiIlKaGTZm/BggUAdB4cd0Jd5/7tMcYwd/6cWs+zatUqrrvuOhIHxfP3affSeVA7/IP8GHHlYJ6b+SeOHTvGyAtGcPz48VrPJSIiUpISOmn25s2bh5e3F536tTuhLqCFP+27x7AsaUWt5sjNzeWqq64isKU/j/xnLAHBpR8nFtc9lgcn3cSWNdu474m7ajWXiIhIWUropNmbP38+Hfu0w8ev/MODEwd1YP3iLWTnZ9V4jjfeeIO1a9dy+0tX0LJ1ULltBpzbg5HXncLbL7/PinVLazyXiIhIWUropFnLzs5m8eLFdBuSUGGbxEHxHDuSxaLVc2s0x969e3niiSfof3Z3Bp7fvdK2148fjV+gD3c/dGeN5hIRESmPEjpp1pYtW0Z2djZdB1e8gzVxUMHO09nzf67RHOPGjePY8WOMfe4PJ+yiLSukVTCX3XcOc75N4tuf/1ej+URERMpSQifNWtGBwl2GnHj/XJGYjq0JDgtk4cKF1R5/4cKFvPfee4y+cwSxnVtX3QG46M4RhEWH8Ojjf8ZaW+05RUREylJCJ83a7NmziU2IJDQypMI2xhgSB3VgVdK6aiVYLpeLP/7xj4RHhXL5Q6Pc7ufr78PlD45i5bx1fDH9U7f7iYiIVEQJnTRb+fn5/PLLL/QYfuL5c2UlDopn+6Y9pO7f4vb4kyZNYsmSJdz090sJCParVmznXHcKrduF8fjjj2uVTkREak0JnTRby5cv5/Dhw/Q5LbHKtt1PLbjH7tsfv3Jr7LS0NMaNG0f3oZ0Yfnm/asfm7evNmId+x/qlm/n0f1Oq3V9ERKQkJXTSbP30U8HTH7oNr/qRXomDOhAUGsC0b791a+yHH36Y9PR0bn/pyio3QlRkxFVDiE5oxeNPPI7L5arRGCIiIqCETpqx6dOn0z4xlrCoFlW2dXo56T+yO/NmLCE3P7fStnPmzOHdd9/l4rvOon2PqBrH5+Xt5Kpx57N5dQofTv2gxuOIiIgooZNmKS0tjV9++YUhF/Zyu8+Ac3tw+MBRvptT8XEiGRkZ3HLLLUS2jeDKcefVOs7hlw2gXWI0T/zlCfLz82s9noiIeCYldNIsffbZZ+Tn53PKRe7f3zb4vJ74B/nyzqSJ5dZba7nzzjvZsmUL90+8Ht9An1rH6XQ6uOrR89m2cQdv/2dCrccTERHPpIROmh1rLW+99RbxPdrSoXdMhe12bNrLd+/+wvGMgkd++Qf5cdofBjJj6ixSdpy42/WFF15g8uTJXPHweXQbVvGTJ6pr6EV9iO/Vhr+O/ytHjx6ts3FFRMRzKKFrYowxkcaYKcaYZGPMUmPMAmPMJcaYM4wxh40xy40xG4wxL5ToE2SMecsYs9UYs9YY84sxZnBDfo76NH36dJYvX855Y0+rcMNC5uHjjBv1Em/c+zFv3Pp+cfll95+DK9/FHfffVnyciLWWZ599loceeojTfj+QMY+4f+acOxwOB7c8dxl7Uvdz413X6BgTERGpNiV0TYgpyE7+C/xirY231vYHrgDaFDaZY63tC/QFLjDGnFpY/g5wEOhkre0O3ABEnNTgT5KMjAzuvfdeouNaM+KainPWOZ8v5dD+owwa2oFZX63iYPI+AKLiIrhy3PlMn/ojl115CRMnTuT0009n3LhxnHH5YO596xocjrr/sek5rDNjHv4dn0/+ij+Nu0dJnYiIVIsSuqZlBJBjrS2+2cpam2qt/VfJRtba48AKINYYkwAMBh6z1roK65Otte6dz9GE7Nq1iwsvvJDNmzdz9+vX4O3jVWHb2VMX0yEhgif+dj4Ay/+3rLjusj+dw5iHf8dXX37LrbfeytpNq7nr1Wu4/53r8Pb1rrf4rxx3HufecCovP/cvzr1gJGvWrKm3uUREpHmp+DeeNEbdgWVVNTLGhAKdgF+AQcAKa22ttlCOfeIqiheNSlyKLPG21CXKghcnllU8xon17owPkJOdw69bdrFq/nocTsN9E6+jx2kVnz137GgW6+Zv4ebbhhHXIYKETq1YMGMNZ91XcCnV4XBwzWMX8vt7R3L4QAat2obhdNb/330cDgd3/vMq2nWNZvKTX9GzZ09iOkTSsWccEVFh+Pr74uXtxMvbC4fTQQ2Pv2sQNT2rT0QKTHzyw4YOQRo5JXRNmDHmdWAYkAM8CAw3xqwCugDPWmv31NUv0nf+9pG7MRV+LS4o/lIcS5k2v5WXHaNEu0r6eHk5iYyL4OK7RnDujcOIjm/122Dl2LRkGy6Xpf+g9gAMHtKBLz9fDtm54PvbzlX/IH/WzN3Ck5e+zm3P/4HeZ3d3699BbRhjuOiOszhjzCBmT13Mqtmb2Lb5V5bPWUN2Vg75ufnk5+kQYhFPc9GDw+ZeEHT7sIaOQxovJXRNy1rg90VvrLV3GmMigCWFRXOstRcYYzoDc40xXxb26W2McRRdcq2JDZmLyCWnnGSr4VZeDGBw4DRe+Bg//E0wlSVyRWYt2ojDYejTp+DWw9792jDl34vwWhdI/6HnFrez1nL/Yy+yY/NePnnwU/5v3RJO2rJYLIy890q4F/LJJcuVSS7ZuGw+LptPfhN6soTuBxSpvVS7+v6GjkEaNyV0TctPwNPGmNuttW8WlgWUbWSt3WSMeQZ42Fp7pTFmCfCkMeYJa601xnQCullrKz5Bt4wuAQPr5AM0BuuWbqRj50iCgv0A6N23LQDLFy5n1PCbi9tt27aNzRu3EBfdgtVb9nFs06+0735quWOKiNSnngxb1NAxSOOmTRFNiC1Y6rgYON0Yk2KMWQR8ADxcTvMJwGnGmA7ALUAUsMUYsxp4G9h1ksJudFasWE5i198e2RXbpiUhLf1ZuWJlqXZLlhQsfN43pg8AC3+ZdvKCFBERqQat0DUx1trdFBxVUp5ZJdodB2JL1I2tx7CajH379rF79x4Su/72BAljDJ27RLJhfSrW2uLLyIsXL8bby8kfRiRw76u/sGbVUsY0VOAiIiKV0AqdeJSVKwtW4bp0jSxV3jkxkk0b95KVk1ZctmzZMnokhNMyyJeE2BDWrE8+qbGKiIi4SwmdeJQVK1YA0KVrq1LlnRMjOX4sh42blhaXbd68ic5tQgDoFhfGuuT92PyckxesiIiIm5TQiUdZsWIFUdEtaRlaei9J58SCFbsVy5MAyMnJYfv2HXSIDQOgS/uWbN11mNyjHnvroYiINGJK6MSjrF69ms6JrU8o79ipFcbAylUFK3ipqam4XC7iY1sA0D4ymPx8y47kdSc1XhEREXcooROPkZOTw/r16+ncJeqEOn9/H9rHhbN27RYAtm7dCkB8VBAA7aOCAUjZsv4kRSsiIuI+JXTiMTZu3EheXh5dEqPLre+cGMmGdTtxufJITi7YABEXXTqh25a8sdrzrlu3jhEjRhAbG80999xFdnZ2DT+BiIhI+ZTQicdYtWoVAB07h5db37lLJDu2p5OWvo3t27fj7eUkKqzgXru2rQsTum2p1ZozNTWV4cOHs2rVErp0a8k///k611x7sZ6eICIidUoJnXiM1atX4+3tJC6+goQuMRJrLcuXz2fHjh1ERwTicBScSefr4yQ6PIDU7Xvcns/lcnH99deTk3Ocf396M/966wruuvdMPps6nSkfv1Unn0lERASU0IkHWbVqFfEJrfH2dpZbX3Q23YqVS9i5cycx4aV3wsa2CmLXvnS35/viiy+YPXs2Dz06inZxLQG45fZhdOrSmscee4K8vNwafhIREZHSlNCJx1i9ejWdytnhWiQmtiVBQb6sWrWaHdu3E9sqqFR9dHgAuw9kunUWnbWWp59+mvYdIhj9+57F5V5eTm7/4+lsS97Pf6a8WvMPIyIiUoISOvEI6enp7Nixgy5dyt8QAYWPAEuMZN3aZHbu2klMq+BS9TERgexOy8RmH6pyvhkzZrB8+XJuuXU4TmfpH7OzzulKh/hwXn75Nd1LJyIidUIJnXiE1atXA9ApMbLSdp0TI9m4YQ/Hjh0ntkxCFx0RSPrRbI4d2l3lfE899RTRMS25YHT3E+qcTgeXXzWQVStSWbRkZjU+hYiISPmU0IlHKHqGa6cKdrgW6ZIYybHMgkuqMRGl76GLLrynbteOyp/pOmfOHObOncuNY4fh7eNVbpuLLumFj4+TNye87Fb8IiIilVFCJx5h8eLFtGrVgtaRwZW269L1t0OHY8L9StVFhwcCsGv7tkrHePrppwkLD+KSP/SqsE1IywBGjurGl5/NJiPD/Y0WIiIi5VFCJx4hKSmJnr1jMMZU2i6xaxROZ0Gb2FZlVugiqk7oli1bxvTp07nuxlPw9/epdK7fj+nHkSNZ/PvDf7rxCURERCqmhE6avYMHD7Jp0yZ69WlXZVsfXy9aFR4iHBUWWKqu+JLrzh0V9n/mmWcIbhHAmGv6VTnXwMFxtI8L4913J1fZVkREpDJK6KTZW7RoEQC9+rZ1q32LEH9Cg33x9Sl9Xl1osC++3k527dlXbr+1a9fy+eefc+U1AwkO9iu3TUnGGC67oj9LFyezbMVst2ITEREpjxI6afYWLFiAw2Ho3qPiM+hK8vFxElXmUGEoSMCiIwLYvS+t3H5//etfCQjw5bqbhrgd2+hL++Dl7eSNN19yu4+IiEhZSuik2fv+++/p0astgUG+brXPzc0/4VDhItHhgezef+SE8+PWrFnD1KlTufr6wbQM9Xc7trDwQM4+J5GpH88kM/OI2/1ERERKUkInzdqhQ4dISkrilOHxbvdJTztGVFj5SVnR0yLIzyous9Zy3333ERzsX63VuSKXXzWAI0eymPjOc9XuKyIiAkropJn7+uuvcblcDD+9s1vt8/NdpKVl0DrsxEuuULhCl3YMm3O4uOyzzz7jhx9+4K77R1Rrda7IwMFx9OgVw8svvUVurp7vKiIi1aeETpq1KVOm0KZtOL36VPzIr5LSD2aSn2+JqeiSa0QAR4/lcOTALgD27t3L3XffTbfubRhzVdU7W8tjjGHs7cPZ/msab054ukZjiIiIZ1NCJ83Wpk2bmDFjBueP7lnl+XNF9u09ClDhPXQxhWfR7dyeTFZWFldccQWHDqfz1D8uOeGZrdUxYmQi/Qe24y9/eZ79B/bWeBwREfFMSuiaEGNMvjFmhTFmpTFmmTHmlBJ1g4wxs4wxmwvrvjXG9CysG2+M2VnYd50x5sqG+xQnz/jx4/Hx9ebKawe53WffvoKELqbCe+gKErptWzdy6aWXMmvWLJ586kI6dan8kWJVMcbw6JPnk5GRzZgxF5CXl1er8URExLMooWtajltr+1hrewPjgGcAjDGRwKfAn621nay1/QrrEkr0fdla2wcYDbxljPE+ybGfVO+//z4fffQRN409lYiI8u+HK8+BfRnAb4lbWUXln3/+KTNnzmT806M5f3SP2gcMdO4SyWPjz+Pnn5Zw6e/P4+jRo3UyroiINH/lPzlcmoIWQNFDQO8CPrDWzi+qtNbOLa+TtXazMeYYEAqUf0JuOQ4dOlR8VEdNvtamr7tj5OTksHnzZqZOncqUKVMYempH/u+OU939iMBvK3SRFa3QFSaHNj+PSR/eSP+Bbao1flUuu6I/mZnZvPjs98THt+Omm8YybNhw4uLiCA4OJiAgAC+v0j+2JS8nl7207O6lZhFp3EJCQho6BGnklNA1Lf7GmBWAHxANjCgs7w584M4Axph+wGZrrdvJHEBoaGh1mjeowCAfbhx7CnfeeybePtX7Ft+/9yitQv3x9nKWWx8c4ENwgDc+/l51nswVuf7mU+jbvx1v/nMWL730Is8//496mUdEmo41W8ef1T3+Lz82dBzSeCmha1qOF142xRgzFJhsjDnhep8xJomCFbyZ1tp7CovvM8aMBeKBUdWd+KFHz6VgsccUzlE8V6XvKfHeVNCXqsaixPtK2jochjZtQ+nUpTUBAYGYGtxRsH9fZoWXW4vERASyd38mDuPeQcU10advAm+9l8DRIxls2bKH3bsOc/x4LseP5eBy/XaocenzjUsfdlzm7GMRadoeAJTQSYWU0DVR1toFxpgIoBWwFugH/K+wbrAx5jLgghJdXrbWvmCMuZSCRDDBWpt1wsAVeO7v0+sw+sbr6OHPiA4/Vmmb6PBA9hzIpGuHR05KTIN6n5RpRKRx+11DByCNmzZFNFHGmETACaQBrwM3lNz1CpS7E8Ba+wWwBLi+3oNsgnbt2klUePlHlhSJiQhk14EMbJ7b+bCIiEi90gpd01J0Dx0UXHy83lqbD+wxxowBnjPGxFKw2eEA8NcKxvkrMMUY87a11lXvUTcR+fn57N27j+iI9pW2iw4PYE/aMfKzDuIVFHOSohMREamYEromxFpb/p36BXULgdMrqBtf5v1SoEudBtcM7Nu3D5fLRXRE1ffQ5ea52L8rhejOSuhERKTh6ZKrSKFduwoe5xUdXvm5dUUJ385fk+s9JhEREXcooRMptGPHDgCiw3wqbVeU8O3asa2+QxIREXGLEjqRQtu2bQOgfVRwpe2Kn+f6a0p9hyQiIuIWJXQihVJTUwnw8ya8hV+l7SLDAnA4DNu37zhJkYmIiFROCZ1IodTUVNpFtajycVk+3k5iIgJJ3bHnJEUmIiJSOSV0IoVSU1Np27ryHa5F4qKC2bYzrZ4jEhERcY8SOpFCqanbaBdZ+f1zReKig9m2+7AOFxYRkUZBCZ0IkJmZyYEDabSLCnGrffuoFuxOyyTr8K56jkxERKRqSuhEKLjcCgWJmjviooOxFrZtWVOfYYmIiLhFCZ0IvyV0j745h8Xr9lbZvn3hpdmUzevrNS4RERF3KKETARYsWADAzgOZPPbPOVW2j4suWMlL3rKxXuMSERFxhxI6EeDHH38E4Mah7Zi7+QDpBzIqbR8dHoCPt4PkZD3+S0REGp4SOhFg06ZNxIUHcMOQtlgLCxb/Wml7p9NB57YtWb9l+0mKUEREpGJK6MTjuVwu0g8e5PRO4QyKC8XXy8Gclbur7Ne1fRjrU/Zj83NPQpQiIiIVU0InHm/Dhg3ku1z0a9sSP28nfduGsHJbepX9EuNCSd1zlIwDeqariIg0LCV04vFmzpwJQJfIgqdE9IhpwZpdRyAvv9J+XduHArBm+bz6DVBERKQKSujE482fPx+Azq2DAOgeHcyBjBwO7D1aab++nSMAWJKkhE5ERBqWEjrxeGvXrsXbaWgb6g9Aj5iCM+bWbTlQab92kcG0DvUnadHSeo9RRESkMkroxKNZa0lJSSEuPAAvZ8GPQ9eogoRuUxX30RljGNg1ksWrt2FdlV+eFRERqU9K6MSjbdmyhbycLBIiAovLolv44evlIHVP5ZdcAU7tGcWm7YfYvnFxfYYpIiJSKSV04tGmT5+Oy0LH1r8ldA6HIT4igOQq7qEDOHdwOwC++fLDeotRRESkKkroxKNNnjyZfJelY6vAUuXxEYEkH8gEl620f2L7UDpEt+Dz/06rzzBFREQqpYSuiTPGWGPMiyXeP2CMGV/4erwx5oEydRuMMWuMMSuNMdc1QMiNxqpVq1iyZAlAqUuuRe+37j8GOXmVjmGM4brfdeGnxcmsWz633mJtCPn5+Xz33Xc8+eSTPProo/z73/8mLS2tocMSEZFyeDV0AFJr2cClxphnrLUVbss0xtwGjAQGWWuPGGNCgItPVpCNjcvl4oEHHiDAz4djWTl0al12hS6AjOw80tIyCY9tWelYN5zXlRemLOfB++7im5+XY4ypz9DrXVpaGpMmTeLNN98gJWUbxhgcDsjPt/j6eHPN1VfywEPjSExMbOhQRUSkkFbomr48YCJwXxXt/gzcYa09AmCtPWyt/aC+g2uM0tPTue222/j+++8Z1jsah4G4sIBSbeILV+y27ThU5XiRYQE8ceNAps1eyR23XM2RI0fqJe76lJGRwbRp07j66qtp06YNDz30ELEtcpj8xCjSvruZQ9PHMufNS7nm3M58+OGHdO3alZFnnc7HH3/MgQOVH+8iIiL1Tyt0zcPrwCpjzPPlVRpjgoFga+3Wmk5w1fkDgIJjPgAsv91bVlhUXFfY4IQySzll5bUrKis1hy1VV2UZ5bfbfzCDdcl7yM7J44Er+/LrvqO0DfXH19tZ6vMmtCpI8FJ2HKb/YKp012W92HXgGK9O+oj3/vMp3TtGExXeAh9vJ97eTrycpccv9e+qzGct+5nKa08V9eXd+Ve2TVZ2HgePHGP/wQySd6RhrSU02Jdrz0lg7EXd6REfXqp9/y6t6d+lNY/fMIBJ36zjna+XcuWVVwLQJjKEtlGhtAjyw9/XG19fLwwVr1RWtorZxBc4RerFh98saegQpJEzJ/yikCbFGJNhrQ0yxvwVyAWOA0HW2vGF99JlULCCt81aG1bTeTrEtLBFv6BL/sItel3yF7ShnLJK25X6PCeWFbUsb16qmKNM19BgX7p3COeKkZ3o3TGC0+/4ghbWxQ/3nFrq8x7LySPw3m958tLuPHjXabhryYa9TP1pC+u3HWRv+nHy8lzk5rvIy3edkOCUTVxOfF+mPVXUV9G/7Bje3g7Cgv0Ia+FL17gwBiS25oy+sfj6OMuZ7UR5+fks27SfWct2snn7IbbvyyDjeC5Z2Xlk5VR8Ll9l/8kpm9iKSIF1H1693//MN1s3dBzSeGmFrvl4BVgGvFe2ovCeuUxjTLy1Nrkmg2/dtB6bd7y2MTYcYzDGCU4/cPoUFyfv/Zjf9ww/oXmAjxfRIb6k7M/Bd+jf3Z7m1KFw6o2Fb/KzIT+78NDhxpSomBL/PrzB6Ys7CVxZvsDwYTD8pqISC/m54Cr8zNbSuD63SNOVs/zFzg0dgzRuSuiaCWvtQWPMp8DNwKRymjwDvG6MGVOY4LUArrDWTnRnfEdQbB1G2zgcOnSItPRDdIqMK7c+ISKQrbvTcfjVeGFTRKRO+J/5ZtU39IpH06aI5uVFIKKCujeBn4HFxpg1wGzg2MkKrDHaurXglsKEML9y64vPosvOOJlhiYiIVJtW6Jo4a21Qidd7gYAS78eXeG2B5wv/CAWP/QLoGOFfbn1Cq0AmJ23n+N5U/Nt1P5mhiYiIVItW6MRjFSV08REB5dYnFJanrFtx0mISERGpCSV04rG2bt1KdMsAAn3LX6hOKHwc2NaN605mWCIiItWmhE481pYtW+hYweoc/PY4sK2b1p+skERERGpECZ14rC2bN9OxdVCF9RFBPgT7ebE1JfUkRiUiIlJ9SujEI2VmZrJ7zx4SWreosI0xpuDokp17T2JkIiIi1aeETjxScnLB+cpF98lVJKFVAFv3HAZXxU8+EBERaWhK6MQjbdy4EYDO4b6VtkuICCQl7Rj5R/afjLBERERqRAmdeKTihK51VSt0geTmu9ixQUeXiIhI46WETjzSpk2biA0LJMiv8rO1i3a6Jq9fdTLCEhERqREldOKRNm7cSJcqVuegxFl0G9bUWyxffPEFw4cP56EH/kReXl69zSMiIs2XHv0lHsday8aNG7iyV3iVbduG+uPj5WDzpk31EsuMGTO47LLLiA31Z+7cuRzbncxrH35ZL3OJiEjzpRU68Tj79+/n0KHDdI4OqbKt02FIjAxiTfKOOo8jJyeH2267jW6xLdn4xAjuPiOeNz76L0t/nlbnc4mISPOmhE48TtGGiC6VHCpcUq/YFqzafhDysus0jsmTJ7Nt2zZeuLQHAT5O/nZhIi38vPnHXx6q03lERKT5U0InHmfVqoINDj2j/N1q3zOmBTvSj5OeUnfPdLXW8vrrr9OzTSjndgkFoIW/N2NPbc9n89bx6+rFdTaXiIg0f0roxOOsWLGCsCA/Ylv6udW+V2zB0yRWJ82usxiSkpJYsWIFd5wejzGmuPyPZ3TAWsuE55+os7lERKT5U0InHmflypX0adOiVCJVmaKEbtWSpDqL4c033yTI34er+0eWKm8XFsD5PaKY9NUscrOO1dl8IiLSvCmhE4+Sk5PD6tWr6dO2pdt9okP8CA/0Yfmq1XUSQ1paGp988gnXDmpDsJ/3CfW3DmvP3iNZfPXuy3Uyn4iINH9K6MSjLFu2jKysLE5JaOV2H2MMQzuEMm/dr3XyTO5GzHYAABnZSURBVNdJkyaRnZ3N7ad3LLd+VPdI2ob689bb79Z6LhER8QxK6MSjzJ07F4BhccHV6jesYzgb9x5l/6ZltZo/Pz+fN998k9O6RFa4KcPpMNxyanu+X5lC8prazSciIp5BCZ14lJ9//plOUSFEtvCtVr/hCQWHEM/65rNazT9jxgxSUlK48/T4StvdfEo7HAbefuHJWs0nIiKeQQmdeIyMjAx+/PFHzu/u/uXWIoPiWhIW6M1X33xb4/mttTzzzDPEhgVxSc+IStvGtvTngp5RTPpyJjlZx2s8p4iIeAYldOIxpk2bRnZ2Nhf3aVvtvl5OBxf0iOKbxZvIOpJeo/lnzJjB3LlzeXRUZ7ydVf/o3TY8jn1Hsvj3S+NrNJ+IiHgOJXTiMd58803aRQRzapx7T4go69rBbTh0LJdP33iu2n0zMjL44x//SHxkCDcPaeNWn1HdWjM4LpTH//EamUePVHtOERHxHEromhBjTL4xZoUxZqUxZpkx5pQSdYOMMbOMMZsL6741xvQsrBtvjNlZ2HezMeYLY0y3hvskJ9+sWbOYNWsWd54Wh5cbq2PlOatLK7pFB/P0P98iOyvL7X75+fmMHTuWrVu38t61/fDxcu/8O2MML/2+B7sPHeOuay7BWlujuEVEpPlTQte0HLfW9rHW9gbGAc8AGGMigU+BP1trO1lr+xXWJZTo+3Jh307AJ8BPxpjq30zWBO3YsYMbb7yRDq1DuOv09jUexxjDi5d2Z+PuQ9x9/WXk51d9hMmOHTu45JJL+Pjjj3n64h6cFt+iWnOekhDGE+d14f2vfuKBO24mLy+vpuGLiEgzZvS3/qbDGJNhrQ0qfP0H4Gpr7cXGmL8BLmvtXyroNx7IsNa+UKJsMrDUWvuqO3MvXrzYFn2vWGsp+bq8sqrqT0afzMxMli5dyvvvv09u1jF+um84A9sEuvNxKzXuv+t4duZm+nTrzJhrb6Rjx474+/vjcDg4cuQI6enppKamsnjxYmbNmoWX0/D8JT24u4bJpMtluXvqal6fnUJ82xguu+JqevXuTVhYGMHBwRhjMMbgcDiKXxf9EZHmYcCAAfqBlkopoWtCjDH5wGrAD4gGRlhrlxpjvgA+sNb+r4J+/9/evcdHWd15HP/8MpOZzORGwiVI5JYgCAJett5b6mUFtVhdsdvaWquttmVVtGxt1e5a2lWrVkCp1K0urXbr2pZ6KQh9VQQEFZSiyEWBYMJNDFdJIIRcJnP2j5mQACFMQsgwM9/36zVmcp7nOec3j8/oL+c85zwTODyhuwsY5JwbG2PbCXmh+LxpjBrcg19eO4RBBW1be+5InHM8v+QTfvn6x6zY0vK9bekeY2ivHP55UHfGjuhH/27HnkjOXLGVx17/mMXrP6O+ISH/dYhIO7lfX30XY1+J6Q9wSU3eeAcgbbLfOXcGgJmdD/zezIYeupOZvQvkAK855+48Ql1t+mtv5thzsUjd0TaaKjhQFi1v2t60b9P2pn0P7NfS8c2ObX58Y3tHOr552z6vcUpBLumBLPAe/oit9jLghku6csPFp1NRWcnG7buprW8g7BzZfi95QR/dcjLxZWSA19f0AY7RVefnc9V5Q6ipqWZD+WdUVNewtyaEc+CAsHOR986hdE8k6cQ2m0pSlhK6BOWcW2xm3YDuwIfAWcBfo9vONbPrgNGtVHEmsDTW9kb/+p1jiDZ5dYm+OlMGcGontykicXd3vAOQE5smRSQoMzsV8AC7gKnATc1nvQLBVo4dA4wEXjiuQYqIiEinUA9dYgmY2QfR9wZ8yznXAGw1s68Cj5hZIbAd2An8vNmxPzCzG4BMYBWR++92dGLsIiIicpxoUoTESheKiEj8aJartEpDrpISnHOMHz+ezMwgP7v3R/EOR0REpEOph05ildAXyuuvv85ll11Gvxw/G/bU8s7Mv3Du6DHxDktEJFbqoZNWqYdOUsLDDz9MYU6ApdcOIdfnYeJ/HN9eul27djFr1ixWr159XNsREREBJXSSAsrLy5k3bx63ntqdrhlebh7UjVdWrqdyw7rj0t6f/vQn+vfvz+jRoxkyZAi33XRDTI8JExERaS8ldJL0Xn75ZZxzfKU4D4DrivKoDztmP/14h7c1c+ZMrr/+eobneJh7zWncOayAXz/3PPfd8s0Ob0tERKSREjpJeq+99hr9uwQZkusD4PyeWfQIeHl19uwObWfjxo3ceOONnFmQw2tXFHNJzyCPX9iH7w3pzqPPvsA7s1/u0PZEREQaKaGTpNbQ0MCCN97g4pOyDpSlmXFJYQ7z1m3B7a/qsLbGjRtH/f59TL9sAEFv01frsfN7c1Iwnbu+/13CGnoVEZHjQAmdJLXly5dTUVnJxX3yDyq/pFcOW6vrWTvnlYPK16xZQ11dXZvbmT17NjNmzOCnnzuZosyDv1ZZ6R4eOudk3t28kxlPPtL2DyEiInIUSugkqc2fPx+Ai7v7Dyq/pDAbgHmvvHig7Omnn2bw4MGMPPss2rKcT01NDePGjePUrlncOSS/xX1uGNiV/tl+Hv7lRFw43NaPISIi0ioldJLU3njjDU7JC1KY5TuovCjHT58sH/MWLwEiCw8/8kik92zBig9Z8vv/ibmNiRMnUlpaypQv9MPnafkr5U0z7j6jJ+9u+YyFf3i6nZ9GRESkZUroJGmFQiEWLlzAxb2yD9tm0fvo3tiwnXBVJWVlZZSVlfFA/24AzPntMzG1sWnTJh588EHGDOjGZT0Dre5706Bu9Ah4efQXD7X9w4iIiLRCCZ0krWXLlrFnz97D7p9rdElhNrtqQiyf9RfefPNNAK7O8jAs4GXhqo9iamP8+PHQEGLShX2Pum/Am8Ztp/Vg9prNrHlzbuwfRERE5CiU0EnSmjs3kjRd3D2jxe2XFuZE9pv5Mm+//TZ5Pi9D/B5GZPtZVFFNw6ebW61/zpw5vPjii/zkrF70CcT2VRp7Wg/8HuPxCfe24ZOIiIi0TgmdJK158+YxtHs2BUFvi9t7ZfoYnJfB3HeW8tFHH3F6hpc0M84KprMv7Fg/f84R666rq+OOO+5gQNdsfji8e8wxdQ+kc+PAbjy34D12bt7Q1o8kIiLSIiV0kpRqa2t56623uKTZ+nMtubQwh4Ubd1C6di3FgcjEidMC6QB8uOitIx43efJk1q5dyxMX9sGf1rZnZt81rICahjD/ff/dbTpORETkSJTQSVJavHgx+/fv59K+XVvd79LCHKpDYbbt2kVxMLK0yeBApEfvo2XLWjxm7dq1TJgwgWuKu3Flr2CbYxuSH+CK3rk8+ecZ1FTva/PxIiIih1JCJ0lp3rx5pJnxxW7pre53Ua9sPNEOtmJvZO25HE8avX0ePtz8yWH7NzQ0cPPNNxP0GE+N6Nfu+MafXsC26jpeePRn7a5DRESkkRI6SUqzZs3i3J455Ppbvn+uURe/l+H5kV62ovSmodNBGV7WVeyBQxYBnjRpEosXL+ZXn+9DT3/bhlqbu7Qwh+FdA0x66mktNCwiIsdMCZ0knbKyMt5//33GFLc+3NrolC6RodbiZslfkd/D+toQ7Nh6oGzRokXcd999XDugO9f3O3xtu7YwM/59eE9Wba/kpSl6HJiIiBwbJXSSdKZPnw7AmP65Me2f6fXQxWPkeZu+Dv39XnbUh9m75kMAtm7dynXXXUe/3CDTLuqHWft75xp945SuDM0P8OOfP0hdbe0x1yciIqlLCZ0kFeccf/jDHzi7Zy79Mlsfbm20ZV8dAw4Zmi3yewBY/8H7VFRUcOWVV1KxaycvjRpAl9iqPSpPmvHY+b0p3b2Px3/4bx1TqYiIpCQldJJU5s+fz6pVq/j+0IKYjymtrKEo49CELjrT9b1/MHLkSFatXMFLlw9kWI6nQ+Md1TuXa/p14T+f+h0r313UoXWLiEjqUEKXgMyswcw+aPa6J1ruNbOHzGxds20/MbORZrbYouOEZuaJbrsgvp+kY4XDYe6991565QT5eoz3uIXCjo1VdQw4QkK3YM5rfLjiA168fBCXt2OJklj85ov9yPN5ufpLV7D100+PSxsiIpLclNAlpv3OuTOavR6Olj8A9AKGOefOAL4ApDvnXgM2At+J7ncH8A/nXFJ1CT344IMsWbKEX5x7Mhne2C7tTVW1hBwU+w/uecvzGDkeY3+ogXfGDOOqkzOPR8gA9Aik89fLB7CtsooR/3Q6qz+K7TmyIiIijZTQJQkzCwK3Anc452oAnHN7nXMTorv8ALjXzE4Dbgd+HJdAO5hzjpKSEsaOHcv999/PN07twTeLcmI+vrQyMhmhyHdwD52ZUeT3sjMU7vBh1pacW5DF3780kIrKSs44fThjb/k2CxcupLq6+ri3LSIiia+Dbu+WThYwsw+a/f4LYDWwyTm3t6UDnHPlZvY4sBgY55z7rC0Nnte3AOciC++6pjoPen/wtpbK3EHbI9tc0/7N3h/1OOdwOHbuq2VvbT1pBj8YXsCj5/Vu0wzUsr2RhO7QHjqITIxYvT8UWYsu7fj/7fP5k7JZ8ZXT+I8lW3j22Wf572m/w4CuQT95QT+BdA9pZgdeZkaagXHsM25F5MS2+Mq+Hp5a0hDvOOTEpYQuMe2PDqkeYGbDD/n9ZuBOoCtwgXNuMzAVeNg592xbG8wN12DNkgeL/iNS1thm9GfjPs23tbBP9I6+ZvtYi3U0Ht9SHV16BRncJcCX+3Xh5CxfWz8WpZW1+A0KfYcndP19XmZX1OBqQliw7XW3R89gOv9zUT8mXdCbuVv2sHJXNeXV9eyubaCmIYzDEXaOsCPyCrujVyoiyaAKCMQ7CDlxKaFLHh8DfcwsOzrU+jvgd2a2CvAAOOfCZtauDODvmys7MNQTR+mYMfQvmUlaC716RRkeahyUX3sfva7+106NKwf4l+hLRAQlc3IUuocuSTjnqoFpwJNmlgGR2axA53QtJajSdesOekJEc40zXdevXNGZIYmIiLSZErrEFDhk2ZLGWa4/AcqBVWa2DHgTeA7QWhgtcM5RWlpKcaa/xe2NiwuXrdasUxERObFpyDUBOedanHbpnKsH7om+jnRs1vGKK9Hs2LGDqupqinu1fEr6+rwYUFZa2rmBiYiItJF66CRllUYTtSJvy7NE/WnGyT4PZVu3dmZYIiIibaaETlJWWVkZAMXeI88TKfJ7KNvd4kowIiIiJwwldJKySktLMaD/ESZFQGRiROn+Oqje13mBiYiItJESOklZpaWlFGb4yEg78sK8RX4P5fUNVJeVdGJkIiIibaOETlJWaWkpxb7WvwKNS5dsWPZeZ4QkIiLSLkroJGV9vG4dxRmtT/RuTOjKVizvjJBERETaRQmdpKTKykq2bd/OwKzWF18v1lp0IiKSAJTQSUpat24dAAMDrffQdfOmkZVmlG3Y0AlRiYiItI8SOklJJSWRSQ4Dj/JoWzOLLF2yfWdnhCUiItIuSugkJZWUlGBAsf/oX4Eiv5fSqv0Qqj/+gYmIiLSDEjpJSSUlJfQN+ltdsqTRwAwvH9eEqN9QdtzimTZtGoMGDmTM6NFUVFQct3ZERCQ5KaGTlFRSUsLAoyxZ0mhoIJ0651i3aOFxiWX69OnccsstBMs3M3P2LK495yyca30oWEREpDkldJJywuEwa9esYVDAF9P+w4KRiROr3lnc4bFUVVUxbtw4zs4N8u6gfKb27cL8det5/v77OrwtERFJXkroJOWsX7+eqn37GJ7d+pIljU7NSMcDrFq2rMNj+c1vfsPWrVt5ol8evjTjO92CnB5I56HHHydcr3v2REQkNkroJOUsXx5ZJPh0/9HvnwPISDNOyfCyauPGDo0jFArxq19NYURukPOjnYVpZvzopCxWV9Xw6iP/1aHtiYhI8lJCJyln+fLlpJkx1BdbQgcwNOBl5e69UF/XYXHMmDGDjRs3cWdh7kHl/5ofoI/PwxNTp3ZYWyIiktyU0EnKWbp0Kadm+gnEMMO10ZlBHx/XhPjsvSUdFscTTzxB36Cfq4MHx+E147Yemczb+hmr/jazw9oTEZHkpYROUko4HGbRore5INj6EyIOdUFWZEx08YyXOySOZcuWsXDhQm4vyMJjhyeW3+keJMOMJyf8Z4e0JyIiyU0JnaSU1atXU1FRyYV5WW067pzMyMSIt+fP7ZA4Jk+eTGa6l1vyM1rc3tXr4YauAX6/dAW7yz/tkDZFRCR5KaGTlDJ3biQhG5ER+3ArQNCTxtmZ6bz+UQkc4xpx5eXl/PGPf+Tb3YJ0aeUbeEdBFvvDjmn33n1M7YmISPJTQicpZcaMGQzODlAU46LCzY3uEuAfe/ZTvmTRMcUwefJkQqEQ407KbXW/4cF0vpjtY+r0F2kIhY6pTRERSW5K6CRlbN++nQULFnB1jr9dx3+5S2R49C9TJrU7hk2bNjFlyhS+2T2LAZ7wUfe/o0cWG6pr+fMDP213myIikvyU0CUQM+tnZqsOKZtgZj+Mvh9vZmvMbKWZLTezSWaW3mzfM83Mmdmozo79RPDMM88QCoW4qUfb7p9rNCyYzueC6Tw1YzYufPRk7FDOOW677TasoYEH+uTFdMw1eRmcGUznR48+RlVlZZvbFBGR1KCELkmY2feBkcB5zrlhwNnAdqD54xCuB96K/kwpO3bsYOLEiYzKz2SQt/33wN1ZEFn0939/2vZHcz3wwAO8+uqrPNqnC72tIaZjPGY82SeXT/bX8d0rRuoZryIi0iIldMnjJ8BY51wFgHOuzjn3sHNuD4CZGXAdcBMw0sxanl6ZhCorK/nqV7/K3spKJvXrekx1fb1rgPMzfdz+8C95a+7rMR2zbds2br31Vu6//36+0SOH2/Nje4Zsowuy/TxUmMMLi5dw01VfYs+ePe0JXUREkljbFuOSE1UAyHLOrW9lnwuB9c65UjN7A7gSeCnWBp6/9JwDkzsdjsZ+ooPKDrxvuayxd6lpewtljgO1t1jmDq7/sLJm9TU4x9qKKmZtKmd3bR3P9c9niCe2nrEjSTNj+oB8vrhmB1/458sYUZDPmd3zyfOnk2aGA/bVh9gXClFRW8/ayire37kbA+7umcUvTs7CWlh37mjuOSmLOuf42ay/8XLXfEb1LmBofi55fh9Z6V7SDAzDDBprP/R3EUlcX5/bcYuaS3IyDeEkDjPrC8xyzg1tVjaBSP5yp3MuP1o2CngE6AJ83Tm3yMymAh84554xsy8D33TOfaUNbSfkhdLDm8YXsn38uGc2Z2f76aj0Zk9DA1O27uWl3TWsqwlRFW46PX6DLE8a2WlGcYaX8zJ93NgtwMCA75jbf6+qlie3V7Fgby3ra48tORWRxOHOLpzGkk9uiXcccuJSQpdAzCwLWOucK2xWNgV4D3gAGNG8l87MXgUeA94EtgD1QAORrKIrcJJzbm8sbZfccJWzqj1NvT/RHiGg5bJooR203Zr1HrVWdqR6rNn2VuoxA48H8/sJdC/ABgyG/GMbaj2ihjBsXo/buY1wXS0AHp8ffH4IZkK3AsjN6/husup91Jd8xJ5Pt7B37x5cKIRrCB/Wa6lvt0hyGPhp6bdY8snv4x2HnLiU0CUYM1sK/Ng5N9fM8oF3gCuAUcCXga855yqi98zNIZLo+YHxzrlRzep5DnjdOfe/MTatC0VEJH5094S0SvfQJZ4bgalmNjH6+8+i98U9BQSBd82sFqgC3gaWAU8Ahz6E9EVgLBBrQiciIiInKPXQSax0oYiIxI966KRVWrZEREREJMEpoRMRERFJcEroRERERBKcEjoRERGRBKeETkRERCTBKaETERERSXBK6CRWphdmZt+LdwwnykvnQudC56JTz4VIq5TQibTNd+MdwAlE56KJzkUTnYsmOhfSaZTQiYiIiCQ4JXQiIiIiCU4JnUjbPB3vAE4gOhdNdC6a6Fw00bmQTqNnuYqIiIgkOPXQiYiIiCQ4JXQiMTKzy81srZl9bGb3xDueeDKzDWa20sw+MLOl8Y6nM5nZb81su5mtalaWb2ZzzGxd9GdePGPsLEc4FxPMbEv02vjAzK6MZ4ydwcx6m9l8M1ttZh+a2Z3R8pS8LiQ+lNCJxMDMPMBU4ApgCHC9mQ2Jb1Rxd7Fz7gzn3OfiHUgnexa4/JCye4C5zrlTgLnR31PBsxx+LgAmR6+NM5xzszs5pngIAf/unBsMnAfcFv3vQ6peFxIHSuhEYnMO8LFzrsw5Vwf8Ebg6zjFJHDjnFgKfHVJ8NfBc9P1zwDWdGlScHOFcpBznXLlz7v3o+73AaqCQFL0uJD6U0InEphDY3Oz3T6JlqcoBr5nZe2amxVOhwDlXDpH/uQM94hxPvN1uZiuiQ7IpNcxoZv2AM4F30XUhnUgJnUhsWnr0TipPEb/QOXcWkSHo28xsRLwDkhPGU0AxcAZQDkyMbzidx8yygBeBu5xze+Idj6QWJXQisfkE6N3s95OBT+MUS9w55z6N/twOvExkSDqVbTOzkwCiP7fHOZ64cc5tc841OOfCwDOkyLVhZulEkrnnnXMvRYt1XUinUUInEpt/AKeYWX8z8wFfA2bEOaa4MLNMM8tufA+MBFa1flTSmwF8K/r+W8Bf4xhLXDUmMFH/QgpcG2ZmwDRgtXNuUrNNui6k02hhYZEYRZdfeBzwAL91zj0Y55DiwsyKiPTKAXiB/0ulc2FmLwAXAd2AbcBPgVeAPwN9gE3AV5xzST9Z4Ajn4iIiw60O2AB8r/E+smRlZp8H3gRWAuFo8X1E7qNLuetC4kMJnYiIiEiC05CriIiISIJTQiciIiKS4JTQiYiIiCQ4JXQiIiIiCU4JnYiIiEiCU0InIiIikuCU0ImIiIgkOCV0IiIiIgnu/wF9Ug8knYPz6QAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Plot the distribution of illicit flows for the transformed data\n",
"partner_features_yeo = pd.DataFrame(partner_features_yeo,\n",
" index=partner_features.index,\n",
" columns=partner_features.columns)\n",
"random.seed(234)\n",
"fig, axes = joypy.joyplot(partner_features_yeo.sample(n=15, axis=1, random_state=234), \n",
" colormap=plt.cm.rainbow, figsize=(8,8),\n",
" title='Distribution of mis-invoicing across random sample of partner countries (Yeo-Johnson transformation)');"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Biplot for the first 2 principal components for the transformed data (Yeo-Johnson)\n",
"biplot_PCA(partner_features_yeo, 10, 1, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Intra-African illicit financial flows"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The analysis will now be restricted to intra-African illicit financial flows, that is, illicit capital that originates from African countries and which flows to African countries too."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"### Data wrangling"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"# Import bilateral trade mis-invoicing data\n",
"IFF_Dest = pd.read_csv('Data/GER_Orig_Dest_Year_Africa.csv')\n",
"\n",
"# Restrict to destinations in Africa only\n",
"IFF_Dest_AFR = IFF_Dest[IFF_Dest['pRegion'] == 'Africa']\n",
"IFF_Dest_AFR = IFF_Dest_AFR.fillna(0).drop(columns=['reporter', 'rIncome', 'rDev', \n",
" 'partner', 'pRegion', 'pIncome', 'pDev',\n",
" 'Imp_IFF_lo', 'Exp_IFF_lo']) \\\n",
" .set_index(['reporter.ISO', 'year'])\n",
"\n",
"# Extract trade mis-invoicing in imports and exports, respectively\n",
"IFF_Dest_Imp_AFR = IFF_Dest_AFR[['partner.ISO', 'Imp_IFF_hi']]\n",
"IFF_Dest_Exp_AFR = IFF_Dest_AFR[['partner.ISO', 'Exp_IFF_hi']]"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Let's create the feature space from the African partner countries which are the destinations of illicit ouflows originating from the countries listed in `reporter.ISO`."
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
partner.ISO
\n",
"
AGO
\n",
"
BDI
\n",
"
BEN
\n",
"
BFA
\n",
"
BWA
\n",
"
CAF
\n",
"
CIV
\n",
"
CMR
\n",
"
COG
\n",
"
COM
\n",
"
...
\n",
"
STP
\n",
"
SWZ
\n",
"
SYC
\n",
"
TGO
\n",
"
TUN
\n",
"
TZA
\n",
"
UGA
\n",
"
ZAF
\n",
"
ZMB
\n",
"
ZWE
\n",
"
\n",
"
\n",
"
reporter.ISO
\n",
"
year
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
AGO
\n",
"
2009
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
7.356525e+05
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
...
\n",
"
0.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
1.628157e+06
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
1.016827e+09
\n",
"
1.060946e+05
\n",
"
309894.487818
\n",
"
\n",
"
\n",
"
2010
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
2.025235e+05
\n",
"
0.0
\n",
"
5.577699e+07
\n",
"
53088.378146
\n",
"
1.402793e+08
\n",
"
0.0
\n",
"
...
\n",
"
0.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
252999.300576
\n",
"
1.137066e+08
\n",
"
5.529461e+03
\n",
"
0.0
\n",
"
3.315930e+08
\n",
"
2.665205e+04
\n",
"
420951.156359
\n",
"
\n",
"
\n",
"
2011
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
5.501246e+03
\n",
"
0.0
\n",
"
6.262938e+06
\n",
"
257786.746458
\n",
"
3.466061e+07
\n",
"
0.0
\n",
"
...
\n",
"
0.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
4.623718e+07
\n",
"
1.745372e+06
\n",
"
0.0
\n",
"
3.281534e+08
\n",
"
4.525653e+05
\n",
"
0.000000
\n",
"
\n",
"
\n",
"
2012
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
1.425377e+07
\n",
"
222663.224270
\n",
"
2.587614e+07
\n",
"
0.0
\n",
"
...
\n",
"
8435.069683
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
1.262796e+07
\n",
"
1.253616e+05
\n",
"
0.0
\n",
"
7.944924e+08
\n",
"
1.180964e+03
\n",
"
0.000000
\n",
"
\n",
"
\n",
"
2013
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
2.945193e+05
\n",
"
0.0
\n",
"
2.125395e+06
\n",
"
0.000000
\n",
"
4.357466e+06
\n",
"
0.0
\n",
"
...
\n",
"
957.605075
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
4.438123e+06
\n",
"
1.035603e+05
\n",
"
0.0
\n",
"
4.272753e+08
\n",
"
2.855892e+05
\n",
"
0.000000
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
ZWE
\n",
"
2011
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.741233e+07
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
...
\n",
"
0.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
1.295280e+06
\n",
"
0.0
\n",
"
3.088036e+09
\n",
"
5.016118e+07
\n",
"
0.000000
\n",
"
\n",
"
\n",
"
2012
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
3.187848e+07
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
...
\n",
"
0.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
2.729399e+06
\n",
"
0.0
\n",
"
1.242790e+09
\n",
"
1.704507e+08
\n",
"
0.000000
\n",
"
\n",
"
\n",
"
2013
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
...
\n",
"
0.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
\n",
"
\n",
"
2014
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
...
\n",
"
0.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
\n",
"
\n",
"
2015
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.142369e+06
\n",
"
0.0
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
0.0
\n",
"
...
\n",
"
0.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
8.238550e+06
\n",
"
0.0
\n",
"
6.474374e+08
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
\n",
" \n",
"
\n",
"
604 rows × 46 columns
\n",
"
"
],
"text/plain": [
"partner.ISO AGO BDI BEN BFA BWA CAF CIV \\\n",
"reporter.ISO year \n",
"AGO 2009 0.0 0.0 0.0 0.0 0.000000e+00 0.0 7.356525e+05 \n",
" 2010 0.0 0.0 0.0 0.0 2.025235e+05 0.0 5.577699e+07 \n",
" 2011 0.0 0.0 0.0 0.0 5.501246e+03 0.0 6.262938e+06 \n",
" 2012 0.0 0.0 0.0 0.0 0.000000e+00 0.0 1.425377e+07 \n",
" 2013 0.0 0.0 0.0 0.0 2.945193e+05 0.0 2.125395e+06 \n",
"... ... ... ... ... ... ... ... \n",
"ZWE 2011 0.0 0.0 0.0 0.0 8.741233e+07 0.0 0.000000e+00 \n",
" 2012 0.0 0.0 0.0 0.0 3.187848e+07 0.0 0.000000e+00 \n",
" 2013 0.0 0.0 0.0 0.0 0.000000e+00 0.0 0.000000e+00 \n",
" 2014 0.0 0.0 0.0 0.0 0.000000e+00 0.0 0.000000e+00 \n",
" 2015 0.0 0.0 0.0 0.0 8.142369e+06 0.0 0.000000e+00 \n",
"\n",
"partner.ISO CMR COG COM ... STP SWZ \\\n",
"reporter.ISO year ... \n",
"AGO 2009 0.000000 0.000000e+00 0.0 ... 0.000000 0.0 \n",
" 2010 53088.378146 1.402793e+08 0.0 ... 0.000000 0.0 \n",
" 2011 257786.746458 3.466061e+07 0.0 ... 0.000000 0.0 \n",
" 2012 222663.224270 2.587614e+07 0.0 ... 8435.069683 0.0 \n",
" 2013 0.000000 4.357466e+06 0.0 ... 957.605075 0.0 \n",
"... ... ... ... ... ... ... \n",
"ZWE 2011 0.000000 0.000000e+00 0.0 ... 0.000000 0.0 \n",
" 2012 0.000000 0.000000e+00 0.0 ... 0.000000 0.0 \n",
" 2013 0.000000 0.000000e+00 0.0 ... 0.000000 0.0 \n",
" 2014 0.000000 0.000000e+00 0.0 ... 0.000000 0.0 \n",
" 2015 0.000000 0.000000e+00 0.0 ... 0.000000 0.0 \n",
"\n",
"partner.ISO SYC TGO TUN TZA UGA \\\n",
"reporter.ISO year \n",
"AGO 2009 0.0 0.000000 1.628157e+06 0.000000e+00 0.0 \n",
" 2010 0.0 252999.300576 1.137066e+08 5.529461e+03 0.0 \n",
" 2011 0.0 0.000000 4.623718e+07 1.745372e+06 0.0 \n",
" 2012 0.0 0.000000 1.262796e+07 1.253616e+05 0.0 \n",
" 2013 0.0 0.000000 4.438123e+06 1.035603e+05 0.0 \n",
"... ... ... ... ... ... \n",
"ZWE 2011 0.0 0.000000 0.000000e+00 1.295280e+06 0.0 \n",
" 2012 0.0 0.000000 0.000000e+00 2.729399e+06 0.0 \n",
" 2013 0.0 0.000000 0.000000e+00 0.000000e+00 0.0 \n",
" 2014 0.0 0.000000 0.000000e+00 0.000000e+00 0.0 \n",
" 2015 0.0 0.000000 0.000000e+00 8.238550e+06 0.0 \n",
"\n",
"partner.ISO ZAF ZMB ZWE \n",
"reporter.ISO year \n",
"AGO 2009 1.016827e+09 1.060946e+05 309894.487818 \n",
" 2010 3.315930e+08 2.665205e+04 420951.156359 \n",
" 2011 3.281534e+08 4.525653e+05 0.000000 \n",
" 2012 7.944924e+08 1.180964e+03 0.000000 \n",
" 2013 4.272753e+08 2.855892e+05 0.000000 \n",
"... ... ... ... \n",
"ZWE 2011 3.088036e+09 5.016118e+07 0.000000 \n",
" 2012 1.242790e+09 1.704507e+08 0.000000 \n",
" 2013 0.000000e+00 0.000000e+00 0.000000 \n",
" 2014 0.000000e+00 0.000000e+00 0.000000 \n",
" 2015 6.474374e+08 0.000000e+00 0.000000 \n",
"\n",
"[604 rows x 46 columns]"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"partner_features_AFR = create_features(IFF_Dest_Imp_AFR, 'Imp_IFF_hi', \n",
" features='partner.ISO', obs='reporter.ISO')\n",
"partner_features_AFR"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"There are strong regional dynamics in international trade, so it is useful to extract information on which regions the countries belong to. The `crosswalk` data-set includes information on the geographical groupings of each country. The codes are taken from the UN Statistics Division M49 standard ()."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The `UN_Intermediate_Region` code is nested within the `UN_Sub-region` code. In the M49 standard grouping for Africa, there are two sub-regions: Northern Africa and Sub-Saharan Africa. The latter contains further geographical groupings: Eastern Africa, Middle Africa, Southern Africa, Western Africa. Therefore, we need to reconcile both so that the regional labels include Northern Africa and the 4 groupings within Sub-Saharan Africa. The code below achieves this, and this is automatized by the `region_labels()` function further down."
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/plain": [
"['DZA', 'EGY', 'LBY', 'MAR', 'SDN', 'TUN']"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Merge in UN Intermediate Region groups\n",
"partner_features_AFR = pd.merge(left=partner_features_AFR.reset_index(), \n",
" right=crosswalk[['ISO3166.3', 'UN_Intermediate_Region']].drop_duplicates('ISO3166.3'), \n",
" how='left', \n",
" left_on='reporter.ISO', right_on='ISO3166.3')\n",
"\n",
"# Which African countries do not have a UN Intermediate region?\n",
"noregion_mask = partner_features_AFR['UN_Intermediate_Region'].isnull()\n",
"countries_noregion = partner_features_AFR[noregion_mask]['reporter.ISO'].unique().tolist()\n",
"countries_noregion"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/plain": [
"array(['Northern Africa'], dtype=object)"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Which UN Sub-region do those countries belong to?\n",
"crosswalk[crosswalk['ISO3166.3'].isin(countries_noregion)]['UN_Sub-region'].unique()"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [],
"source": [
"# Assign Northern Africa as a group for those countries\n",
"partner_features_AFR.loc[partner_features_AFR['reporter.ISO'].isin(countries_noregion), 'UN_Intermediate_Region'] = 'Northern Africa'\n",
"partner_features_AFR = partner_features_AFR.set_index(['reporter.ISO', 'year']).drop(columns=['ISO3166.3', 'UN_Intermediate_Region'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The figure below displays the biplot for the first two principal components estimated using the intra-African bilateral matrix of illicit flows."
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA(partner_features_AFR, partner_features_AFR.shape[1], 1, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The countries with the top 3 loadings on the first principal component are Mozambique (MOZ), Madagascar (MDG) and Comoros (COM). Madagascar and the Comoros are islands in the [Mozambique channel](https://goo.gl/maps/wY7AajqRV9AoD3cz5), where two well-known conduits of illicit financial flows are located: the Seychelles and Mauritius."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The second principal component seems to capture Northern Africa, with Algeria and Tunisia scoring the second and third largest loading, respectively."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Removing outliers"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"There are vibrant debates in the field on estimating trade mis-invoicing based on mismatches in official trade data, much of which is outside the scope of this project. However, suffice to say that there are some outliers that might have large values of mis-invoicing due to benign reasons. For example, South Africa does not report gold exports to UN Comtrade (the underlying source of official trade statistis), and so any discrepancies found by looking at its mirrored trade statistics would result in spurious mis-invoicing estimates. "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"I remove outliers based on extreme values on the first two principal components. This effectively removes most of the observations for South Africa. Further work is needed, though, to remove outliers based on domain knowledge, especially if using this data to do a deep dive on certain dimensions (rather than looking at aggregate patterns, as is the case here)."
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-output"
]
},
"outputs": [
{
"data": {
"text/plain": [
"MultiIndex([('AGO', 2010),\n",
" ('CIV', 2013),\n",
" ('EGY', 2012),\n",
" ('GHA', 2002),\n",
" ('MAR', 2005),\n",
" ('MAR', 2006),\n",
" ('MAR', 2007),\n",
" ('MAR', 2008),\n",
" ('MAR', 2009),\n",
" ('MAR', 2010),\n",
" ('MAR', 2011),\n",
" ('MAR', 2012),\n",
" ('NGA', 2011),\n",
" ('ZAF', 2005),\n",
" ('ZAF', 2006),\n",
" ('ZAF', 2008),\n",
" ('ZAF', 2010),\n",
" ('ZAF', 2011),\n",
" ('ZAF', 2012),\n",
" ('ZAF', 2013),\n",
" ('ZAF', 2014),\n",
" ('ZAF', 2015),\n",
" ('ZAF', 2016)],\n",
" names=['reporter.ISO', 'year'])"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"features_data_std = StandardScaler().fit_transform(partner_features_AFR)\n",
"pca = PCA(n_components=partner_features_AFR.shape[1])\n",
"princ_comp = pca.fit_transform(features_data_std)\n",
"outlying = (princ_comp[:,0] > 6) | (princ_comp[:,1] > 4)\n",
"partner_features_AFR[outlying].index"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"partner_features_AFR_noout = partner_features_AFR[~outlying]"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The figure below displays the projection of the data without outliers on the first 2 principal components. Some interesting regional patterns appear.\n",
"\n",
"Top loadings on the first principal component seem to capture a western African hub, with Cote d'Ivoire and Togo scoring highly. By contrast, the second principal component seems to recover a southern African hub, with top loadings going to South Africa, Malawi, and Botswana."
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA(partner_features_AFR_noout, 46, 1, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"In order to discern better any groupings, the next section will color the observations according to an aggregate class label."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Coloring by class label"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The function `region_labels()` extracts the regional labels from the `crosswalk` and further divides the \"Sub-Saharan Africa\" group into its 4 corresponding subgroups, as discussed above."
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"def region_labels(features_data):\n",
" \"\"\"\n",
" Return regional labels for countries in the data\n",
" \n",
" features_data: as Pandas dataframe, data-set of features\n",
" \"\"\"\n",
" # Extract observation labels from features data\n",
" obs_labels = pd.DataFrame(features_data.reset_index().set_index('reporter.ISO').index)\n",
"\n",
" # Merge with UN intermediate regions from crosswalk\n",
" obs_labels = pd.merge(left=obs_labels,\n",
" right=crosswalk[['ISO3166.3', 'UN_Intermediate_Region']].drop_duplicates('ISO3166.3'), \n",
" how='left', \n",
" left_on='reporter.ISO', right_on='ISO3166.3') \\\n",
" .drop(columns='ISO3166.3')\n",
"\n",
" # Create a mask for the Northern African regions and replace the missing intermediate region\n",
" noregion_mask = obs_labels['UN_Intermediate_Region'].isnull()\n",
" countries_noregion = obs_labels[noregion_mask]['reporter.ISO'].unique().tolist()\n",
" obs_labels.loc[obs_labels['reporter.ISO'].isin(countries_noregion), 'UN_Intermediate_Region'] = 'Northern Africa'\n",
"\n",
" return obs_labels"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The function `biplot_PCA_classes()` projects the data in the two principal components chosen by the user, and further colors the observations either according to their UN regional grouping (by specifying `classes='UN_Intermediate_Region'`) or according to their World Bank income group classification (by specifying `classes='Income group (World Bank)'`)."
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"def biplot_PCA_classes(features_data, nPC=2, firstPC=1, secondPC=2, classes='UN_Intermediate_Region'):\n",
" \"\"\"\n",
" Projects the data in the 2-dimensional space spanned by 2 principal components\n",
" chosen by the user, along with a bi-plot of the top 3 loadings per PC, and colors\n",
" by class label.\n",
"\n",
" Args:\n",
" features_data: data-set of features\n",
" nPC: number of principal components\n",
" firstPC: integer denoting first principal component to plot in bi-plot\n",
" secondPC: integer denoting second principal component to plot in bi-plot\n",
" classes: {'UN_Intermediate_Region', 'Income group (World Bank)'}, as string, class label\n",
" by which to color observations\n",
" Returns:\n",
" plot (interactive)\n",
" pca_loadings (if show_loadings=True)\n",
" \"\"\"\n",
" \n",
" # Unit of observation is the reporting country\n",
" obs='reporter.ISO'\n",
" \n",
" # Run PCA (standardize beforehand)\n",
" features_data_std = StandardScaler().fit_transform(features_data)\n",
"# features_data_std = power_transform(features_data, method='yeo-johnson', standardize=True)\n",
" pca = PCA(n_components=nPC, random_state=234)\n",
" princ_comp = pca.fit_transform(features_data_std)\n",
"\n",
" # Loadings\n",
" cols = ['PC' + str(c+1) for c in np.arange(nPC)]\n",
" pca_loadings = pd.DataFrame(pca.components_.T, \n",
" columns=cols,\n",
" index=list(features_data.columns))\n",
" \n",
" # Scores\n",
" pca_scores = pd.DataFrame(princ_comp, \n",
" columns=cols)\n",
" pca_scores[obs] = features_data.reset_index()[obs].values.tolist()\n",
" pca_scores['year'] = features_data.reset_index()['year'].values.tolist()\n",
" \n",
" score_PC1 = princ_comp[:,firstPC-1]\n",
" score_PC2 = princ_comp[:,secondPC-1]\n",
" \n",
" # Plot data\n",
" plot_data = pd.merge(pca_scores, obs_info, on=[obs, 'year'])\n",
" tooltip_obs = ['reporter', 'year', 'Income group (World Bank)', 'Country status (UN)']\n",
" \n",
" obs_labels = region_labels(features_data)\n",
" plot_data = pd.merge(left=plot_data, right=obs_labels.drop_duplicates('reporter.ISO'), on='reporter.ISO')\n",
" \n",
" if classes == 'UN_Intermediate_Region':\n",
" color_scheme = 'paired'\n",
" else:\n",
" color_scheme = 'dark2'\n",
"\n",
" # Return chosen PCs to plot\n",
" PC1 = 'PC'+str(firstPC)\n",
" PC2 = 'PC'+str(secondPC)\n",
" \n",
" # Top loadings (in absolute value)\n",
" # TO DO: use dict to iterate over\n",
" toploadings_PC1 = pca_loadings.apply(lambda x: abs(x)).sort_values(by=PC1).tail(3)[[PC1, PC2]]\n",
" toploadings_PC2 = pca_loadings.apply(lambda x: abs(x)).sort_values(by=PC2).tail(3)[[PC1, PC2]]\n",
"\n",
" originsPC1 = pd.DataFrame({'index':toploadings_PC1.index.tolist(), \n",
" PC1: np.zeros(3), \n",
" PC2: np.zeros(3)})\n",
" originsPC2 = pd.DataFrame({'index':toploadings_PC2.index.tolist(), \n",
" PC1: np.zeros(3), \n",
" PC2: np.zeros(3)})\n",
" \n",
" toploadings_PC1 = pd.concat([toploadings_PC1.reset_index(), originsPC1], axis=0)\n",
" toploadings_PC2 = pd.concat([toploadings_PC2.reset_index(), originsPC2], axis=0)\n",
"\n",
" toploadings_PC1[PC1] = toploadings_PC1[PC1]*max(score_PC1)*1.5\n",
" toploadings_PC1[PC2] = toploadings_PC1[PC2]*max(score_PC2)*1.5\n",
" toploadings_PC2[PC1] = toploadings_PC2[PC1]*max(score_PC1)*1.5\n",
" toploadings_PC2[PC2] = toploadings_PC2[PC2]*max(score_PC2)*1.5\n",
" \n",
" # Project top 3 loadings over the space spanned by 2 principal components\n",
" lines = alt.Chart().mark_line().encode()\n",
" for color, i, dataset in zip(['#440154FF', '#21908CFF'], [0,1], [toploadings_PC1, toploadings_PC2]):\n",
" lines[i] = alt.Chart(dataset).mark_line(color=color).encode(\n",
" x= PC1 +':Q',\n",
" y= PC2 +':Q',\n",
" detail='index'\n",
" ).properties(\n",
" width=400,\n",
" height=400\n",
" )\n",
" \n",
" # Add labels to the loadings\n",
" text=alt.Chart().mark_text().encode()\n",
" for color, i, dataset in zip(['#440154FF', '#21908CFF'], [0, 1], [toploadings_PC1[0:3], toploadings_PC2[0:3]]):\n",
" text[i] = alt.Chart(dataset).mark_text(\n",
" align='left',\n",
" baseline='bottom',\n",
" color=color\n",
" ).encode(\n",
" x= PC1 +':Q',\n",
" y= PC2 +':Q',\n",
" text='index'\n",
" )\n",
" \n",
" # Scatter plot colored by observation class label\n",
" points = alt.Chart(plot_data).mark_circle(size=60).encode(\n",
" x=alt.X(PC1, axis=alt.Axis(title='Principal Component ' + str(firstPC))),\n",
" y=alt.X(PC2, axis=alt.Axis(title='Principal Component ' + str(secondPC))),\n",
" color=alt.Color(classes, scale=alt.Scale(scheme=color_scheme),\n",
" legend=alt.Legend(orient='right')),\n",
" tooltip=tooltip_obs\n",
" ).interactive()\n",
" \n",
" chart = (points + lines[0] + lines[1] + text[0] + text[1]) \n",
" chart.display()"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The following graphs suggest that the first two components of PCA seem to partition the feature space remarkably well according to regional groupings, and to a lesser extent according to income grouping. It should be noted that there is less variation in the income groupings in Africa as a whole, with few countries belong to the high income group.\n",
"\n",
"The biplot which uses African partner countries as the feature space (after removing outliers) and which colors by regional grouping is the most striking (scroll down below to see it). Recall that the loadings refer to the *partner* countries (i.e. the destinations of the illicit outflows) which have the heaviest loadings on the first/second principal components, while the observations are colored according to the *reporter* country (i.e. the origin of the illicit flow). This biplot suggests that the partner features which have the highest weight on the first principal components correspond to a western African hub (Cote d'Ivoire and Togo), and that those observations with the highest principal component scores in that rotated space correspond to western African reporting countries.\n",
"\n",
"Similarly, the largest weights on the second principal component refer to a southern African partner hub (South Africa, Malawi, and Botswana), while the observations with the highest scores correspond to northern and southern African countries.\n",
"\n",
"Therefore, it appears that there are strong sub-regional dynamics in intra-African illicit financial flows. The policy implication of this finding is that existing sub-regional policy initiatives could be leveraged to combat illicit financial flows within the continent. For example, the Economic Community of West African States (ECOWAS) could anchor policy efforts in western Africa while the East African Community (EAC) could attend to the east."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"**For sector features**"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA_classes(sector_features, 21, 1, 2, classes='UN_Intermediate_Region')"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA_classes(sector_features, 21, 1, 2, classes='Income group (World Bank)')"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"**For partner features**"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA_classes(partner_features, 46, 1, 2)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA_classes(partner_features, 46, 1, 2, classes='Income group (World Bank)')"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"**For partner features, restricted to African partners**"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA_classes(partner_features_AFR, 46, 1, 2)"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA_classes(partner_features_AFR, 46, 1, 2, classes='Income group (World Bank)')"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"**For partner features, restricted to African partners, without outliers**"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA_classes(partner_features_AFR_noout, 46, 1, 2)"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
""
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"biplot_PCA_classes(partner_features_AFR_noout, 46, 1, 2, classes='Income group (World Bank)')"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Clustering"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Agglomerative clustering"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"This section investigates clustering techniques to see if they recover some of the groupings observed above."
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"# Run PCA on first 2 principal components on intra-African partners, without outliers\n",
"features_data_std = StandardScaler().fit_transform(partner_features_AFR_noout)\n",
"pca = PCA(n_components=10)\n",
"princ_comp = pca.fit_transform(features_data_std)\n",
"X = princ_comp[:,[0,1]]"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAF1CAYAAAAjngRgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5xU1fnH8c8zZRu99440QYqIgl1ULNi7xh5rjNEYa0w0MWo0iT+7iTERY7AXsECsqKAUAUWkIyC9s8C2qef3xwy4y85SZmdntnzfrxcvdu/cOfeZu3d3njnn3OeYcw4RERER2XeeTAcgIiIiUlMpkRIRERFJkhIpERERkSQpkRIRERFJkhIpERERkSQpkRIRERFJkhIpkV2Y2WVmNinTcSTDzC4ysw/TeLzOZubMzJeuY+4mlr+b2e8yHccOZtbRzArMzJvpWCor/jPuXsFjn5nZz+Nf7/X1V5N/z0RKUyIlNVr8j/gWM8vOdCzpliiJcc6Nds4dn8m4klH6zThZzrlrnXP3pSqmynLOLXfO1XfORVLZrpkNNbNtpRM0M/tnBdv+nspj70lNvf5EKkOJlNRYZtYZOBxwwKkZDaYK1IaejHSpY+dqOuAFBpXadjiwepdtRwBf7EvD1aFnUaSmUSIlNdklwBRgFHBp6QfMrJmZvRv/lP61mf2p9DCCmR1vZgvMbKuZPW1mn1fUI2Jmw+JtbI3/P6zUY5/F2/4qPozzbvzYo0sdu3Op/XuZ2Udmtjl+/HNLPTbKzJ4xs3FmVggcbWYnm9k38bZWmNm9pULb8SaZHz/20NLDJfGhrr/u8lrGmtmv41+3NbM3zWyDmS01sxsrOtFmlmtmfzOzH+PnYZKZ5SbYb5mZHVvq+3vN7L/xr3PM7L9mtsnM8uPnppWZ3U8sEXgy/jqeTPJcjTKzP8UfP8rMVprZLWa23szWmNnlpZ6/2+tjl9d0lJmtrOh1mtkQM5seb2udmT0S316mxzB+rdxnZl+a2XYz+9DMmpdq85L4+d1kZr/b9Vzu4JwLEbvuj4g/ryWQBby6y7YewBfx+CbHz/kaM3vSzLJKHdeZ2S/MbBGwKL7t1vi+q83sikTnpYJzVWa4Lt72tWa2yGI9x0+ZmVXw3L/Er6tGe7jud3uuzMxjZneY2Q/xx18zs6Z7+xpE9pUSKanJLgFGx/+NMLNWpR57CigEWhNLsnYmWvE3rzeAO4FmwAJgGAnE/wC/Dzwe3/cR4H0za1Zqt/OBi4F2QDdgMvA80BSYB9wTb6se8BHwEtASuAB42sz2L9XWhcD9QANgUvw1XAI0Bk4GrjOz0+P7HhH/v3F8CGnyLuG/BJy3443LzJoAxwOvmJkHeBeYFY97OHCTmY1IdB6AvwIHxs9TU+A2IFrBvhW5FGgEdCB2Lq8Fip1zvwUmAjfEX8cNSZ6rXbWOH68dcCXwVPwcwG6ujyQ8BjzmnGtI7Of/2m72vRC4nNhrygJ+A2BmfYCngYuANqXirsgX/PTzP4LY65+0y7alzrmVQAS4GWgODCX2s75+l/ZOBw4G+pjZCfG4jgP2A8olc/toJHAQ0B84FyhzjcUTn38CBwDHO+e2spvrfi/O1Y3x13Mk0BbYQuznLVIllEhJjWRmhwGdgNecczOAH4i9Se0Y5jkLuMc5V+Scmwu8UOrpJwFznHNvOefCxJKktRUc6mRgkXPuRedc2Dn3MjAfOKXUPs87536IvwGMB35wzn0cb/t1YGB8v5HAMufc8/G2ZgJvAmeXamusc+5L51zUOVfinPvMOTc7/v13wMvE3iD2xkRiw56Hx78/G5jsnFtN7I2thXPuj865oHNuCfBPYklhGfGk6wrgV865Vc65iHPuK+dcYC/j2CFELIHqHm9jhnNuWwX77vO5quB4f3TOhZxz44ACoOdeXB/7KgR0N7PmzrkC59yU3ez7vHNuoXOumFjCNSC+/WzgXefcJOdcEPg9sZ9dRT4HDosnyYcT+1lPBg4pte1zgPh5nhI/j8uAf1D+GnrQObc5Hte58Ti/d84VAvfu7YmowJ+dc/nOueXAhFKvGcBP7JpuCpzinCuKx7y7635P5+oa4LfOuZXxa/Re4GzTsKVUESVSUlNdCnzonNsY//4lfupVaAH4gBWl9i/9ddvS37vYyt1lhm522ffHXbb9SNlPwOtKfV2c4Pv68a87AQfHh1jyzSyf2Kfq1hXEiZkdbGYTLDb8tpVYL05z9kL8db1CrDcHYonm6FKxtN0llruAVuVbojmQQyxZrYwXgQ+I9YitNrOHzcxfwb77fK4S2BRPZncoIvaz2NP1sa+uJDaMNj8+TDhyN/uWTth3xAPlr8kiYNNu2pkSf25fYr1PE51zBfE2dmz7AsDMepjZe2a21sy2AQ9Q/hqq8PeD8tf/vqroNQN0B04D/hBPiojHvLvrfk/nqhPwdqnrZh6xXrlE17ZIpSmRkhrHYnNzzgWOjL85rCU2dNHfzPoDG4Aw0L7U0zqU+npN6cfin+BL71vaamJ/mEvrCKxKIvQVwOfOucal/tV3zl1Xap9deyFeAt4BOjjnGgF/B6yCfRN5mdin8U7Ehm7eLBXL0l1iaeCcOylBGxuBEmLDVntSCOSV+n5n4hPvGfqDc64PsSHCkcSGbxK9lmTO1d7a0/WxqzKvKd6j1WJnEM4tcs5dQGy47iHgjfjQ5L7Y9ZrMJdZ7l1C8B+5rYuewjXNufvyhifFtB/DTHLpniPWi7hcffryLn66hnU3uEkvp89FxH1/LvphHbKhzvJn1LLV9d9f9ns7VCuDEXa6dHOdcMr+zInukREpqotOJfcLsQ2yYYADQm9ibyCUudrv5W8C9ZpZnZr346Q0bYnOe+pnZ6fHu/l9QtqejtHFADzO70Mx8ZnZe/LjvJRH3e/G2LjYzf/zfQWbWezfPaQBsds6VmNkQ4sOXcRuIzVPqWtGTnXPfxPd7DvjAOZcff2gasM3MbrfYRHKvmfU1s4MStBEF/g08YrEJ6l6LTWxPVHLiW+D8+GsbTKmhODM72sz6xRORbcSGxHaUBli3y+tI5lztlb24Pna1EMiJT4D2A3cDO1+7mf3MzFrEz9OO87uvJQ/eAE6x2I0NWcAfKJ/s7OoL4Cbgq1LbJsW3rXXO7ehBbEDsfBfEX+t17N5rwGVm1sfM8ojP8asq8eHyu4CPzWxHsr67635P5+rvwP3xDw+YWQszO60qX4PUbUqkpCa6lNgcjuXOubU7/gFPAhfFk6MbiE1CXUtsSOllIAAQHw48B3iY2JBAH2K3lJeb8+Oc20TsE/4t8X1vA0aWGlLca8657cQme59PrKdrLbEejN3VwLoe+KOZbSc2F2TnROb4kMb9wJfxYYxDKmjjZWIThl8q9dwIsXleA4ClxHqdniN2zhL5DTCbWC/I5njcif5+/I5Yz9UWYm9wL5V6rDWxN8FtxHoiPgf+G3/sMWI9Z1vM7PEkz9W+qPD62FV87tv1xM7PKmI9VKWHgk8A5phZQfx1nF/BnK0KOefmAL8kNhS7BtgOrK8oprjPifWClZ5oPym+rXTZg98QS0S2E5sH9+oeYhkPPAp8CiyO/1+lnHMvAH8EPrXYXa67u+73dK4eI9ab9WH8+VOI9caKVAmLTaMQqd3M7CGgtXOu3N1Z8cnUK4GLnHMT0h6cZNzuro9MMLP6xHq39nPOLc10PNWZzpVkmnqkpFayWA2iAyxmCLEJwW+XenyEmTWOD0/tmDOyu7utpBbZ0/WRoZhOiQ811iNWbmI2sCyTMVVXOldSnSiRktqqAbF5MIXEhgX+Bowt9fhQYnehbSQ2xHV6/NZvqRv2dH1kwmnEhjFXE6vfdL7TkEFFdK6k2tDQnoiIiEiS1CMlIiIikiQlUiIiIiJJykjJ/ObNm7vOnTtn4tAiIiIi+2TGjBkbnXMtEj2WkUSqc+fOTJ8+PROHFhEREdknZlbhUkka2hMRERFJkhIpERERkSQpkRIRERFJkhIpERERkSQpkRIRERFJkhIpERERkSQpkRIRERFJkhIpERERkSQpkSrFOUcoEsl0GCIiIlJDZKSyeXXjnGP07Fk8OvUrthQX06JePW4dehhn9emb6dBERESkGlMiBYyePYsHJ31OcTgMwPrCQn7/2Sf4vV5O7dk7w9GJiIhIdaWhPeCxqZN3JlE7FIfDPDLlywxFJCIiIjVBnU+kwtEom4uLEj62Zvv2NEcjIiIiNUmdT6R8Hg+t6tVP+FjHRo3THI2IiIjUJHU+kQK49dDDyfGVnS6W4/Nxx6FHZCgiERERqQk02Rw4o1cf/B4Pj0z5klXbttGpcWNuH3YEw7t2y3RoIiIiUo0pkYob2aMXI3v0ynQYIiIiUoNoaE9EREQkSUqkRERERJKkREpEREQkSXudSJnZv81svZl9X2pbUzP7yMwWxf9vUjVhioiIiFQ/+9IjNQo4YZdtdwCfOOf2Az6Jfy8iIiJSJ+x1IuWc+wLYvMvm04AX4l+/AJyeorhEREREqr3KzpFq5ZxbAxD/v2XlQxIRERGpGdI22dzMrjaz6WY2fcOGDek6rIiIiEiVqWwitc7M2gDE/19f0Y7OuWedc4Odc4NbtGhRycOKiIiIZF5lE6l3gEvjX18KjK1keyIiIiI1xr6UP3gZmAz0NLOVZnYl8GfgODNbBBwX/15ERESkTtjrtfaccxdU8NDwFMUiIiIiUqOosrmIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCTJl+kAaqJFmzYxeva3rCko4MhOnTmjVx9y/f5MhyUiIiJppkRqH334wyJu+mAcoUiEiHNMWr6Mf387gzHn/Yz6WVmZDi9jlm/N53+LFxFxUY7v2p1uTZtlOiQREZEqp0RqH4QiEW77+ANKwuGd24rDYVZt28YL387kF0MOyWB0mfPirG94YNLnRJ3DAU9Mm8K1Bw7hxoOHZjo0ERGRKqU5UvtgwaaNRKKu3PZAJML7ixdmIKLMW7N9Ow9M+pxAJEIoGiUcjVISDvP3GdNYuGljpsMTERGpUuqR2gf1srKIuGjCxxrU0WG9j5YsxrBy20ORCOMXL6RHs+YZiEpEapOPJs7jH6Mnsm7jNlo0bcDVFx7GCUftn+mwRIAU9UiZ2c1mNsfMvjezl80sJxXtVjddGjehU6PGeKxs4pDn83Np/4EZiiqzzIwEeVTssYoeEBHZSx9Pmsefn/6AtRu24Rys37Sdvzz7EeMnzMl0aCJAChIpM2sH3AgMds71BbzA+ZVtt7r65ymn065BQ+r5/dTzZ5Ht9XJ+336c2L1HpkPLiOO6dsO58sOdfq+3zp4TEUmdf4yeRCAYLrMtEAjz7MsTMxSRSFmpGtrzAblmFgLygNUparfaad+wERMuvZLpq1exsaiIga3b0KZBg0yHlTGt6zfg90cewx8//xQA52K9VDcOGcp+zXTnnohUzrqN2xJu37CpAOdcrFdcJIMqnUg551aZ2V+B5UAx8KFz7sNd9zOzq4GrATp27FjZw2aUx4wh7dpnOoxq44K+B3BEp858+MNiItEox3btRufGTTIdlojUAq1bNGT1uq3ltrdoVl9JlFQLqRjaawKcBnQB2gL1zOxnu+7nnHvWOTfYOTe4RYsWlT2sVDPtGjTk8gGD+PmgwUqiRCRlrrnocLKzy37mz8n2cc2Fh2coIpGyUjHZ/FhgqXNug3MuBLwFDEtBuyIiUscNP7QXd14/gjYtG2IGrZo35DfXHK+79qTaSMUcqeXAIWaWR2xobzgwPQXtioiIcOxhvTn2sN6ZDkMkoUr3SDnnpgJvADOB2fE2n61suyIiIiLVXUru2nPO3QPck4q2RERERGoKLREjIiIikiQlUiIiIiJJUiIlIiIikiQlUiIiIiJJUiIlIiIikiQlUiIiIiJJUiIlIiIikiQlUiIiIiJJSklBThERkb2xOb+QT79aQGFRkCEDOtG7e5tMhyRSKUqkREQkLSbPXMLdf3kHgFA4wotvTeHIQ3pw9y9PxMwyHJ1IcjS0JyIiVS4QDHPP394jEAwTCIaJRh0lgTBfTF3El9N/yHR4IklTIiUiIlXu2zkrSNTpVFwSYvxnc9IfkEiKKJESEZEqt7uhOw3qSU2mREpERKpc/z7tcQm252T7OeGovmmPRyRVlEiJiEiVy87ycd8tp5Cd7SM7y4fXa+Rk+zhmWA8OHdw10+GJJE137YmISFocPLALb/796lLlDzrTs2urTIclUilKpEREJG0aN8zjzBMGZjoMkZTR0J6IiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIkpRIiYiIiCRJiZSIiIhIklKSSJlZYzN7w8zmm9k8MxuainZFREREqjNfitp5DPifc+5sM8sC8lLUroiIiEi1VelEyswaAkcAlwE454JAsLLtioiIiFR3qRja6wpsAJ43s2/M7Dkzq7frTmZ2tZlNN7PpGzZsSMFhRURERDIrFYmUDxgEPOOcGwgUAnfsupNz7lnn3GDn3OAWLVqk4LAiIiIimZWKOVIrgZXOuanx798gQSIlki5TV67goS+/YNHmTbSp34Cbhx7Kid17ZDosERGphSqdSDnn1prZCjPr6ZxbAAwH5lY+NJF9N23VSi5/5y1KwmEAFm/ZzG8+HE9BIMA5+/fLcHQiIlLbpKqO1C+B0Wb2HTAAeCBF7Yrsk4e+/GJnErVDcTjMw19NJOpchqISEZHaKiXlD5xz3wKDU9GWSGUs3LQx4fZtgQAFwSANs7PTHJGIiNRmqmwutUrbBg0Tbs/2+ajn96c5GhERqe2USEmtcvMhh5LrK9vRmuvzcfWgwXg9utxFRCS19M4itcoJ3ffj3iOPoVluLj6Ph/r+LK4dPITrDzok06GJiEgtlKolYkSqjXP278fZffpSEAyS5/erJ0pERKqMEimplcyMBppYLiIiVUwf1UVERESSpERKREREJEka2pOMcc6xYNNGwtEovZu30FwmERGpcZRISUbM27Ceq98by5aSYoxYnacnThjJ0A4dMx2aiIjIXlMXgKRdSTjEhW+9xqrt2ygKhSgMhdhcXMzP3x3DhsLCTIcnIiKy15RISdp9vOQHwtFoue1RF+Xt+VrvWkREag4lUnVYMBKhKBRK+3E3FRclTKQCkQjrCwvSHo+IiEiyNEeqDtpaUsJvP/2Ij5YsJuocPZs358HhI+jXslVajj+kbXvMrNz2PL9fc6SkRlmyfCM//LiB9m0a06tb64TXtYjUbkqk6hjnHJeOeYN5GzcQivcKzd2wgQvffJWPLr6c1vUbVHkMvVu05Liu3fl4yWKKw2EAcnw++rRoyVGdulT58UUqKxgKc+dDY/l2zgq8Xg/RqKNLh2Y88vuzaVAvJ9PhiUgaaWivjpm9fh2LNm/emUTtEIpEeWn2rLTF8X8jTuK+o4/lwDZt6d+qNXccegQvnn62SiBIjfDvV7/imzkrCATDFBUHKQmEWLRsPX979uNMhyYiaaYeqTpm+dZ8vAmGH4LRCIs2b05bHB4zzuy9P2f23j9txxRJlXc/nk0wGC6zLRyO8tmUhYQjUXxefSAQqSv0217H9G7egrArP9E7x+tjQOs2GYhIpOYJhsIJt0ejjkik/O+XiNReSqTqmG5NmzGsQ0dyfD91Rhrg8Rh9mrfAOZe54GqxwmCQt+fN5d/fzGDuhvWZDkcq6eABXfAk6Nnt2bUV2Vnq6BepS/QbXwc9fdKpPPX1FEbPnsWW4mI8ZoQiEa59/x0GtWnDc6ecQbZPl0aqzFq7hovHvEHUOUKRCF6Ph+O7dueRESclfDOW6u+GS4/k27krKC4JEQiGyfJ78fu83Hbd8ZkOTUTSzDLRAzF48GA3ffr0tB9Xyjrj1dHMXr+OaKlrIMfn45dDDuG6wQdnMLLaI+ocQ//1DzYUla3Ynuvz8+Dw4zi1Z+8MRSaVta2ghPc+mc3chavp0rE5px8/gGZN6mU6LBGpAmY2wzk3ONFj6naoozYWFTFv44YySRRASTjMq3NmK5FKkdnr11EUCpbbXhwO8eqc2UqkarCG9XO48LSDMh2GiGSYEqk6KhKNUtGgUqKq45KcaDQKFZzpunyeN20p5F+vfslX038gNzeLs04cyJknDMTj0VCniNQsSqTqqFb169O+YSN+2FK25EGW18upPXplKKqarygUYsz8uXy9ehVdGjfhrN774/d6YJeVeHJ9fs6qo6UftheWcMWt/yF/W3HsDrcthfz9v1+wcMl67rrhhEyHJyKyT3TXXh326IiTqJ+VtfMOvjy/n06NGmtYL0mbi4sY8d9R3D/xc8YumMfT06cyYvQobjp4GLk+H9leLxA7z4Pbtq2zNbTe/Xg2BYWBMmUCSgJhPp40j7Xrt2YwMhGRfVfreqQ2FRUxdsE8Vm/fxpB27TmmSzd8qpad0P4tW/HFZT9nzPx5rNy2lUFt2nJc1+7442/4sm8enfIV6woLdg7ZBSMRgpEI//nuGz677Oe8s2A+m4qKGNahI8M6dKyzd+zN/H45gWD5Okx+n5cFS9fTumWjDERV9zjnmL1gNfMXr6VV8wYMO7Abfr9+90X2Va1KpGauWc2lY94gHHUEImFemTObbk2a8spZ55Hr92c6vGqpcU4ulw0YlOkwaoUPfliccN7Tym3bALhy4IHpDqla6ti2KdNn/Uh4l8KVkaijVfOqX+tRYgVFb7nvTeYvXks4GsXv85Kb7efp+y+gXevGmQ6vVtteWMIzL37BJ5PmE3WOI4bsxw2XHUWTRnmZDk2SVGu6apxz3Dj+PQpDIQKR2KfdolCIhZs28fy3MzMcndQFORXU3nLO7RzWEzjrxIH4fGX/9Pi8Hjq0bULPrq0yFFXd8vLYr5m7aA3FgRChUISi4iBbthXxh0ffz3RotVo06vjF3a8wfsIcCouDFJeE+PjL+Vx9x38rrJYv1V+tSaSW5m9hS0lxue2BSJgx8+dmICKpay7se0C5ZMprxuC27WiYnZOhqKqfdq0b8/CdZ9K6RUOy/D78Pg+D+nXkkd+djdXR4c50e++T78sNr0ajjkVL17Nla1GGoqr9ps1axpr1WwmFIzu3RSJR8rcV88XUxRmMTCqj1gzt+T1eKiot6lNvgKTBFQMPZObaNUxcvgyPGQa0rFef/xtxUqZDq3YG9evI689cxcbNBeTk+GlQT4lmOkUqKL1hFkuopGos+XEDoVCk3PbikhCLl63n2MN0x3RNVGsSqQ6NGtGuQUOWbNlcJqHK9fk4f/9+GYtL6g6/18s/Rp7Ggk0bmb1uLe0bNmJIu/Z1dlL5npgZLZppTlQmHHdYL157f2a5N/V2rRurOnsV6tC2KVlZPsLFZYv05ub46dSuaYaiksqqNUN7AM+cfCpNcnOp588i2+sl1+fj0A6duLBf/0yHJnVIz2bNObtPXw5p30FJlFRLl5x1CB3aNCE3J3YTTna2j3p52fz+ppMzHFntNvTArjRqkIO3VOFZj8fIzfFz9LCeGYxMKqPWrbUXCIf5ZOkS1hcWcGDbdvRrqcmrIlKec46xH87iP29NZXN+IV07NueGS49iUN+OmQ4tLcLhCBO/XsychWto06Ihxx3Rh4b1NcRa1TZtKeThv3/IlJlLcMCB/Tpy27XH00ZlP6q13a21V+sSKdm9SDTKK99/x+jvvyMQDnNKj15cNWgw9bKyMh2aSFq9+NZUXnhjCiWBn8rOZ2f5eOzec+nbs20GI5O6IBKJ4ojdsSrV3+4SKf0E65hfffA+D0z6nPkbN7A0fwv/mDGNs15/mWCk/ARIkdoqFIrw4ltTyyRRAIFgmGdfmpihqKQu8Xo9SqJqiZT9FM3Ma2bfmNl7qWpTUmvBpo18unQJxeGfbnsORCKs3LaV/y1emMHI6q5INMqmoiJCSmTTasu2ojJL1JS2dPmmNEcjIjVZKu/a+xUwD2iYwjYlhb5Zs5pEU5+LQiEmr1zBqT17pz2muuyV77/j4a8mUhQK4TMPl/YfyK+HHopXSxpVucYNcyusWdW+bZM0RyMiNVlK/mKbWXvgZOC5VLQnVaNlvfp4rPyPPMvrpV0D5b/pNH7xQu77YgL5JSUEIxGKwiFGzZrJ/035KtOh1QlZfh/njhxETnbZpaOys3z8/PxDMxSViNREqfro+yhwG5C4rxwws6vNbLqZTd+wYUOKDiv74ohOnamf5S93S77PPJzTp2+GoqqbHpv6VZkhVoDicJhRs2ZqmC9Nfn7+YVxy1sHUr5eNAW1aNuLem0/mwH514649EUmNSg/tmdlIYL1zboaZHVXRfs65Z4FnIXbXXmWPK/vO5/Hwylnnc/24d1iyZTMeMxrl5PDoiJNpVb9+psOrU9Zs355weygSpTAUpLE3N80R1T0ej3HJWYdw8ZkHE4lE8fm0AoKI7LtUzJE6FDjVzE4CcoCGZvZf59zPUtC2pFinxo15/8JLWLV9G4FwmC6Nm2h9swzo1bwFX69eVW57g+wsrcuXZmamJEpEklbpoT3n3J3OufbOuc7A+cCnSqKqv3YNGtK1SVMlURly+6FHlFvgOMfn4/Zhh6sauohIDaLbg0QyYFCbtow+4xwObteehtnZ9G7egkdHnMQ5WhdSRKRGUWVzEal2AoEQYz6cxUeT5pOT7eOMEQM4ZlhP9aDuJecccxetZcvWIvbv0ZomjbQQsUhl7K6yeSrrSImIVFooFOH6u19h2cpNBIKxOxvnL17HN9+v4DfXHJfh6Kq/tRu2cfMfXmfjlgI8ZoTCEThguIIAACAASURBVM47ZTBXX3iYElGRKqChPRGpVj6fuojlqzfvTKIASgIhxk34nlVr8zMYWc1wx5/fZtW6fIpLQhQWBwmGIrz+/kwmTluc6dBEaiUlUiJSrUz9ZinFJaFy271eD7PmrsxARDXHyjVbWLF6C9Fo2SkbJYEQr4+bmaGoRGo3De3VEPklJTwxbTLLt+ZzVKcunN2nL9k+/fik9mnWtD4+n4dwuGx9XzOjSaO8DEVVMxQUBfBWsBDu9oKSNEcjUjfonbiaWVdQwJcrfiTPn8VRnTuT4/Pz8Q+Lueb9sez4jPnJ0iX8dfKXfHTx5TTP0xuL1C6nDO/H6+/PKJNImcWWbzmof6cMRlb9devYIuE8qCy/lyMP7pGBiERqPw3tVSNPfT2Fo154jt9/9gm3fvQ/Dn7u70xduYLrx7/LrvdWbg2UcNtH/8tInCJVqV3rxtx3yyk0qJ9DXm4WOdl+2rZqzBN/PE+FM/fA7/dy27XHkZ3lw+OJJVTZWT5aNmvAOScPynB0IrWTyh9UEzPXrObit18vt/5ajtdHSSSc8Dk+j4eFN9ycjvBE0i4cjrBo2Xqys3x06dBcd5ztg0XL1vPWuG9Yv2k7hwzqysnH9CUvNyvTYYnUWCp/UAO8Nmc2JeHyCZMr1xclUjf4fF56d2+T6TBqpP06t+T260dkOgyROkFDe9VEUSiUMGXyYFT0OfyQ9u2rMiQRERHZAyVS1cTRnbsm3F4cCXPNoIPKJVN5fj+PjRhZ9YGJiIhIhTS0V01sC5TgMSO6y5y1LK+XQzp0ZHjXbjw2dTIbigoZ3qUrNw4ZSpbKH0gG/DBrGT/OWUGHXu3Yb1DiDwBVqag4yFP/+ZyPJs4jEoky7MCu/OqKY2jetH7aYxER0TtxNbEkf0u5JArAgGX5W7ik/0D+c8bZ6Q9MJK6kKMDdpzzI/KmL8XgNF3V069+ZB8b/lrwGuWmJwTnHjfe8yg8/biQUjgCxSujfzV/FK09eSW5O7Z1QvXTFRuYsWEPTJnkMGdAFXwX1okQkvZRIVRP9WrYiz++nKFS2orPX46FX8xYZikrkJ/+6czTzJi8kWKrq+MIZP/DMzaO45bnr0hLDrLkr+XHV5p1JFEA06igqCvLJpAWMPLZfWuJIp0gkyp+eGMcXUxdjBh6Ph9wcP0/ddz7t2zTJdHgidZ4+0lQTI3v0pFF2Dt5St3hneb3s17QZB7Vtl8HIJB2i0SjrV2ykcFtRpkOp0IejPiuTRAGEAmE+GT2RdJVRWbJiY7nlTwCKAyHmL1mblhjS7f1PZzNx2mICwTAlgTBFxUE25xdy18NjMx2aiKAeqWojx+dnzHkX8eCkz/loyQ/4PB5O79Wb3wzduxXbI9Eob8ybw2tzZhN1jrN678+5+/cjy6sChtXdxLem8vj1/6R4ezHRaJRhpx7ELf+6jtz66Rku21vBQPn17wBCgRDhcBi/31/lMXRo03RnocnScrL9dO3YvMqPnwljP/yOkkDZ0ijOwaq1+axel0/bVo0zFJmIgBKpaqVFvXo8MuKkfX6ec45fjHuXicuX7SzouXDTRv63eBH/OeNsPCpkWG3Nm7qIhy55nEBRcOe2r96ZTskFj/Knd+/MYGTlDRzej6/Hf1Nuu3mMsU/8j7N/fUqVx3Bgv460at6QlWu2EI7ElpAxM7KzfIw4ok+VHz8TAsHEBXk9ZhU+JiLpo6G9WuC7dWuZuPzHMlXRi8Nhvl23hi9X/JjByGqfQHGAlQtXU7S9OCXtvfrwGILFwTLbQoEQ33wymw0rN6XkGKly1UM/S7jdRR1jnhyflhg8HuOpP53P4Qd3x+f14PEYg/p24Nk/X0S9vOy0xJBuxx3Wiyx/+Z7lvLwsOrVrloGIRKQ09UjVAtNWryQcjZTbXhQKMW3VSg7v2Dn9QdUyzjleuv9NXnloDGZGJBxhxBXH8ItHL8dbifXfVi9eS6LpRb5sPxtXbaZF++rzRtmsTRO8fi+RUPlrrXh7SdriaNQgl/tuOZVo1OGcw7sPd69t3FzAxi0FdGzbtMYsmXLOyAP59KsFrF6/leKSEH6/F6/Hwz2/OjnhMKeIpJcSqVqgWW4efq+XUDRaZnuO10fzvLwMRVW7jP/XJ7z85zEEigI7t304agK59bK56qGLk273gCP7sGL+KsK7JCfhYJiOvavXTQYNmtandeeWrFq0psx2j9fD4BMGpD2eWBKxd4lEUXGQex55lxmzl+P3eQlHolx2zlAuPvPgqg0yBfJys3ju4YuZMGUhM2cvp1XzBpw8vB8tmzXIdGgigob2apyCYJDX537P019PZfrqVTjnGNFtP7xW/kfp8Rin9OiVgShrn5cffLtMEgUQKAryztMfEImU76HZW+feeho59XLK9Czk1Mvm3FtPpV7D6pUEmxm3PHcdOXnZeONDTVk5fuo3qcfl953P6h/Wkr9ha4ajTOz+J8YzY/ZygqEIhcVBAsEwL7wxhQmTF2Q6tL3i93s5/vDe3HH9CC4/d5iSKJFqRD1SNch369Zy8duvE3GOQDhMts/HkHbteXbk6fz3zHO49r2xbA3Ehljq+bN48qSRNM2tXm/GNVX+hm0Jt4cCIYLFwaTvsGvZoTlPT3+IUfe8yrefzKZRy4ac+5vTGH7R4ZUJt8r0O7w3/5j1V8Y8MZ7l81fR55D9CJSEuHbgbwgFI7holL6H9ea3L99Eo+YNMx0uANsKSvhq5hJCu/T6lQRCjH57GkcP7ZmhyESkNlAiVUM457j+/XfYHvxpYnJRKMTUlSt4dc5sLurXn0mXX8X8TRtxztGreQvdrZdC+w3swuyJ88ptb9K6ccK6RvuiTddW3PnijZVqI53admvN9Y9ezpLvfuSWo++hYEthmcdnfzGXu056gKem/TlDEZa1vaAEr8dDiPI9h5vzq2/dLhGpGTS0V0Ms2ryJ/ED5Cb3F4TCvz5kNxIZeejdvQZ8WLZVEpdg1f72E7LzssjW9DLas28rZLa/k96c/xLbN2zMXYJpFo1HuOun+ckkUQDgUYfnclSydXT3uGG3VomHCu948HmPwAR0r3f6GTdv5etaPrF6XX+m2RKTmUSJVQ+yuzyM9NaXrtp4HdeexL//EsNMG07R149icJgeRUIRwMMzX//uW3570QKbDTJu5kxfutgSE1+9h46rNaYyoYj6vh5uuPIbsbF+ZbfVys7j83GFJtxuORLnv8XGc94vnuPuvY/nZTaO47YG3CFRQuFREaiclUjXEfk2b0TC7fJ2cXJ+Ps3vvn7Y4XHQrrngsrngMLrolbcetDrr178y9b93GEWcPxTxlf3XCwTBLv1/Bku+qRy9MVSspDOy24n6wJEz3gV3SGNHuHX9EHx65+2yGHtiVLh2acerxBzDqkUtp07JR0m3+960pfDZ5YWwCe1GQYDDM9O9+5PFRn6Uu8Gpke2EJ/3lzCtfe+RK//ctYZs1dmemQRKqFOj9HyjnH+sJCcv3+hIlKdeEx4+mTTuXit18n6hwl4TC5fj8DW7fh/L4HpCWGaPH7sPVOfsq/I7iG9+HJOz0tx68uVixcTSRcfr6N1+dh7bL1dD2gUwaiSq/9h/UgEo4mfMyX5eOUa4+jSTVbuqR/n/b079M+Ze29Of7bcpXFg6EI4yd8zy1XHVurajxtLyzh8lv+w+b8QoLxSftTv1nKDZcexekj0l/6QqQ6qdOJ1FcrlnP7xx+wsaiQqHMc1rETfzv+RBrnVK81znYY0LoNky6/mvcXLWBDUSFD2rbnkPYd9motvspykfWw9Q6gbAkAtv0Olz0E87at8hiqiwOO6M3sL+aWW8A3HAzTfUDnzASVZrn1c/nlU1fyxPXPEQqGiEYcGGTnZnPD41cw4vKjMx1ilSvapSL9DqFwlEgkisdTe9a5fOP9b8okUQAlgTBPvvA5Jxy1PznZVb/Ookh1VWcTqSVbNnPVu2+XWVZl0vIfuWzsW4w576IMRrZ7jXJyuLBf/4SPOeeYuXY1y/Lz6dWsOfu3bJW6A5d8UMEDDkrGQ70rU3esFHKh+bii5yG8HLIOxupdgnmaVqrNkdccz9uPjSMcihCNr/eWnZfFkecOo2XHFqkIu0YYcenR9BjUlff/+TFbN2xj2GlDOPysg/H568aflf592vP1rGXlKtN37dgcf4LJ7TXZl9MXl0midvB6jEVL19OvV/UqHiuSTnXjL14Co76dSXCXQoqhaJRFmzYyb8N6erdomaHIkpNfUszP3n6DZfmxeUvOOQa2bstzp55Oji8VnxaDQKKhnAi4xJ/MM80FPsNtuZGdsYdm44pehuZjMW/rpNtt2KwBT894mFG/e4Vp42eS1yCX0244kdNuOCFlsdcUXfp14obHq2cSXdVuvPxorrljNIFQmHA4itdj+P0+br3muLTHsnV7Me9/MpulKzbRq1srTjhq/5SuPdikUeJ6dOFIlEYNqmcPvki61NlEall+PpEEi5x5PR5Wb99e4xKpuz/9mEWbNpZZJmbGmlX835SvuPOwIyt/gOyjYPujCR7wxx6rZpyL4rbeDZQuGREEF8EVPIE1ur9S7bdo34xbn/9FpdqQmq1z+2b859HLeO29GcxdtIZunVpw3sjBdGjbJK1xLFu5iWvveolQKEIgGGbC5AW88OYUnnv44pRVQD935GC+mbOCksBPPfher4dO7ZrSsV3lenhFaro6m0gd3K49X69eRSCyy2TRSIQ+NSyJCkejfLRkcbm19gKRCG/M/T4liZT5uuHqXQ6Fo4j18DggB/LOx/y9K91+ykXXQjRRNfIIBD5PezhSO7Vq3pBfXpbZ+WAPPfMBhUWBnUOMJYEwwVCEJ0d9xh9vOSUlxziofyeuuuAwnn1pEj6fh0gkSvs2TXjozjNS0n6ytheWMOq1yXz61QL8fi+nDO/H+aceVOuGVqV6q7OJ1EUH9GfUrG+IlEQIx/8C5fp8nNqjN20a1Kx1rCLRaMLeNYglU6niafBrXPZwXPG7QBTLPQXLGpiy9lPK6pN4KBLwJH/Lu5S17scNvP3EOJZ8u4yeQ7pz2g0n0ryteijSJRSKMGfhmnLztKJRx+QZS1J6rPNOGczI4f1YuHQ9jRrk0rVj85S2v6+CoTBX3z6atRu2EYrfRTvqjSl8O28Vf7v7rIzGJnVLnU2kGufk8t4FF/N/U75kwrKl1M/K4rIBg7iogonc1Vm2z8cBrVoza+2aMsU5PWYc1Tm1tXwsqz+WVf3PkXka4rIPhcAkoPTddbmQd3mmwqpVFs1cwi1H3UMoECYcCvP9l/N595kPeXzyA3TMwOTj/G1FTJr2A+FIhKEHdqVVNVnrryqZx/CYEU1QltdXBb0y9fKyGbh/h5S3m4wJXy1k45aCnUkUQCAYZtbcFcz/YS29uiU/D1JkX9TZRAqgVf36/PnYEZkOIyUeHH48577+CsFImEAkQq7PR54/i7tSMT+qhrJGD+O2XAuhOWB+cAHIOxfLrZufVrdvKWDNknW07tKShk0r3+v62HXPUlzw0xy0UCBMOBjmmZtH8eD431a6/X3x6VcLuP+J8ZgZzjkef34CV194GOefelDKjrFm/VaefWkiX8/6kfp52Zwz8kDOGDEgo/WifF4Phw/pzsSvFxMuVdcry+/lpKPTV6g3E76bv4rikvJV5J2D+YuVSEn6VDqRMrMOwH+A1sTGUp51zj1W2XZl3/Rs1pxPL7mC1+bOZsHGjQxo3YYze+9frYuMVjXzNMKavYwLL4HIGvD1wrzN0nZ85xxzJy9kynszyK2fzdEXHEabLiksSbGXIpEIT934bz54fgK+LB/hYJjjLjmSXz75c7y+5HotIuEIC6eXHzpyDmZ9NqeyIe+TrduLuf+J8eWKY/7z5S85eGAXunSo/BDU5vxCrrz1RQoKA0SdI39bMc+8+DlLV2zkN1en/y690m695jiWr97C6nX5OOcAo2e3Vlx1wWEZjauqtWvViOwsX7mfu9fjqRO9kVJ9pKJHKgzc4pybaWYNgBlm9pFzbm4K2s6IcDTKFz8uY+W2rfRt2YqBrdukpehlZTXLy+O6wQdnOoxqx3xdwdc1rcd0zvHwZU8y6a2plBQF8Pm8jL7/LX79z2sZfuHhaY3l5Qfe4sMXPiNYEtpZRPTj/35B45aNuOyP5+9VGz/MWsarD49l5YJV9BnWk3NuORV/tq9cUVKA3PrpTd4nTluc8PczFI7w8cR5XJWC8/36+zMoLgkRLTUZqSQQZtyn33P5OcNo1qRepY+RrIYNchn1t0v4bt4qVqzZQrdOzendvU3G4kmXE4/uy6g3ppTZ5vEYDepnM6SOFMaV6qHSiZRzbg2wJv71djObB7QDamQitWb7ds5542W2lgQIRyN4zUO/Vq0ZddqZZPtq10ho7NNrFDPd4ZJq0z/4NpZEFcYqwYdDEQhFeOSqv3PIyYOo1yh9b7xvPz6OQFHZWl+BoiBjnhy/V4nU9A9nce+ZDxMsCeGijqWzl/Pxi18w9LTBTB47vUwylZWbxclprqMUjkQpN9ua2PUdTLCUTzJmzVtVZi7ODn6/jyXLN2Q0kQIws5QvgVPdNWmUx+N/OJf7HhvHmvVbcQ56dW/FPTeNxOvVMrKSPim92sysMzAQmJrgsavNbLqZTd+wYUMqD5tSv/5wHOsKCigMBQlEIhSFQ3y7dg1PTy/3kmos5wJEt/4Rt64/bl0fohvPwAVnJdivBBfZFE+4ZF9MeOXLnUlUaV6flxkffVfh87ZvKWDiW1OZOm4mwUD53p5kFOQXJdxetLV4jz9b5xyPXfssgaIgLhrbNxyKULStmEBhkAOO7ENWbhb1GuWSlePn4JMGcvHvz0lJ3Hvr0AO7lukp2iE7y8fRQ3um5Bgd2zbFm2AuVDgcoVULDSNlSq9urRn9+BW8/szVjHnuWp65/0Ja6+chaZayLhYzqw+8CdzknCtXwMc59yzwLMDgwYOr5TvztkCAmWtWlyslEIiEeX3u99x8yKEZiix1nHO4jWdBZOFPG8NzcFsugWbvYL5OOFeM23ovlLwfe9zTBBr+Acs5JnGb0fxYzSZvu33q3XIuCK4YrGGNGDrdF16/F7PyHSUGFc5LGvfcxzx147/xZcV+Lc2MP717B30Pq1ydrv0GdWHB1z+U2961f6c9nvftWwrYuHpzue3OOb6fNJ+3N49i5cLVrFq0ho592mdkDliLZg249mdH8I/REwmHI0SdIyvLxynHHkCf/VIzxHXeKQfy8aR5REoVpPT7vPTp0YaOKveQcZnuEZS6LSWJlJn5iSVRo51zb6WizUyIugrqDhGbN7U7zjkmr1zBuwvn4zHjjF59GNy2+q0/5bb9qWwStfOBIK7w31ijP+Dyb40XrYwPB0XX4fJvgmb/xfwH/PSU6Hbc1tsgMBHwguXgGv4BT+7ul0pxLhiLo/htIAqe5tDwXiyn9ix0e9zFRzLh5S8JFJXtlYpGoxx4fPnyEcvmrODpXz1fZh4TwG9HPshra/5Jdm7y846uf+wKbjv2j4RKgkSjDvMYWTlZ3PD4FXt8bk69nAqTrQZNY29e7Xu0pX2PzC5afe7IAxkyoDMfTZxHOBzlyEP2S1kSBdClQ3MevP0MHnrmAzblF4JzHHpQN+68vnbc9SsiyUvFXXsG/AuY55x7pPIhZU7jnFy6N23GvI1lhx79Hg8n7bf7IYK7J3zMmPnzKA6HMGDM/Llc0n8gtx96RBVGvG+cK4HiVyt4NALh+bjI+ngSteuwVABX8A+syVM/tZf/Swh+zc46Ta4Ytt6G87bZba0pt/UOKPn4p2NE1+DyfwVNX9yrGlUutAC3/SEIzQRrDPWuwPJ+hln1mRdxwBF9OO2GExjz+DgAPF4PzsHvX7+FnARroH0wagKhXe4+AsA5po37hsPPOiTpWPoc0oMnpz7ISw+8xQ/fLqXrAZ248K4z6dKv0x6fm5Xt56jzh/H5q1+VSfCy87I569epqZqdKp3bN6vSO9UO6t+J15+5ivxtReRk+8nNyaqyY4lIzZGKHqlDgYuB2Wb2bXzbXc65cSloO+3+dvyJnPfGq4SiEUrCYfL8flrk1ePmg4dV+Jzv1q1lzPy5FIdjb4QOKA6HeWHWN5zTpy9dm1STrv/IWnY7Lc7fL1YmYEfNpTIcBKfhit+HnOMgsh6CMyhb7BIggCt8Dst6IuEhXHQzlHzIzt6uMs/7O5b1zG5fggv/iNt8Hrj4vB9XBNv/housxBretdvnpttVf/4ZJ145nK/Hf0Nu/RwOPWMIDZrUT7hv4dYiopHyvZ7OuTK1mpLVef8O3DX6V0k998anrqJgcyEzPpqFP9tPKBDi5KuGc+p1yfXGhENhpo37hk2rN9N7aA+6D4gVjd2+pYAvx3xNsDjIQScOyMgw4Z6YGU3SeKOAiFR/qbhrbxKxqR+1Qq/mLfj8sisZM38ey/K3MKB1W07svt9u79j7ZOkPBMLlexOiUceEZUurTyLlaQkJKiDHeLF6l4M1BFfBJGe3Fbf1t1D4DDS4EywrccIVWVlxDJE18eftmkg5CC/b40twhf9IcMxiKHoZV/8XWDVb/qX9fm1ovxdDTIeePiQ2QX2XpCkSjjLouAMqeFZ65ORl88ext7N+xUbWL99Ix17taJjkYrirFq/h10f8nuLCEiLhCGbGgcf3Z8RlR/PABY9iHiMadfzjNy9w3u2nc8k956b41YiIpFbtup8/RRrn5HLZgEF7vX+e34/X4yG6yzwqj8fIrUYlE8yTh8u7EIpeBkq/YRs0/DPmjc3pii1O/AJQnKCVIgj/CIEvEyRDAH7IqriWlbNG4BL1sHggay8ShuAsIMEt7eaPJWI1YPmaRA46YQADju7Lt5/OpqQwgJmRlZvFBXeeUW3WrmvZoTkt48UtA8UBJr01jbVL19N9YGcGnzAAr3fPNxr88Zy/sWXd1jJ3C07/4FumjfuG8C5Dm6/9ZSxDThxIryH7pfaFiIikUPV5l6/BRu7Xi0enTCbRIrkndK9ebwLW4DacpwEUPg9uO3i7YA3vxrJ/Klpo9W/GeTtAwTMQTdS7FICS/4GnGURXl24drB5WL/Ek5mjxeNj6a8onQgaWi9W7bs8vwNcNIosp17PmQuCt2sn94VCYSDhSqYnfFfF4PPzh7Vv5auzXfP7aZHLqZXHCFcPZf1hqbt9f/O1SZn8xj8YtGzH01MEJ52ntrTVL1nHjsN8SKApQUhjAn+3DAdFIlKatm3Dx78/mhCuOKTdJff2KjaxcsLpcyYVgcQhLUFogWBLioxc/VyIlItWaEqkUaNewIQ8OP447P/kInyc2Byniojw24mSa5uZlOLqyzLxY/Rug/g04F0lYrsDMsLxzcNmH4zYcR/mJ50B0E7Gi9qV5oMHtmLdl+d0j22HrTSQcWvQdgDV6APN13nP89a/FBT6jbI9aDuQMx7xVsxp9QX4hj133LJPenkY0EqVr/07c8s/r6D4wtQtCezweDjvjYA47I3XV6aPRKA9e9BiT351ONBLF5/fx+C+8/OXje5KO/+FLn2Trxm0760qVnoS+YcVGnvrV8xQXlnDmjSeXeV44GE6YMAEJLwsXdURCqSmoKSJSVarPbU413Om9+jDlymt4YPhxPHTs8Uz7+XUc1617psParT3VfDJv6/jSKrteJtnEJovvOpcqEi9pkEDxKCqcn2V5mD/W6+CiBbjAl7jQdwmLRZq/D9bkGfB2BLyxWHLPxBo9tNvXkiznHHeM+BOT3p5GOBgmGomyeOZSfn3UPQnrK+2rH+etZOKbU1g2Z0UKoi3vk/9OZMp7MwgUBQkFwhQXlFCwpZB7zng4qUKrRduLmTdt0c4kKpFAUYAX732dSKRsEtSmaysatyg/h82f7cPjLZ9g5dTL5shzK77JQ0SkOlCPVAo1ysnhlB699vl5zjkWbd5EOBqlZ7PmeD3VJ7+1xk/gNl8QuzvOhQEDf38Ifw+usPwTohVUrQ/vbgL6sthTC0fD9ofAfOysL9XkX5iv7G36ln0o1uJjXLQQLBuzqruMF81cwo9zV5SbvxMOhnnv7x/u9Vp1uwoUB/jDWX/lu8/n4vV7iYQjdO7bka79OrJ5bT4HnTCA4y87mtx6OZWK//1/fpSwwvq2zdtZOns5XQ/YcwmEZASKgxRsKaRRqcVjzYy7XvoVd4z4E5FwhGBJiNz6ObTp2oqTrz6Wf9z6IpFwhEg4Qk5uNkedO4wBR/etkvhERFJFiVSGLdi0kWveG8OGwkI8ZuT4fDx6wskc2iH2BrctUML01atpkJ3FgW3a4UlzBXDzdYQWn0HgC4iuA/8A8HXHrU9U18gP2Ucmbij7CCipoLcqup5oYHIsiaLkp46ryArc5suhxScJi0Kap+pvQ1+9eC2eBIltKBBi2ffJ9yL9+7cvM+uzObFhsfic/gXTFrNg2mIAvp0wh7ceG8fTX/+5UuvyVTQ0ZmZE9nEduuXzV/HMTc8TDe++OC3EepnqNy4fd5+hPXlh0RN8+J/PWPfjRvof0YdDzxiCz+/jwOP78+nLkygpKGHYaUPoM7RHrat4LyK1jxKpDAqEw1z45qtsKflpvk9hKMTV747l00uuYNzihTz85Rf4vV6cczTMzuaF08+me9NmaY3TzA85w8tscw1+C9v+wE9zlfzgaYjVuypxGzknxApxJppvZTlQ8ESCxxxEV+OK38HyTqvkq0hOlwM6JUw4snKz6H1I8pOg//fvT8vMLdpVoCjAxpWbePPR9ytVAuDYi49g6ffLyy1anJWTRdf+e98btXH1Zm4cehdF24oSrQ9cRnZeNufffnqFS+E0adWY8249vdz2dt3bcPHv0rtOn4hIZVWfMaQ6aMKypQQTFGGMuCiPT5vMX7+aSCASoSAYpDAUYk1BAae+/CIrt21jaf4WXv3+Oz78YVHCGlZVzZN3Ftb0X5B9DPh6Q73LsGbvYd4WCfc380L28ISPAeAKSDyHoE5Y5QAAIABJREFUKgrb7saFl/y0q4viovm4iupdpVCn3u0ZcExfsnJ/qmLt8Ri59bI58ee7eT17ECzec+zBkhATXp6U9DEATrrqWHoO7k5u/dgQYVaOn5x62dz9ys17Va5gh7FPjidYEiyXRHl9XkZeezytOsd+7g2b1eey+87j/DvOqFTcIiI1hXqkMmhjUSGRBGv4BSMRpqxcTkmCBKkkEuHY//wbM/CY4TEPfq+H0WeeS+/miZOYqmJZB2FZB+39/nnn4IITYkvJlOYikHM6FDxK2bvxdgjhCp7BGv+FaNE7UPBniG4FfLi8C7EGt1TpPKl73vwNo+97g/f/+QmBogAHnTiQqx++mIZNkytKCdD/qD7M/Hj2Hid8r/txI9FoNOHw4t7wZ/n5y6f3MP2DWcz8ZDbN2jTm8LOH0qh5fZbPX4U/27dXFcQXfP0DoUD56zE7L5uDTxrEr56+ikg4Uq4XauXC1Sz9fgXtureusvlYIiKZpEQqg4a0a5+wJnye30+e///bu+/wqKr0gePfc6elN0LvvaN0ERClKBaaioi9NwR1VQTRxbp2/a2ydlRW7J21I4hYQZDepHdIQiB1+j2/PyYEhrmTDqG8n+fJQ+aWc89cbjJvTnmPM2oOcp95SFeTH66b8Rm/XH390T2mxHkqxAwF9xeEZv3ZAQOSn0TF9EO734XgFosTTfD9ivbOhdz7OBBs+aHwHTTBEpeH0cFMdOFb4J0P9gao+GtRjrIPYnY4HVz18Giuenh0mc8pzZjnr2Fcr0n4PL4Su/iUgqU/razUoGvDMOhxdmdadG7CM9e9xOsT3sEMmihDYXfYqd+yDpM/vqvEhYebndSYZXNXEfCHB1NBf4D6LesAhAVRfp+fhy96loXfL8HutBMMmLTs0pRHv7qXuMTYCr8XIYQ42kjXXjVqVSOds5q3JNbuKN4WY7fTqkY6ozt0wlGOVogcr4cVmRmHo5pVRimFkfwwqsa7qIRxoZakmjMxYgejVCykvU0opYEFMwudcy+RLVYeKHw/tCCzBR3chc46L5SpPbAEPN+g91yC6Z5ZlW+t3Bq2rs8bq/6PURNG0PO8rtSPsoyMzW5jz469lb5eMBjk9j73s+C7xcVr+mlT4/f62bxiG3eePjkiSDrYiLHn4HCF/93ljHHQoW9bGraOTIQ6/eGP+WvmUnweP4W5bryFXtb8uY4Xxk6t9HsRQoijiQRS1eyZM8/m4TMG0KVuPTrUqs3dp/bhvfMv4oK27WmQVPZ14wyl8AaP/FipilCODqiEW8A1EJ33BObunpiZg8DzI7jOjH6iWUKgaO4L5aAyw3M76fwXQOdyYJFkE/BA7iS0Ln322eGUWjuFK/45kkdmTGDU+GHExEdmGw8GgpUa1L7fgu+WsC8zBzMY2c6ptcZd4OXPbxdbnBlSu3FNnpnzIK17tAgtXxPjYNCVp/PAp3dbHv/Vqz/gdYcPcPd7A/z0wa8R+aWEEOJYJl171cxQivPbtuf8tu0j9n01+nIGvP0Gu/Lzo3bzFZeDolOtOlVSJ23mhLrYbPVRxuFZ500HM9B7RhQNMjchuDeU/sBWgSSmyobeNxH880Nl2xqGEnQqO7hnYLk2n96Hdn+FihtSqfdRVfpf0ocPn/qC3Zuz8HtDXX2uOBenX9SLes1L/3/1+/yYQTPq8jU71+8m4IsewJjBINk7S275atmlGVP+eIxgIIhhM0rsRvZa5K6CUDqGYMAs10B3IYQ4mkmL1FEsxuHgq0uu4NyWrXEYBoZSdKlTj/Y1axHnCHUHOgyDGLudZ846G0clP5y0NjFzH0Zn9EFnX4nOOA0zZ+JhmR2nC6cVDTo/uFXIDcFlJZxlAM5DtsWGvvzzCGVa90NwAzr7cvSei7FMt7Bf/nMVyu59OLhiXUyZ9xgX3TWEBq3q0aJzU259/hr+8XrJ6w/mZOXy4AVPMzTxcoYmXcG4XvdaZklvdlJjbI4Sng8N7cq4rp/Nbit1LF7ngR0tl4Np0aUpTpfD4gwhhDg2qer4IOnWrZtesGDBEb/usSxomgS1xmmzETBNZm1cz9zNm0iPi2Nkuw7l6gaMxsx/BfJfpDhDJAAxEHcZRtL4Spcfdq09F4E/eleStSRIew3ynwX/CjBqQ8w5UDg1lHm93OyoWr+jjMrfu+qgteaGk+5k25odBIoSbyoFcUlxTFv7QlhWca01406dxNpFGwhatEyl1knhwx2vWV5n7V8b+OCpL9i2Zgcd+rThoruGUqtRyTNEd27YzZgeE/AWevF5/DicduwuO8/8+CAtuzSrxLsWQogjTym1UGvdzXKfBFJiPzOjV9FixIdQcahai6p0RqCZc0/R7L2yjlNyomq8HzHbTrtnoHP/WcFAyomqvRClrLvDjnaLf1zOxLMfjVi+xma3ceVDoxh9SC4nd76bRy9+jnlfL4ooyxnr5Nk5D9K6e3jX6vxvFvHQyKfxuf1orbE5bMTEuZgy/3EaRBkgv9++zBy+fPl7Vs9fR9OOjRh6y2BqNjiyyWSFEKIqlBRISdeeOMDMtd6u3ViOM6oEFXcNkd10RekQIo+G1OmWKQu0mV/hIIqYs454EGVqE2/QWyVdip89/1VEEAWhAeqf/N+X7Ny4O2x7bEIsdaONt9Ka1UXL0xzYpPm/m17BW+grrm/QH6Qwz83Uie+UWr+Umslcdv9IHvnfRK7916USRAkhjksSSIkDHB2tt9taVHnCS+VojUp9EYx6hAIqJ7gGgbOP1dFQGNntpANbIO/xKFcwsEzShSt0LXsrSLinotUvt4AZ4L0tH3DjwjHctPBW7l46kaX7ShoPVrJgMMjCmdHPz8nI5dp2t3NTl7vZvfnAQtK1m9QMy9K+n91hjwh0crJy2ZeRE3GsNjVL5qyocN2FEOJ4IoGUKKaSJoGK5cBjYQCxqOTJ5S5La432/YkueAPt+Q6tfRHHKFcfVM0fUTV/QtWaj5H6b7A4Dkzw/oQOhnc7avdHQLSUDyYRS87YuhYFbkBwE2QNxCx4s5zvrGKmbZrO7N1z8Jk+TEwyvZm8sO5F1udvKP1kC+48D35fyZMA/N4AG5du5q7+D2AWZdAfdHk/7IdkH1eGIiYhhh7ndA7bvn9ZGStJNSqe1V0IIY4nEkiJYsrREVXjE4gZArbm4DorNC7J2aNc5WjtQWdfgt57PTrvGXTOBHTmGaEWpEOvqRTKVgNlxIU2mLuilGpHe2ehvT8fSL4Z2Ez0QMpCcAmYWwBfUdoFD+T9H9r7czneXfkVBAr4bc/v+A4JEn2mjxk7vgx7vSJnJatz1xDU1l2pnkIv374xm/GDHsIMlD6+zDQ1OZm5LP9lNQDJ6Uk8OWsy9VvWwRnjwOFy0LJLU/7v54exO8JbHV2xLvpddCrOmPBZdjFxLi688+hIGyGEENVN8kiJMMreApXyVKXK0PmvgX85xakHtB+0G51zF6rGh9bn+NdCYDnYmhQtE3NokFAIeY+hUYCJThgP3p/KWTOroMuNLngD5epbzrLKLtu3F7uyE9CR19/p3gnA/D0LeH3jGxjKQGuNw3BwR6txNE84MMMtd08et/aYQPbufXgLrVruolCwd9e+4petuzXnzdXPk7ltD3aHjbQ6qVFPHffi9eTvK+SvmUuwOx0EfH6G3HIm514/sOzXF0KI45gEUqLStH8FeOeCig+lI3B/QmT+JhP8izHzX0fFX41Soe4lrf3ofWPB+xsoA4oHYSsiuuZ0wYHv8x6i7DP+SmFmVU05RXymn0V7F7HXv48W8c2oH1sf02KwvkLRJL4JGZ5MXt3wOv6D8nV5TA9PrXmW5zs/i9MIjWl6+6GPyNyebTnAvCRBf2R2dKUUtRqml3pubHwMD39xD5nb9pC5NYuGbeqTmJpQrusLIcTxTAIpUWFaa3Tu/UXZw/2AHfKeBhV9bA35z6MDq1Apz4TKKHg9FEThOShusoEq+pDX2Vi3JFXV8i5OcJ1eRWXBDvdOHl31OAHTT0AHsCk7LRNbMLDWAH7ImI3PPNCS5DQcDKs/hJ+zfsG0WK5Ga83ifUvokdYdgJ8/nVfuIMrusHH2tQNKzftUmpoNasisOyGEsCBjpETF+X4G9/8ILSQcJNQK5SkafxQt55QHPN+jAxtDLws/IHIh4iDoveDoQMUCJhvRZ+0dzAlGCir+6gpcw9qUdS+RH8jHY3oJ6CBe08vfeWtJsicxquFIajhr4DSctE1swz1t7qa2qxb5gQKCFi1WJiYFgQOpHSqSEfyOV29izPPXVOo9CSGEiE5apESFaffnhGdB3y9IRLfcwZQN7VsUGg8VdQkXDb6fiB5IOQgFSlZjhYKE0hwEiJ7/SkHsSFTiOJQRfYxQeezx7iHDE7mwss/08fOeX/hXx4cZWLs/+3z7eGPjNB5Z+RgA9WLr4VTOiMHoWmvaJbUtfn3uDQP57wMf4vOUbcmermedxJlXnl7iMQW5hfzvxe/45fP5JNVIZMS4c+h+1snh9ff4+H3GAvbs2EubU1rStmfLKk3OKoQQxzIJpETFWXRHFe0o5TwP5E5A504GWz0gh4juO6MRmJuil+HqBySD95MoB5Swxh4AtlBrVBUFURBqQVIWQ7uA4ll4QR3k4ZWPke3LxiwKEre7t2MoIyyYMrbZSJ5Tk4/Vl/Qa2p3O/TswfNw5vP/45xGBlFIHDS0rYtgM/vHKjSXW153vZkz3CWRuzSouc9nclVx09zAK89zMnDYHn8cf6k5UCjMYxO500LFPGx7+34SIWX5CCHEikt+EouLsTUuPVyztD8C8ENzG/nxVodYtJyg7KvVJdN5z4PudiFYpRxdUygvgX4L2fkVk12DptA6wMW8pcfYd1IutV5E3ESHdmU6SPZksX+Tg9TquUEbxJfuWkR/ILw6iADQau7LTM60He/172f1FNiseWMfOQC5LA6v59o3ZdB10EnHJsRTkRmZxDwuiFLQ/tQ33/PfWUsdFff36LLK27QkLzDwFXt5+8CPsTjt+b2TLVzDgZclPK/j8hW+48B+SAkEIIWSMlKg4e3MqH4v7AQ3x10DMeRB/Iyr9e5SjEyrpYVCpQFGOKRUHRl1UygsoZUMHs4vOLz+vNvg4cx/3L3uQ/23/qpLvoah6SlHbVcty3/LcFczN/IUthVvCBpwX18f0kmCP56baN7DywQ34PQGCgVArlqfAy29f/MkPb89FmyW39sXEuTj3+oHUbVobgIKcAl6fOJ3Lmt3C1W1u46NnZhDwh1r//vhyIV53ZF201pZB1H5+b4BvXp9VYj2EEOJEIS1SosKU61Q0NiJn1ZU0fsmKH+ztMBJvCy/f3gBqzgLP1+jAOrA3g5jBKCOp6Ih8KrIGoNdULPekssqbDAT4ePunxNliGVCnf7nLOlhBoIA1+X9b7gvoAO9ufg+f6Q9rjdrPZbhoFN+IRbOXY3fY8B0y9ExrXWqPKYSCrr9mLWXQFf3wef2MO3USOzfsxu8N/R9Nm/wBS+eu5OEvJpBWJxWlVIXW/bNqGTuStq7ZztyP/0BrTd/ze9K4XcNqrY8Q4sQlgZSoMGWkoRPvgbwnCQVNZqjVyHFKqLXK/UlR+oKyCG8B0dqLLvwUvN+CVhDcDuY0yH0Q03UGKvkR8JS/VSSgYWZeAz7NaczBs/qmb3mPBvENaJ3Yqtxl7pcXyMembJaJNwHcZvQuyAR7PN1Su7DQubTC14dQq9gfXy5k8ognad2tORlbs4qDKABvoY9Fs5azbvFGRow7m18/nxeW3DM0hrz04Krdqa0B2LNzLx89M4Olc1ZQt1ltRt41lDY9WpZ4bmV9+PQMpk3+gKA/NKnh/cc+Y/TEEVx634WH9bpVZeeG3fzy2XyUgt4jehS3Hgohjk2qKlahL69u3brpBQsWHPHrisND+1ej3Z+FEmbaGkPBi4AGXdZWCxsq7T2UMzRbTGsfes8oCGzAelagAqMhONqD95ty1dVrGjywqzO7AnER+wwMBtc5k5ENL8BQ5e/1DpgBbl10O+6gVZ1L1q9mX65pehU+j4+Rda6jMLf8ZRxMKYVhUwQtlpFxxTq56dmrOO/GQXzzxixevO1NDJtBMGBSp0lNvG4fmdv2FAUq1oaPPZvW3Zvzn9vexFPgIeALopTCGePgnrfH0ff8npWqfzQ71u/i+o7/iBhw74x18tLCJ2nUpv5huW5V+fi5L3lz0ruYZihHvzIU1z5+KeePO7e6qyaEKIFSaqHWupvVPmmREpWmHG1QjomhNfYyTg3PQF6mApLB0fHAa/f/IBgtiALQoTXzjFM5MEi9dD5T8bc3yTKIgtCsu5m7fyDOFsuQ+ucVby8MFPL+1g/5Y898TG1yUkonLm08mjRn+Iw/u2FnVMORTN/8btRWqWhW5YbWwnPGOHnws/H8c9gToTqZmmAgGBrXZPU3jwKHw04gEAwbP6W1JhjQlgniTa3ZtXE37nw3Z18zgP6j+7D2r40kpsbTuF1D9mbk8Ox1L/HHVwujdifOePE7lFLF47j2X9Pr9vH8La/Re3h3DKPqh2D+9sWflq1lQX+QXz+bT6OJI6r8mlVl+7qdvDnpvYggcOqEd+g1pJu0TAlxjJLB5qLqeH8px8EOIA5UPCr1xeIlYwC0dyboMgRHnp8gdjgQEypPxRL62yA8x5HW4DMNfimozZSsdiUW6dcBPtsxozjTuNaax1c/xa9Zv+M1vfi1n7/2LuLBFY/gDUZOWTyjVj9ua3krdVzl+1BMsB9YdqVDvzY8tf5+Rvz3LLp+1IYz5nWj2+0dLc9zxTp5ceET0fM6WQRCfq+fGS99x6h6N7Bo9jJcsS469G5D43YNKcgt5KOnZ7B+8SZi4lxRyzWDZlgQdTB3voeMLVW77M5+hs2wrJNSoX1Hs18/m48ZjLxnWmt+/Wx+NdRICFEVpEVKVB3tpUwjohPuCY3FUakQcybKOGTtNqMGoRi/lKzmeifYW6FqfAS+X0AlQMxZoJLRZibgYqN7D0+segKv9lN6pvOQoA7yW9Yf9Kl5Kqvz1rDbszushcnExB10My97PqfVjFzsuENyewBs2Cwzlh/KZbgYXOdMILR48ZubpuEzfQTqFV3TC86LndTvnErmzfn4CvwYhsLhcjDkprPYtTETw2ZgBiPvV2xiDKm1U8jYmkVg/1gpDe680HitycOf5MNdrxMT52L7up2MO3USedn5pc4OLIkZDJKQEl/h80vSZ0QPpk58J2K7YTPoe8Hh6U6sKlFHUegS9gkhjnpV8iecUmqwUmqNUmqdUmpCVZQpjkGuXqBLSkdgA1tHjIRrUfHXouLOjwyiABV3MeAs2zXzHkH7VxaVNwplpBSND6qFYUtmXf56vDpAWYOo/b7YMQOAbe7txck0D+Y1vWwq2GJ57orclezz55QaRLkMF3ZlZ1DtAfRI686Wwq28tnEqhcHCiK5Bn/bhbG1j6PSB9B7RgzY9WxI0Tb56bSb3D33ccg0+V5yLC/8xhLfWPM/pF52KMqxachQLvlvMotnLuL7jP8jNyosMohTYnWX7m8vhstN9cOfDFkjValSTm//vapwxjrCv6564jHrN6xyWa5YmGAjy1w9L+fnTeeRk5UY9rveIHpatZspQ9Dm/x+GsohDiMKp0i5QK9cn8BxgEbAP+VErN0FqvrGzZ4tgSmsU3EfKeoHgWHxCK123g7FG8WHHJBaVAzCDwfAvKVdTNFy0oCULuPZiez1HJT6Fs4XmcPMHyJ+sEyPBmss+3j7oxdbApG/5DAhuX4aJhbPjA5kxvFtm+bFblrrbMFXUwp3JwTt3BnFGzH8nOZAB+2D2bgBl9bJVX+3C3LWDEuHOYdO5jBLyBA61MFnqc3ZlL77sApRQ2m2HZyqTReAt9TBn3RtjsvoPZ7AYX3TWUxXNWsPqPvzEPKscoCs5iE2Pxe/20792G8dNuLfG9V9Z5Nwyi5zld+PWz+Wit6T28e6UXZa6o9Us2MeGsh4vHPfm9Aa5+5GJG3jk04tgGLety5UMXM+2fH4S6+JTCMBTX/OsSGR8lxDGsKrr2egDrtNYbAJRS7wPDAAmkTkBG/KVoZze0+5PQoHPXQLA1QdmSUUZaqeeb+S9A/quEWpDsRTP/ytCa5JuPzr4M0r9FHTTjblvh9gq/lw+2fsTVTa4kyZGM37unuIVJoXAaTk5JD3UluYNupqx9iTV5f2MohbeUIArAp/18s/M7fsv6g/vbTSTRkRi2bIwVhSLeHsfnL3yDt7DklPLKUPQ4uzM2W2js2WkjT+Wnj37HUxB+XsAfJCEljn0ZOVHLcsa4aH5yEwZf059xve7FU+jFU+DF4bSTXDOJZ+Y8SPaufaTXT6NOE+uEpFWtZoMaDB979hG5VjTBYJCJgx9hX0Z4K9S0yR/Qrldr2heliDjYRXcNpffw7vzyaSj9QZ/ze1ZbS5oQompURSBVH9h60OttQMRgBaXUDcANAI0aNaqCy4qjlXK0RjnuLfd52rcE8l+jYuvOBMHMBN98cJ0ChBJkZvoyK1BWyO975vFn9kIURevoFQV07ZPaclXTK4i1xQIwdcNbrM5bE+qOK8dYF4/pweP1MHbRHdSPrYfTcGJgRA2mHIaDM2qdzn8y3iq1bG1qajZKL37dffDJ9Dy3C/O++gtPgRfDZmB32ul/SR8eGvlMiakOYuNd9BraDYfTwdNzHuT2Pvdh8wUwgyZ5e/N58qopPPH9/bhiXWV/88eB5T+vxmMR0Prcfr585XvLQAqgfou6jBo/7HBXTwhxhFRFIGXVXBDxcaK1fhV4FUJ5pKrguuI4oLWG4HrQQXThZ5Q9G7pVYSZe/xZ+ys7j613fkOPPxajEMECNxn/QmC+HcjCg1hmMbjyqeJs76GbRvsWlpjsoaeC5RrPNHb3lzIYNQxlc2OB8WiQ0p/fwHqxduMFyeZeDNWp7oOtRKcWk9+7grx+W8stn84lLiKH3+T0ZP+DBiOn4B6vdpCZP/TAZh9MBwL9vfo3CXHfxwPZgoY+1Czfw7qOfcvUjo0usz/GmMM9tOYNQa03+vnKmABFCHLOqIpDaBhy8PkMDYEcVlCuOc9q/Er13TFH2cwXapNSZeiUoNA0eWj+fDO8+dFEsX5ZZc2Xl135mZ85hZMMLsBuhHx1P0FOcKqEkDWLrs9W9rcSuu0PVcKbRN70PjeIa0jqpVXGKhHNvGMiMl79n57pdUc9VKpRBu2b9GgdtU3QddBJdB50EwM+f/IFhtw40laE47cJe3PvubcX5oApyClj1x98RswN9Hj/fT5tzwgVSHfu2tRzkHxPv4rQLe1VDjYQQ1aEqZu39CbRUSjVVSjmBi4EZVVCuOI5psxCdfQWY20ODyXUhULGB4QA7/Sn8a3cXdnv3FgdRh4Opg3iCHna6d7HDvQOlo3fF7ec0nAys05+TUjqVq4XMHfQwosEwuqZ1CcszFZsQS68hXUs8V2sYP/AhpoydGvWY/JwCAlG69Pqc35P73r8jLKmmaUafp5+9ax+Pjn6ODUs3l1iv40lCSjw3Pn0Frjhn8YzImHgXzU9uyumjTq3m2gkhjpRKt0hprQNKqVuB7wAb8IbWekWlayaOb96ZRC52DKFHyCjaZyPUQhUtUFGgUtnkS+bxXY3wlqFlqLIMDCYuuw+P6UWhcBgO7MpGwCJFgkJhV3Z6pvWgT3pv2iS2YWPBJnL9uWVqmSppxuH8r/4q9fygP8h3b/1I/0v60K5X+Hid2e/9zAtjpuL3RnbrxcS7GHbL4IjtiakJNO3YmHWLNkTEU2bQZM4Hv/HTR78zesIIrnxo1GHJbH60GXrLYFr3aMlXr84kb08efS84hdNG9sLukBR9QpwoquSnXWv9NfB1VZQlThBmFmirMT5BiBkCRnooU7mKgfxnsUx/YNRA1fyVd1c9jlevq/IqKlRE65ZP+/EFDgQfXjP6wPhYWywPtL+PWFsc/147hWU5yy1zUkUTY4uJui8pPQn+3llqGd5CHz999HtYILUvM4dnrnvZMohyuBycc/1AOvWzzgA/ftqt3HHa/QS8AcuB1trUvPfYZ+zeksWE/44ttX5VYdemDD5/4Ws2Lt9K254tGTZmMKm1U47ItQFad2tO627Nj9j1hBBHl+P/T0ZxdHJ0I7RMzCFUHCp2KEbSeIzEsaj4y8FIjTwOBcnPoZRiY8GmMl2yvAPP4+1xnJTcsXi2Xnm5g4XEGrHcs/ReFu9bUq4gCiDJnhT22m/62efLwdQmF95xHrYo45sOpgyF3W4L2/b7jAXF+Z/CjlWKgZf15eZnr4q6NEyT9g2ZvuE/3PD0FZYJPiE02Prnj39n47Kq6eZbPX8tEwY/wqj6N3BX/wdY9vOqsH3Xd7qTL6Z8y18zl/LhUzO4pt3tbF9XepAphBBVQQIpUT0cncC1f9Hh/WLA3gGcB8aXKBWDqvEpOPsSelwV2JpB2qcYrlCWjTjbwWVEV56B3gD5gQJ6pvXAaZQxy/oh7MrBP1c8RGGwsELnZ/lC69UFdZC3N73DzQvHcteSexj71+0E+ngZeddQy4DoYA6Xnf6Xhi9jo01tPdRJQWJaZKb5Q8UnxzPkpjNJTk+MeozWsHTuqqj7y2rp3JXc1f8BFn6/hOyde1kyZwUTBz/CvK9DXZvP3fgKnnxP8Vgvv9dPQU4hr979dqWvLYQQZSGBlKgWSilUyguQeC/YO4K9PSTehUp7IyyhJoCy1cFIm4qqvQpVezVGzW8xnO2L959ZZ1CFg53SfLvre3QFxl45lIMWCS3IC+RV+Np27Pyc+Su3L7qTHzJm49d+/NpPfrCAd7e+T+e72/HR7qnc98Ed3PXmGM6+bgA2uy20bEqsE2eMg8vuv5DmJzUJK7fneV3RZuR7csY4OG1k2QdJjxh3LnaHzXKf3WkjpWaS5b7yePkf0/AWhncBe90+XrrjLbxuL5uWb404R5uav2Ytq/S1hRCiLJSuhtUyu3XrphcsWHDErytcalK3AAAgAElEQVSOT6Y2mb75XeZm/kJA+6t8zl6McuHRpScJ3Z/vycSkbkxd0p1pLM5ZWuI5TsNJwAygUOVO1dA4rhEPdZgcti0nK5dfP/8Tv9dPz3O7RM00PuOl73jlzmkEgyba1DicdoaOGcwNT15e5usHg0Geve5lvp82J2JfYmo87217pdJJOs92XWw5s1Ap+LLgHYanXmm5tE1q7WQ+3Pl6pa59osjdk4fX7SO9flrULl0hTnRKqYVa625W+2RqiTjmGcrgiiaXcX6D4UxZ+zKr8irfpXSwsgRREMpZtX8c1Db3Nra5t0U9VqFoFNeQDG8mDpudggp0/+3xZUdsS05P4pzrBpR67tCbz6LroE789OFvBHwBTh3egxYnNy3X9W02G3e/OYZeQ7rx9LUvEgyYoDRJaYk89MU9VZLpPLlWMnu2R77PuOQ4HC4H/Ub15qcPfgsbOO+KdTLklrMqfe3jXdaObB679N+s/P1vDENRo14q46eNpUPvNtVdNSGOKRJIieNGgj2BfjX7VHkgdThoNJsLt1SqjCZxjcNe7/FmM3P3D2wu3ELjuEb0r3U6mwu3sNOzi3ox9Tg5pRO7vRm8vekd/s5fi9Nw0u+yvoxucD4Ow2LgfwkK89x8PuUbfv74d+KS4rjjlRup07QWdqedZp0aV1nLxugJw3n9nnfCZgi64lyMvHMoSinGvnAtmVuzWD1vLXaHHb/XzylDujF6wogquT7A3wvX8+6jn7BpxVZadG7KpZMuoGnHxqWfeBQzTZO7+z/AjvW7ixOs7tyQwcTBjzJ15XPUapheSglCiP2ka08cV7TW3PLXuAoP8D5W2JSNf7abRJP40Af61sJtPLLyMQLaT0AHsSkbpjZxKDt+HcCpHChl4DN9YYPuHcpBh+R23N5qHFneLOZkzGWPbw/tk9vTI607TosAy+v2cku3e9i1MaN4eZmYeBfn3jiIKyZfhCvWic1uPXaqvLTWTH/kYz588oui1zDs1sFc+69LwvJUbV61jR3rdtGkQ0PqNq0NwIalm3npH2+x8re/SUiJY8Rt5zDyrqHFCzmXxeIfl3PfkMfwuX1oHZoF6Yxx8tSsybTt2bJMZZimSfaufSSkxBMTd3SsR7h07kruO+8x3PnhucocTjsX3T2Uqx4+sbLUC1Ea6doTJwylFMPqD+G9LR9Ud1UOq3gjHpfhwm/6cRgO/rtpOh7zwIfi/i5GX9FagV7ts1xQ2a/9LM9ZyS+ZvzJt83SCOtQ9uXDvIr7a8Q3/bH9v8eLM+/3w9lwytmSFrdHnKfDyybNf8vnzX+NwOjj3pkFc99illU5MqZTi8vtHMuruYezZuZe0OimWXYaN2zagcdsGxa93rN/F7X3uKw4Usnf5mP7wx+zelMltL91Q5uu/MHZq2GB3bWq8hV5euuNNJn9yNzmZuTRoVRdnjPVkh9nv/cyLt78VqofW9L+kL2OnXBv1+CMlY0uW5Xa/L8D2EpYeEkJEkkBKHHNMbbLDvQOn4aJWTM2I/Q7lwI6dgEXm9ER7AvmBgsO6jMyRkBvMZcKySdiUjZOSO7E2v+IJSe3KzvQt7+EzDwQMXtNLpjeT73bOZHiDoWHHz/92EZ4C63FjwYBJMODly5e/x1vgLVfQUhJnjLO4paksPnjyC3yeQ2b7Ffr4ftocrnxoFCk1k0stIxgIsnWV9Ti31fPWcXmzMTicdrTWXPfEZQy9OXxc1uIfl/Ps9S+HBWKz3/sZv9fPhLfHlfm9HA6tuzcnGIgcxB8T76JTv/YWZwghopH0B+KYsixnOeMW/YOHVv6LScvvZ9Kyyez2ZIQd0y6preUYHQODFEcKaU6rBJ9HB4XCwCDWiClTItCgDrJ435JKXdOv/QTMyKDTr/3My54fsb1mgxoYtpJ/dewPWgpyI7tY3flufnz/V759YzaZ2/aUWM7mlVv5fMo3zHrnZ9z57lLeyQFr/lwXGvx+CIfLwbYyZIQHMGwGsQnWOcq01vi9fgrz3LjzPbx699ss+D78/+GdRz+JSN3gc/uZ+/Ef5O3NL+M7OTwatq5Pr6HdccUdaBmzO+0kpycx8PLTqrFmQhx7JJASx4xMbxbPr/0PeYE8vKYXn+lnu3s7j616EvOgXE91Y+twWs2+uIzwLiATk63ubWT79h7pqpdJTWc6nZI7clOz6/HrQJlbzUzM4nX9ysuu7DRPaBZ1v1V+riE3nYnDVfq1bA4b2TvD7/XiH5czqt4NPHfjK/zntje4stVY3nn0k4hztdY8d9MrjOk+gdfGv82/b36VixvcyMo//i7Du4KmHRtZJiv1efzUbVa2li2lFMPGDg4LNqLxFnr58Kkvwrbt2phheazdGXlfqsPE6eO4+pHRNGhVl/QGaZx34yD+8+fjxMZHX5pICBFJAilxzJiTMTdimRWNxh10szL3wEw9rTVdUzvTKqElNZ3p2LBFnHM0yvRlsSbvb17bOJWAtlrQOTqNpl5M3XIvZ9M2sTW3txxLnZg6oMG7JEDhlz58K4I4lIMBtftHnNO4XUPu+e844lPiiEuMjb5UjKmp1ejA7C+v28s/hz+JO9+DO8+Np8CL3+Pnvcc+iwiQfv18PrPf+Rmv24fP48ed76Ew180/hz1BMFh6vq1R44fjOGQckjPWyanDulGjbtlbJK98YBSDLu+HM8ZBXFIsDpcdu9N6sHpWUeua1prv3vqRvGzrVietKXMwdzjZ7DYuuP083lz9PO9teYUx/76G5PTKJ1EV4kQjgZQ4ZmT79liuV6fR7PPnhL7Xmtc3vhFaJDh3OZm+rHInuqxOHtODv5xBFITuweVNLsVQ5fuRXpu/ngnLJjEiZRjZV7nJvr2QnGc87BlTQMGYIN1iu1ie1/f8nny8eypPzppMq67WC/Z26tc+bGD4wplLscqK4HP7+P6tOWHbvn1jtuU4LJ/Hz6o/1pb6vpq0b8i/vr6Xxu0boAyFK9bJOdf2Z/y08i2kbLPbuO2lG/hgx2s8N/dh3t38EnZn5ExGm8NGl0GdAHjzvveYMnYqBTmR3ZqueBeX3X9htQ82F0JUHRlsLqqcN+hlRe4qTB2kfXK7iFlfFdU+uT0L9y7Ca4Z/wJrapGVC6MN8Td7f/Jm9AK/psyriuJbiSMGubOVaHNljevCaXl5ZNJXARo0+6LblLCvg1bun06Z7C/buzqFj3za0792mePyZ3WGnYet6rF+yybLsrWu2h732e/yWMwe11njd4f+nVtnKIZTRPHhIpvNta3fy/uOfsXreWhq2qc/oiSNo1bU5nU5rx+vLnsPn9WN32MLSJZRXQko8CSnxAFz/+KW8On463qLcVjaHjbikWC6+Zzj5+wr45Lkvw2Y07pdUI4GxU67j9FG9K1wPIcTRRwIpUaWW5SznhbUvFncxmZhc0+RKeqWfUumye6Z15+ud35DhycRfNK3fZTjpkdaD2jGhrpKFe/86IYOo1gmtSHOmYlN2oHzvX6PxpBVixgfDTvV7/Xz1ykxmTZ+Lz+PHGeOgY9+2PPTFPdgddjyFXmb+9yfLdfsA3HnhOYo6D+xIwB8ZIMXEuzj9ovA1/gZefhorf19j2SrVtler4u83LtvMbb3vw+v2YQZNtqzazp/fLOKBz8bT7cyTAHC6ypdstDRDbxlM3eZ1+PCpL8jank2XgZ0YPWE46fVrsPL3NdiddstAqmaDdAmihDgOSSAlqkxBoJAX1r4Y0WI0deNbtEhsQU1XxbMle4IebMrG/e3u5ftdPzAvez4uw8WAWmdwanqv4uPyA0dmNlRNRzpn1xvMmrw1zM9eUOq4K4dyFAd/ZaFQOA0HQW2WabzUZY1HYzfsjGo4kncOSWWwn4GBUsq6xUoDUfJU7g9mPAVels5dxTdTZ9P+1NbcdcZk/L6A5ew4w2bQ45zOYduS0hK55d9X8+LtbxH0h86LiXfRfXBnup8dfmz/0X348b1fWPbzajwFHhwuO4ZhcO87t4UFRq+Onx6WVDLUuuXj+VteY9raFw7b2nHdzzqZ7medHLE9vUENAr7I/y+lFPVa1jksdRFCVC8JpESVWbj3L8vtGpPfs/5gaP3zylXeytxVvLnxv2R4Q7OfDAy6pJ7MNU2vYlj9IZbnFATKltG8c/LJLM1ZVur4qTquOlzSaBTPrv138bbXur1cnPF7QO0zGOHexcfbPmVl7ircQXdYUOVUTnqn9+Kqpldw9+KJZPisZ3I5lAONJqADOJSDGJuLia3HM2nFZMvjD2bDVhw4nV7rNNKcqczY8RVbC7fgNX04DScaTYPY+rRIaM7sjDkRwZltrwMzq/RB+N5CL2/c+y6eAo/lYsJAaGB2YixXPXRxxL5zrx9Eh95tmPn2XArz3PQe1p0uAztFBDw2u41HvpzIolnL+PO7JSSnJzLwstOo2aBG2HErfl1tWYeMLVkU5rmJT4or9T1VpVoN0zm5fwcWzVoetv6fM9bBqLuHHdG6CCGODAmkRJXxBr1haQj2C+ggnqDH4ozo1uat49k1/w5rxTExWbh3EVnePTzQ/n7L1oayzMiLt8UzrtUYNJo1uWvZVLiJWFssszN+JMOTgdf04TKcOA0X/2g9jtoxtZnWY2rU8urG1mFsy1sAWLJvKW9vfpc93j04DAf9a53OyIYXAHBBw+FM3fBmcbZxCLU8tYhvzpiWNzE74ye2u7fRPL45/Wr1ZUvh1jLdqyDBsAHqnVI60imlIwDZvr1sLdxKmjONhnENimc4Znmz8JhenIYTm7JxesEZTOX9Ml0vf19B1H2xCTFcNH4YQ28+i6QaiZbHNG7XkOseu7TU6xiGQddBJ9F10ElRj0mqkRixzAmAzW7giq2eAd33vX8Hz17/Mr9+/idKQWJqAuNevJ7W3VtUS32EEIeXBFKiynRM6cAHWz+K2O4yXJycGv3D0Mqn2z+37ArTaHZ6drKpYDNNE5pE7O+e1o01eWuijpNqldCC21uOK57d1i65De2SQ6vd96vZlxU5K9lUuJl0Zw06p3bGE3TjM/2Wa85ZOSmlEyeldMIb9BYvBPzNzu/4dvf3FAYKSbQnEvTn4jScmASpHVObW1veQoozmQsaDA8rK2iG1swrS9deiwTrmXNpztSwBKSxtlge6jCZRXsXszZ/PbVc6ZxS4xRefnlamd5faeo0rcVl911YJWWVxYV3DuH1Ce8UD/yGUJqDs64+o9LL01RUbEIsk967A3e+m4KcQtLqplZqoLsQ4ugmgZSoMnViajOo9gB+yJhd3NXkMlx0Se1My4Ty/TW+3b2jhL2KDG+GZSB1ao1TmJPxE9vc2/GaXhQKh+Hg/PrDGVR7AHYj+iNvKIOOKR3omNKBXzJ/5c4l4/EGQx/Q/WqexuhGF5V4/sFcttC0/7c3vcvcrJ+L78de/16chpNRjUbSLL4pjeIaRh3H0yqxZSjgK6WRzWW4ioO2srApG93SutItreuBbTYbSoVyHB3K4bIT8AUpbYFzV6yTQVf0K3M9qsKwMYPJ2JLJF1O+xe604/cG6D28Bzc9c+URrYeV2ITYqJnRhRDHDwmkRJUa1WgknVI68mvWbwR0gF41TqFTcsdyD/qtF1OHnKLcUIcytUnDuIbFr/2mn/nZf7IsZwVpzlSubXo1mwo3s2DvQhLtCZxR83TLoCuaJfuWMm3z9LAB23Mzf0ZjckWTy8pcTkGggJ8y50a0rAXMAGvz1nFGrZKDDpfNxfVNr+XVDa8T1EFMLJY8UQ7Orju4zHWKZuBlfflh+tywlh0Ije257rHLyNubz/uPfx427udgSiladGnKsDGVr0t5KKW44ckruOTeC9i+bhe1GqWTWqv0dfSqyq5NGbw6/m0Wfr+EmHgX5954JpdMHFGlrWGmaRIMBHFY5K8SQlQ/CaRElWub1IY2ia1Zm7+OPb5sMrwZxekJyur8BiN4cvUzEUGIgUGH5PbUi60LhMZlPbzyX2R4M/GaXmzYmLl7Fre2uJnbWt5aofp/vn1GxKw3n/YxN/MXRjUcWdzaVJrdngzshh1/MPw9mJhsKthUpjJ61OhG04Qm/Jb1O/mBfHZ7M1i+bwVOw0FAB+lbszfD6pVvEL+VDn3aMvzWwXz2wjdo08Rms6G1ZtL7d9BrSDcACnIK+ezfX1m2WtkdNu5+c0y1JZpMSImndTfr7s3DJXdPHmN6TCA/Ox/T1BTmuvnwic/ZtGwz//zorkqX7/P4ePXut/nmjdn4vX6atG/IuP9cR4c+baug9kKIqiKBlMDUJn/nraUwWEirhJYkOBIqVd4+3z4eW/0Ue317UYSm23dP68r1za4tc+btVoktua3lrfx38zvFs/ZijBjOqjOIoQcFDjN3z2KXZ3dxwBUkSNAM8uqG13m+83PYVJQ5/SXI8lkvpKuUIj+QX+ZAKt2VTsCMbMFRKOrH1S9zfWq60sNmKeYH8sny7qGmK514e3yZyynNdY9fxuBr+jPvq7+IiXfR5/yeYUuGXPf4pXz35o+WGbttDptlGoSq4nV7mfXOL/z57SJqNkjjvJvOolGbst/Dw+HLV2fiyfdgmgciS6/bx7yvF7F93U7qt6hbqfIfv+IF5n21EJ879AxtXLaFCYMf5T9/Pk7jtg0qVbYQoupIIHWC2+7ewVOrn8Ed9KCAgA4wov5wzq13doXLfHH9K2R4MsK6ohbs/YvmGc0YWHtAmcvpmNKBp1IeQ2sdtWtwXvZ8y0HpATPAtsJtNI5vXO76N4tvwuJ9SyO225WNZEfZu42SHIn0rNGD+XsW4DsoZbjDcDCk3rnlrtd+CfYEEuyVC3ajadCqHg1a1bPc53A6uGj8MN55+OOIhJMJqfE0bG19XmUV5rkZe8pEMrZk4SnwYrMbfP36LCZOv43ew3sclmuWxcrf1lgm3rQ7bGxYuqVSgVTW9j3M+3JhRPl+r5+PnvqCu94YU+GyhRBVS6aSnMBMbfL0mmfZ69+Hx/TgLlrn7fMdM1idu6ZCZeb681ifvyFiPI/P9PHD7h8rVGZJ46tchnXrkInGGWVfaS5ocD4u45AFbw0nFzQ4v8yDzfe7usmV9K99Oi7DFWqJiq3Hna1up9FBY7yOJeffdi6N2zUgNiEGCOWMiol3Mend2w9b8svPp3zDrk2ZxYlBgwETb6GPp6990TJT+pHSuF1DywWMzaBJveaVW5R4x/rdOCwysptBk43Ly5YWQwhxZEiL1AlsQ/4GCgPuiO0+08esjB9pk9S63GX6TV/x8jCHOjTjeVUYUOsMthRuDStboUh31qBOOcdl7dcoriGT2k7k422fsqFgI6mOVIbVP4/uad3KXZbdsDO60SgubngRQR0sdyB2tImJc/HCH4/x2xd/suSnFdRsmM6ZV/QjtXbKYbvm3I9+x+eOTGdhBkw2LN0cddHkw23YmLP430vfEfAdSEzqcNpp1qkxzU9qUqmyG7auZ9naZbPbaNND8lEJcTQ5tn+ri0pxBz1RWxEKAtGTLpYkzZlGkiORPb7ssO12ZaNbapcKlVmSU2r0ZE3e3/yS9RuGMlAoYm0x3NZqbKVaSBrHN+LO1rdXWT2VUtjV8fHjZrPb6HvBKfS9oPLrJ5ZFXKJ1CoFgMBh135FQq1FNnpo1mWdveJnNK7aiDIPeI3pw+8s3VLrs1NopDLysL7Pf+wVv4YEg0hnr4MI7rbP6CyGqx/Hxm11USIvE5gTMyK4Rp+GsUOsLFE1Hb3Ydz/79fwR0kKAO4jScJNoTwwaJVxWlFFc1vYJz6p7N2vy1JDmSaJ/UrsyD2q3scO9k0d5FKGXQPa1bpdYIFJU37NazWfvXhrAFjJWhqNO0dtTxXEdK6+4teGXR07jz3did9ipNUXDbyzdQp2ktPnvhGwpz3LTv3Zqbn72Suk0r120ohKhaqrQke4dDt27d9IIFC474dUWk2RlzeG/LB/hNPxqNy3BSN6Yuk9pNLHM2byuZ3ix+zJjDbk8G7ZLa0Dv9VGJsMVVY88Pj8+0z+HLH15jaRCmFQjG60SgG1D6juqt2wtJa8/I/3uJ/L8/E4bSj0SSlJfLUrMnUbSZBhRDi8FNKLdRaW7YwSCAl2JC/kR8z5pAbyKNbahdOqdGzXJmyjxdbC7fx0MpH8B2SssChHDx50mNhS62IIy9jaxarfv+blNrJdOzbVpZdEUIcMSUFUtK1J2iW0JRmCU2ruxrV7s/sBQTMoOW+RXsXMaB2/yNcI3GwWg3TqdVQulmFEEcX+ZNOiCLRZhuGth+eqf1CCCGObRJICVGke1pXy0zoGk2X1JOroUZCCCGOdhJICVGkQVwDhtU/D4dyYFM27MqOQzm4tPFoUmV8lBBCCAuVGiOllHoKGAL4gPXA1VrrfVVRMSGqw5B659E9rTt/7V2EoQy6p3alhqtGdVdLCCHEUaqyLVIzgQ5a607A38DEyldJiOpVJ6Y259QdzOA6Z0oQJYQQokSVCqS01t9rrfdndPwDkCXJhRBCCHHCqMoxUtcA31RheUIIIYQQR7VSx0gppX4A6ljsmqS1/qLomElAAHinhHJuAG4AaNSoUYUqK4QQQghxNCk1kNJaDyxpv1LqSuA8YIAuIU261vpV4FUIZTYvZz2FEEIIIY46lZ21Nxi4B+intS6smioJIYQQQhwbKjtGagqQCMxUSi1WSr1cBXUSQgghhDgmVKpFSmvdoqoqIoQQQghxrJHM5kIIIYQQFSSBlBBCCCFEBUkgJYQQQghRQRJICSGEEEJUkARSQgghhBAVJIGUEEIIIUQFSSAlhBBCCFFBEkgJIYQQQlSQBFJCCCGEEBUkgZQQQgghRAVJICWEEEIIUUESSAkhhBBCVJAEUkIIIYQQFSSBlBBCCCFEBUkgJYQQQghRQRJICSGEEEJUkARSQgghhBAVZK/uCgghhBBClEfAH+D3GQtYt2gjdZvVpt9FvYhNiK2WukggJYQQQohjRv6+AsadOomsbXtw53uIiXfx2oTp/PvXR2nQsu4Rr4907QkhhBDimPHm/e+za8Nu3PkeADwFXvL25PPU1VOqpT4SSAkhhBDimPHTB7/h9wXCtmmtWfPnegrz3Ee8PhJICSGEEOKYoQwVfV/0XYeNBFJCCCGEOGYMuKwvDpcjbJthM+jQu021DDiXQEoIIYQQx4wrH7iIJh0aEpsQg81uIzYxhtTayYx/a0y11Edm7QkhhBDimBGbEMuUeY+xaNYy1i/eRJ2mteg1tBsOp6P0kw8DCaSEEEIIcUwxDIOug06i66CTqrsq0rUnhBBCCFFREkgJIYQQQlSQBFJCCCGEEBUkgZQQQgghRAVJICWEEEIIUUESSAkhhBBCVJAEUkIIIYQQFSSBlBBCCCFEBUkgJYQQQghRQRJICSGEEEJUkNJaH/mLKpUJbD7iFw5JB7Kq6drHIrlf5Sf3rPzknpWf3LPykftVfnLPDmista5ptaNaAqnqpJRaoLXuVt31OFbI/So/uWflJ/es/OSelY/cr/KTe1Y20rUnhBBCCFFBEkgJIYQQQlTQiRhIvVrdFTjGyP0qP7ln5Sf3rPzknpWP3K/yk3tWBifcGCkhhBBCiKpyIrZICSGEEEJUieM6kFJKPaCU2q6UWlz0dU6U4wYrpdYopdYppSYc6XoeTZRSTymlViulliqlPlNKpUQ5bpNSalnRfV1wpOt5NCjtuVEhzxftX6qU6lId9TxaKKUaKqV+VEqtUkqtUErdZnHM6UqpnIN+Zv9ZHXU9WpT2cybPWDilVOuDnp3FSqlcpdTthxxzwj9jSqk3lFIZSqnlB21LU0rNVEqtLfo3Ncq58nl5KK31cfsFPADcVcoxNmA90AxwAkuAdtVd92q8Z2cC9qLvnwCeiHLcJiC9uutbjfep1OcGOAf4BlDAKcC86q53Nd+zukCXou8Tgb8t7tnpwJfVXdej5au0nzN5xkq8dzZgF6H8PwdvP+GfMeA0oAuw/KBtTwITir6fYPW7Xz4vrb+O6xapMuoBrNNab9Ba+4D3gWHVXKdqo7X+XmsdKHr5B9CgOutzFCvLczMM+K8O+QNIUUrVPdIVPVporXdqrf8q+j4PWAXUr95aHfPkGYtuALBea11dyZ+PWlrruUD2IZuHAdOKvp8GDLc4VT4vLZwIgdStRU3eb0RpqqwPbD3o9Tbkl/t+1xD6a9eKBr5XSi1USt1wBOt0tCjLcyPPVhRKqSZAZ2Cexe5eSqklSqlvlFLtj2jFjj6l/ZzJMxbdxcB7UfbJMxapttZ6J4T+6AFqWRwjz5sFe3VXoLKUUj8AdSx2TQJeAh4m9MvoYeAZQsFBWBEW5x7XUxlLumda6y+KjpkEBIB3ohTTW2u9QylVC5iplFpd9FfOiaIsz80J92yVhVIqAfgEuF1rnXvI7r8IdcXkF41p/BxoeaTreBQp7edMnjELSiknMBSYaLFbnrGKk+fNwjEfSGmtB5blOKXUa8CXFru2AQ0Pet0A2FEFVTtqlXbPlFJXAucBA3RRx7hFGTuK/s1QSn1GqMn3RAqkyvLcnHDPVmmUUg5CQdQ7WutPD91/cGCltf5aKfWiUipda31CrvdVhp8zecasnQ38pbXefegOecai2q2Uqqu13lnUPZxhcYw8bxaO6669Q8YKjACWWxz2J9BSKdW06K+Yi4EZR6J+RyOl1GDgHmCo1rowyjHxSqnE/d8TGqBudW+PZ2V5bmYAVxTNrDoFyNnfdH4iUkopYCqwSmv9bJRj6hQdh1KqB6HfUXuOXC2PHmX8OZNnzNpoonTryTMW1QzgyqLvrwS+sDhGPi8tHPMtUqV4Uil1MqGmx03AjQBKqXrA61rrc7TWAaXUrcB3hGYkvKG1XlFdFT4KTAFchLoRAP7QWt908D0DagOfFe23A+9qrb+trgpXh2jPjVLqpqL9LwNfE5pVtQ4oBK6urvoeJXoDlwPLlFKLi7bdCzSC4nt2IXCzUioAuIGLo7WKngAsf87kGSuZUioOGETR7/uibQffsxcQgwIAAAB3SURBVBP+GVNKvUdo9mK6UmobMBl4HPhQKXUtsAUYWXSsfF6WQjKbCyGEEEJU0HHdtSeEEEIIcThJICWEEEIIUUESSAkhhBBCVJAEUkIIIYQQFSSBlBBCCCFEBUkgJYQQQghRQRJICSGEEEJUkARSQgghhBAV9P8N4IpiNxtfdAAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Perform agglomerative clustering\n",
"from sklearn.cluster import AgglomerativeClustering\n",
"clustering = AgglomerativeClustering(n_clusters=5, linkage='ward').fit(X)\n",
"plt.scatter(X[:, 0], X[:, 1], c=clustering.labels_);\n",
"plt.title('Agglomerative clustering using Ward linkage');"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Agglomerative clustering with Ward linkage results in better identified clusters on the first two principal components (compared to single, complete, or average linkage; code omitted)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"However, the groupings do not correspond to the ground truth labels of either region or income grouping. Let's briefly investigate the observation labels in each cluster to see if discernable patterns appear. The labels in the first cluster are given by:"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"MultiIndex([('AGO', 2013),\n",
" ('AGO', 2014),\n",
" ('BEN', 2008),\n",
" ('BEN', 2010),\n",
" ('BEN', 2011),\n",
" ('BEN', 2012),\n",
" ('BEN', 2013),\n",
" ('BEN', 2014),\n",
" ('BFA', 2004),\n",
" ('BFA', 2005),\n",
" ('BFA', 2010),\n",
" ('BFA', 2011),\n",
" ('BFA', 2012),\n",
" ('BFA', 2013),\n",
" ('BFA', 2014),\n",
" ('CIV', 2001),\n",
" ('CIV', 2003),\n",
" ('CIV', 2005),\n",
" ('CIV', 2006),\n",
" ('CIV', 2007),\n",
" ('CMR', 2001),\n",
" ('CMR', 2002),\n",
" ('CMR', 2010),\n",
" ('CMR', 2011),\n",
" ('COG', 2011),\n",
" ('COG', 2013),\n",
" ('DZA', 2002),\n",
" ('DZA', 2003),\n",
" ('DZA', 2005),\n",
" ('DZA', 2006),\n",
" ('DZA', 2007),\n",
" ('DZA', 2008),\n",
" ('DZA', 2009),\n",
" ('EGY', 2002),\n",
" ('EGY', 2005),\n",
" ('EGY', 2009),\n",
" ('EGY', 2010),\n",
" ('EGY', 2013),\n",
" ('EGY', 2014),\n",
" ('EGY', 2016),\n",
" ('ETH', 2015),\n",
" ('GAB', 2005),\n",
" ('GHA', 2000),\n",
" ('GHA', 2001),\n",
" ('GHA', 2003),\n",
" ('GHA', 2007),\n",
" ('GHA', 2008),\n",
" ('GHA', 2009),\n",
" ('GHA', 2016),\n",
" ('GIN', 2004),\n",
" ('GIN', 2005),\n",
" ('MAR', 2000),\n",
" ('MAR', 2001),\n",
" ('MAR', 2002),\n",
" ('MAR', 2003),\n",
" ('MAR', 2014),\n",
" ('MLI', 2007),\n",
" ('MLI', 2008),\n",
" ('MLI', 2010),\n",
" ('MLI', 2011),\n",
" ('MLI', 2012),\n",
" ('MLI', 2016),\n",
" ('NER', 2004),\n",
" ('NER', 2005),\n",
" ('NGA', 2001),\n",
" ('NGA', 2002),\n",
" ('NGA', 2003),\n",
" ('NGA', 2006),\n",
" ('NGA', 2008),\n",
" ('NGA', 2010),\n",
" ('NGA', 2013),\n",
" ('SDN', 2006),\n",
" ('SDN', 2012),\n",
" ('SEN', 2005),\n",
" ('SEN', 2006),\n",
" ('SEN', 2007),\n",
" ('SEN', 2008),\n",
" ('SEN', 2009),\n",
" ('SEN', 2010),\n",
" ('SEN', 2011),\n",
" ('SEN', 2012),\n",
" ('SEN', 2013),\n",
" ('TUN', 2002),\n",
" ('TUN', 2003),\n",
" ('TUN', 2005),\n",
" ('TUN', 2006),\n",
" ('TUN', 2008),\n",
" ('TUN', 2009),\n",
" ('TUN', 2010),\n",
" ('TUN', 2011),\n",
" ('TUN', 2012),\n",
" ('TUN', 2015)],\n",
" names=['reporter.ISO', 'year'])"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Show labels in first cluster\n",
"partner_features_AFR_noout.index[np.where(clustering.labels_ == 0)[0]]"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Let's extract the unique country labels per cluster."
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"{'AGO',\n",
" 'BEN',\n",
" 'BFA',\n",
" 'CIV',\n",
" 'CMR',\n",
" 'COG',\n",
" 'DZA',\n",
" 'EGY',\n",
" 'ETH',\n",
" 'GAB',\n",
" 'GHA',\n",
" 'GIN',\n",
" 'MAR',\n",
" 'MLI',\n",
" 'NER',\n",
" 'NGA',\n",
" 'SDN',\n",
" 'SEN',\n",
" 'TUN'}"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Countries in first cluster\n",
"cluster_labels = partner_features_AFR_noout.index[np.where(clustering.labels_ == 0)[0]].to_list()\n",
"country_labels = [i[0] for i in cluster_labels]\n",
"set(country_labels)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"No immediately discernable pattern appears in the first cluster. This is the case for the remaining clusters too (code hidden)."
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/plain": [
"{'AGO', 'CIV', 'CMR', 'DZA', 'EGY', 'ETH', 'GHA', 'NGA'}"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Countries in second cluster\n",
"cluster_labels = partner_features_AFR_noout.index[np.where(clustering.labels_ == 1)[0]].to_list()\n",
"country_labels = [i[0] for i in cluster_labels]\n",
"set(country_labels)"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/plain": [
"{'AGO',\n",
" 'BDI',\n",
" 'EGY',\n",
" 'MWI',\n",
" 'NGA',\n",
" 'RWA',\n",
" 'SDN',\n",
" 'TZA',\n",
" 'UGA',\n",
" 'ZAF',\n",
" 'ZMB',\n",
" 'ZWE'}"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Countries in third cluster\n",
"cluster_labels = partner_features_AFR_noout.index[np.where(clustering.labels_ == 2)[0]].to_list()\n",
"country_labels = [i[0] for i in cluster_labels]\n",
"set(country_labels)"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/plain": [
"{'BDI',\n",
" 'BEN',\n",
" 'BFA',\n",
" 'BWA',\n",
" 'CAF',\n",
" 'CIV',\n",
" 'CMR',\n",
" 'COG',\n",
" 'COM',\n",
" 'CPV',\n",
" 'DZA',\n",
" 'EGY',\n",
" 'ETH',\n",
" 'GAB',\n",
" 'GHA',\n",
" 'GIN',\n",
" 'GMB',\n",
" 'GNB',\n",
" 'KEN',\n",
" 'LBY',\n",
" 'LSO',\n",
" 'MAR',\n",
" 'MDG',\n",
" 'MLI',\n",
" 'MOZ',\n",
" 'MRT',\n",
" 'MUS',\n",
" 'MWI',\n",
" 'NAM',\n",
" 'NER',\n",
" 'NGA',\n",
" 'RWA',\n",
" 'SDN',\n",
" 'SEN',\n",
" 'SLE',\n",
" 'STP',\n",
" 'SWZ',\n",
" 'SYC',\n",
" 'TGO',\n",
" 'TUN',\n",
" 'TZA',\n",
" 'UGA',\n",
" 'ZAF',\n",
" 'ZMB',\n",
" 'ZWE'}"
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Countries in fourth cluster\n",
"cluster_labels = partner_features_AFR_noout.index[np.where(clustering.labels_ == 3)[0]].to_list()\n",
"country_labels = [i[0] for i in cluster_labels]\n",
"set(country_labels)"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/plain": [
"{'BDI',\n",
" 'BWA',\n",
" 'KEN',\n",
" 'MDG',\n",
" 'MOZ',\n",
" 'MWI',\n",
" 'NAM',\n",
" 'RWA',\n",
" 'TZA',\n",
" 'UGA',\n",
" 'ZAF',\n",
" 'ZMB',\n",
" 'ZWE'}"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Countries in fifth cluster\n",
"cluster_labels = partner_features_AFR_noout.index[np.where(clustering.labels_ == 4)[0]].to_list()\n",
"country_labels = [i[0] for i in cluster_labels]\n",
"set(country_labels)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Hierarchical clustering and corresponding heatmap"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Rather than specifying *ex ante* the number of clusters, I now perform hierarchical clustering, restricting myself to illicit trade in 2016. I have explored various transformations, scalings, and types of linkages. I find that a (modified) log transformation on standardized data (with mean 0 and unit variance) with Ward linkage (which minimizes the sum of squared differences within all clusters) performs rather well."
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"# Create data for African bilateral trade matrix in 2016\n",
"data = partner_features_AFR_noout.reset_index() \\\n",
" .query('year == \"2016\"').drop(columns='year').set_index('reporter.ISO')\n",
"\n",
"# Select the columns which have at least 1 non-zero row \n",
"data = data.loc[:,(data != 0).any(axis=0)]\n",
"\n",
"# Log the data\n",
"data = data.apply(lambda x: np.log10(x+1) if np.issubdtype(x.dtype, np.number) else x, axis=0)\n",
"\n",
"# Scale the data\n",
"scaler = StandardScaler()\n",
"# scaler = MinMaxScaler()\n",
"data_scaled = scaler.fit_transform(data)\n",
"data_scaled = pd.DataFrame(data_scaled, index=data.index, columns=data.columns)\n",
"\n",
"# Extract region labels for the observations\n",
"obs_labels = region_labels(data).set_index('reporter.ISO')\n",
"\n",
"# Extract unique regions\n",
"color_labels = obs_labels['UN_Intermediate_Region'].unique()\n",
"color_labels = np.sort(color_labels)\n",
"\n",
"# List of RGB triplets for the region labels\n",
"rgb_values = sns.color_palette('Paired', 5)\n",
"\n",
"# Map region labels to RGB triplet\n",
"color_map = dict(zip(color_labels, rgb_values))\n",
"region_color = pd.DataFrame(obs_labels)['UN_Intermediate_Region'].map(color_map)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The reporting countries are plotted in the rows of the heatmap below, while the partner countries (restricted to non-outlying African countries) are displayed in the columns. Dendograms for each dimension are displayed. In addition, the first column colors the observations according to their ground truth regional label.\n",
"\n",
"On the origins dimension (i.e. reporters), the two highest-level clusters correspond broadly to western African (in pink) countries on the one hand, and eastern (in light blue) and middle African (in dark blue) countries on the other."
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALTCAYAAAALuvQuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeZhcZZn38e9NABsIyr6DUWBQQGQpZUR5ARUFRRQZheACbsF9RnHJDDOm1ZkBFRwZwKVRDKBssigiCLgERFksMMKwI4tsgqAICWkg4X7/qNNyaHqp6vSpqq58P9fVF33Oec65797Cr59+6pzITCRJkiQ1LNfpBiRJkqRuYkCWJEmSSgzIkiRJUokBWZIkSSoxIEuSJEklBmRJkiSpxIAs9YiIuC4idu2CPg6KiEvHOH5+RBxYZY0xzpsbEf+5NLUnQ0RsEhELImJaB3sY8+vQLZ+rkUREf0R8b5Rju0bE3aXtpn8uIuKOiHjtJLUpaQozIEtTwEj/4x4eEjNzq8yc1/bmWpSZe2bmCZ3uY6KGB7CJyMw/Zub0zFwyWX1NoIe/fx0m+gvHkIi4ICI+U9reMCJylH3rLV3nrZkqPxeSuosBWVrGRcTyEzinYzOfU91EPt9TwCXALqXt/wfcOMK+WzLzT61cuEc/X5K6nAFZ6hHlWeaIWC4iZkfEHyLioYg4PSLWKI7NKGby3hcRfwR+Uez/QUT8KSL+FhGXRMRWpWvPjYhvRMR5EbEQ2C0iNo6IsyLiz0WNY4b1c0RE/DUibo+IPUv750XE+0vbH4iIGyLi0Yi4PiK2L/YP9T+0f58WPheviojfRMTDEXFXRBw0wphnzZoWn5fNivffUNR9NCLuiYhPRcQqwPnABsUSiQURsUGrn+/SvuVLn5MvRsSvi3oXRsRapb7eHRF3Ftf+j9GWAkTEC4qPebli+9sR8UDp+Pci4l/KX4eIeDHwTeAVxcfzcOmSq0fET4qeroiITUf5lF8CvHKoLrAz8DWgNmzfJUXto4qvyyMRcVVE7FzqsT8izih6fQQ4qPi4Li76uAhYiyYN+7noL742JxbXui4iaqOc96Lie3f/Ynusn481I+LHxcfz24j4z/L3VnGtiyLiLxFxU0S8vdn+JXWGAVnqTR8H3kJjBm8D4K/AscPG7AK8GHh9sX0+sDmwDnA18P1h4w8A/gtYFbgMOBe4E5gBbAicWhq7I3ATjSDzZeA7ERHDm4yItwH9wLuB5wJ7Aw8Vh/9AI1Q9D/g88L2IWH+8DzwiNik+lqOBtYFtgfnjnTeC7wAHZ+aqwNbALzJzIbAncG+xRGJ6Zt7LxD7fwx0AvIfG539F4FPFx7Ml8HXgHcD6ND4fG450gcy8HXgE2K7YtTOwoAjB0JjFvXjYOTcAHwQuKz6e1UqHZ9L43K8O3Erj6z+SK4HnAC8t1bmoOKe875Li/d/S+LqsAZwM/CAi+krXezNwBrAaje/Dk4GraHw/fRFYmjXse9P4Xl0NOAc4ZviA4pe0C4GPZebQ9/VYPx/HAguB9YreDixdaxUan4uTi3NnAl8vB2xJ3ceALE0dPyxmBx8uZvm+PsbYg4FDM/PuzHycRgj9p3jmn6v7M3NhZi4CyMzjM/PR0viXRsTzSuN/lJm/zsyngG1oBMFPF9cYzMzybOydmXlcscb2BBrBbt0R+nw/8OXM/G023JqZdxb9/CAz783MpzLzNOAW4OVNfJ7eAfwsM0/JzCcz86HMnEhAfhLYMiKem5l/zcyrxxjb8ud7BN/NzJuL46fTCJAA/wT8ODMvzcwngM8BOUYvFwO7xNNrfc8otl9A45eQ349x7nBnZeaVmbmYRiDcdqRBxcd8BfD/ipnz1TLzNuBXpX1bFr2Rmd8rvi6LM/NIGuF6i9IlL8vMHxbfa2sDLwP+IzMfz8xLgB+38DEMd2lmnld8b57E0wF+yM40gvOBmXlu6WMc8ecjGsuN9gXmZOZjmXk9je/5IXsBd2Tmd4uP92rgTBpfV0ldyoAsTR1vyczVht6AD48x9vnA2aUwfQOwhGeG1LuG3omIaRFxeLFE4BHgjuLQWiONBzamEYIXj1L/7+tMM/Ox4t3pI4zbmMZM8bMUywrmlz6GrWnuT+ujXrNF+wJvAO4s/rz/ijHGtvT5HkV5be5jPP352qB8bvH5fIjRXQzsytMztvNozF7vAvyqCJ3NGq2nkVxS1NwZGPpl6dLSvruGfvmJiEOisazmb8Xn63mM/r22AfDXYvZ+yJ0tfAzDDf+Y+ob9IvNB4DeZ+cuhHeP8fKwNLD+s5/L7zwd2HPbL7TtozDZL6lIGZKk33QXsWQ7UmdmXmfeUxpRnIQ+g8Wft19IIKzOK/THK+LuATWLpX0B1F/Csda0R8XzgOOCjwJrFLwT/N6yflq45goXAyqWazwgsxaz2m2n8WfyHNGZ1YeTZ21Y/3624D9io1OdKwJpjjL+YRiDdtXj/UuCVNALyxaOcM9Heyi4p6v4/GjPHAL8uav99eUWx3vizwNuB1Yuv7d8Y/XvtPhproVcp7dtkEvodzQdpfG//T2nfWD8ffwYWU/oa0fglbchdwMXDvjemZ+aHqvoAJC09A7LUm74J/FcRNImItSPizWOMXxV4nMbM5MrAf49z/StpBJfDI2KViOiLiFdOoM9vA5+KiB2iYbOi51VohKQ/F/2/h8YMcjO+D7w2It4eEcsXL6AaaWnA74GtImLbYv1r/9CBiFgxIt4REc/LzCdprOsduiXb/cCaw5aftPr5bsUZwJsiYqeIWJHGmuBRf1HIzFuARcA7gUsy85Gi530ZPSDfD2xUXH+ifkNjXe87KQJyZv6VxtfwnTy9/nhVGoHyz8DyEfE5Gks/Rvt47gTqwOeLr8urgDctRZ/jeRTYg8bSkMNLPY/481Es1TgL6I+IlSPiRTTW1A85F/iHiHhXRKxQvL2stC5cUhcyIEu96Sga6ygvjIhHgctpvHBuNCfS+LP1PcD1xfhRFaHgTcBmwB+Bu4H9Wm0yM39A44VfJ9MIJj8E1ijWcR5J48WA9wMvoTEb2cw1/0hjacQhwF9ovEBv+DpTMvNm4AvAz2isbx5+H+B3AXcUf1L/II2QR2beCJwC3Fb8yXwDWv98Ny0zrwM+RuOFZffR+Dw9QCOwjeZi4KHiczG0HcDvRhn/C+A64E8R8eAE+3yMxgvpnkNjtn/Ir2jMwg8F5AtovODtZhrfc4OMv/zkABqfz78Ac2h8v1YmMx8Gdgf2jIgvMv7Px0dpzCz/ica65lMovj6Z+SjwOmB/4N5izJdofJ4kdanInIy/rEmS2iEipgMPA5sXd61Ql4mILwHrZeZSPTFSUuc4gyxJXS4i3lT8+X4V4AjgWp5+oZg6rLjP8TbFMqGXA+8Dzu50X5ImzoAsSd3vzTT+PH8vjXvx7p/++a+brEpjHfJCGi/mPBL4UUc7krRUXGIhSZIklbR0i6aI6Ko0nZnN3PJJkiRJalqrAbmqPipR3LrpEhqvFl4eOCMz53S2K0mSJHWzlgLycstNq6qPqjwOvDozF0TECsClEXF+Zo55CyuparVabTbQ1+k+pGXUYL1eP3z8YZKWVS3OIE+t1/QVL2JZUGyuULx11TIRLbP66vV6f6ebkJZFtVqtv9M9SOpuvT6DTERMo3Hz+s2AYzPzig63JEmSpC7WYkDurhnkiJgFzCrtGsjMgfKY4olf20bEasDZEbF1Zpaf8iRJkiT93ZQOyEUYHhh3YGPswxExD9iDZz4GVZIkSfq7FtcgT60lFhGxNvBkEY5XAl4LfKnDbUmSJKmLTekZ5CasD5xQrENeDjg9M8/tcE+SJEnqYj39Ir3MvAbYrtN9SJIkaero9RlkSZIkqSU9vQZZkiRJapUzyJIkSVKJAVmSJEkq6ekX6UmSJEmtanENsjPIkiRJ6m3OIEuSJEklrkGWJEmSSpxBliRJkkpcgyxJkiSVuMRCkiRJKnGJhSRJklTiDLIkSZJU0uIa5Kk1gxwRGwMnAusBTwEDmXlUZ7uSJElSN+v1GeTFwCGZeXVErApcFREXZeb1nW5MkiRJ3amn1yBn5n3AfcX7j0bEDcCGgAFZkiRJI5rSM8gRMQuYVdo1kJkDo4ydAWwHXFF9Z5IkSZqqpvQa5CIMjxiIyyJiOnAm8C+Z+UjljUmSJGnKmtIzyM2IiBVohOPvZ+ZZne5HkrpFrVabDfR1uo8OmFGr1fo73USbDdbr9cM73YQ0VfR0QI6IAL4D3JCZX+10P5LUZfrq9Xp/p5tQ9ZbBXwikpdLTL9IDXgm8C7g2IuYX+/4tM8/rYE+SJEnqYi2uQZ5aM8iZeSkQne5DkiRJU0evzyBLkiRJLenpNciSJElSq5xBliRJkkp6eg2yJEmS1CqXWEiSJEklLrGQJEmSSpxBliRJkkpaXIPsDLIkadnTA4/lnuqP1/ZR2WorZ5AlSRqfj+XuoCke7jUFtTiD7EPpNHV0+YxPN8/mOFMjSVqm+SI99TJnfCagi4O7pEnQ5ZMHo+nmSYWxOOEwRXkfZEmSli1OHrTJFA31whlkSZIk6Rl6+kV6EXE8sBfwQGZu3el+JEmS1P16fQZ5LnAMcGKH+5AkSW3QZWusu2XttGuhW9TTa5Az85KImNHpPiRJUtu4xnqYLgnpU0prM8jTuisgR8QsYFZp10BmDnSqH0mSJE19U3oNchGGDcSSJEmaNFM6IEuSJEmTrbU1yNN8kp4kSZJ6W0/PIEfEKcCuwFoRcTcwJzO/09muJEmS1M2m9Iv0xpOZMzvdgyRJkqaWnp5BliRJklrV2hrk5VyDLEmSpN7W00ssJEmSpFa5xEKSJEkqcQZZkiRJKmlxBtk1yJIkdYtarTYb6GvxtBm1Wq2/hfGD9Xr98BZrSFNaiy/ScwZZkqQu0lev1/urLNBimJZ6gkssJKkLTXBmsFWtziROhLOPkqYcX6QnSd2p8pnBdnD2UdJU1NoSi2muQZbarU0ziWXtmFUczllGSWrSBP6/MJF/15fpf5edQZa6X1fOJE5ycH/RJIbyZfofdWkqmuR/Tybzl/xu/ffEtecVMyBLmqhuDe79ne6hlzlzpYr474m6ii/SkyS1wpkrST2vxdu8Ta01yBGxB3AUMA34dmY6IyFJkqQx9ewMckRMA44FdgfuBn4bEedk5vWd7UySJEndrJfXIL8cuDUzbwOIiFOBNwMGZEmSJI1qSgfkiJgFzCrtGsjMgeL9DYG7SsfuBnZsV2+SJEmamqb0fZCLMDwwyuGRms0K25EkTRHejUPSWKb0DPI47gY2Lm1vBNzboV4kSd3Fu3Esg/zFSM3q2RfpAb8FNo+IFwD3APsDB3S2JUnLogk+BKHV/zH7P2VpfP5ipKb07AxyZi6OiI8CF9C4zdvxmXldh9uStGzyf8qSNIW0OIPcXWuQx5OZ5wHndboPSZIkTR0tPihk6swgS5IkSRPRs0ssJEmSpIno5RfpSZIkSS1rcQZ5aq1BlrqRtxmSJKm7tfigEGeQ1Rk9dpss72ggSVIXcw2ypgpD5TKox34xkiRNEa3NIIdLLCS1lb8YSZLarqfvgyxJkiS1yvsgS5IkSSWuQZYkSZJKvA+yJEmSVOJ9kCVJkqQS74MsSZIklSyza5Aj4m1AP/Bi4OWZWe9sR5IkSeoGy2xABv4PeCvwrU43IkmSpO6xzN4HOTNvAB9+IkmSpGea0vdBjohZwKzSroHMHOhUP5IkSZr6pvRt3oowPGogjoifAeuNcOjQzPxRZY1JkiRpyurpNciZ+dpO9yBJkqSpxfsgS5IkSSXL7H2QI2If4GhgbeAnETE/M1/f4bYkSZLUYT29xGIsmXk2cHan+5AkSVJ3aSkgT+uhgCxJkiSNpMWA7BpkSZIk9bbWAnI4gyxJkqTetsyuQZYkSZJG4hpkSZIkqcQ1yJIkSVKJa5AlSZKkEtcgS5IkSSWuQZYkSZJKXIMsSZIklbgGWZIkSSpxDbIkSZJUEpnZ9OD67bc3P7gNai94gWs+2uTHd3xlUr/2N//qhZN5uY659KxfVV4j2vCXm+VXaOl35Qm5+aarKq/x4q1fXnmNe/74h8pr7HXQvpXXmP/L31deA+CV+7yy8hqDCwcrr7HCc1aovMbggkWV11iy5KnKa7z05VtWXuOEw06uvAbAZttvWnmN6auvWnmNtTZcq/IaH3jD7j2VyZbZNcgR8RXgTcATwB+A92Tmw53tSpIkSZ3W0tTUtFiuq96W0kXA1pm5DXAz8K9Le0FJkiRNfcvsGuTMvLC0eTnwT53qRZIkSd1jSt8HOSJmAbNKuwYyc2ACl3ovcNrkdCVJkqSpbEqvQS7C8KiBOCJ+Bqw3wqFDM/NHxZhDgcXA9ytpUpIkSVNKa0sspth9kDPztWMdj4gDgb2A12Qrt/OQJElSz5rSSyyWRkTsAXwW2CUzH+t0P5IkSeoOy2xABo4BngNcFBEAl2fmBzvbkiRJUm+JiDWBnxeb6wFLgD8DM4B7M3PL0th+YEFmHhERc4HdgRdm5uMRsRZQz8wZVfc8pdcgL43M3KzTPUiSJPW6zHwI2BaeFYBnAOeOc/oSGjdT+EaFLT5LT69BliRJ0pT2NeATEXFcO4suy0ssJEmS1N3+CFwKvAv4cbuKthSQi7W6Wgq1Wm020NfpPlo154z9Ot2CJEnqUhN8NsVodxAbvv+/gXOAn0ywvZY5g9x+ffV6vb/TTbTqx3d8ZU6ne5AkSd1pvGdTjOIhYPVh+9YAbh927VsjYj7w9ol32JrWArIzyJIkSZoEmbkgIu6LiNdk5s8jYg1gD+CoEYb/F84gS5IkaRnwbuDYiDiy2P58Zv5h+KDMvC4irga2b0dTrd3FwoAsSZKkCcrM/mHb1wO7jTL2oGHbb62ssWGcQZYkSZJKXIMsSZIklTiDLEmSJJW0eh9kp5AlSZLU05wSliRJkkpamkHWsmvPi543qde7eco9S3BkTz75ROU17rrrxsprbLDBppXXWGedTSqvcetN8yuv8a5Pf6jyGoMLFlVeY9vdXsoqq02vvI66yyZbVv9zeNJXTq28xnPXem7lNQAeuvcvldeYvvqqlddQ65xBlqRlkOFYkkZnQJYkSZJKDMiSJElSiQFZkiRJKjEgS5IkSSUGZEmSJKnE27wVarXabKAdNx+b0YYakiRJmiAD8tP66vV6f9VFarVa5TUkSZI0cS6xkCRJUqUiIiPipNL28hHx54g4t9g+KCKOGeG8OyJirXb2CgZkSZIkVW8hsHVErFRs7w7c08F+xmRAliRJUjucD7yxeH8mcEoHexmTa5C7XBtfPDimyw+e1ekWJElSl4qIWUA5LAxk5sCwYacCnyuWVWwDHA/s3KYWW2JA7n5tefHgeBYfNzCn0z1IkqTuVITh4YF4+JhrImIGjdnj89rQ1oQZkCVJktQu5wBHALsCa3a2ldEZkCVJktQuxwN/y8xrI2LXTjczGl+kJ0mSpLbIzLsz86hRDh8UEXeX3jZqa3MlziBLkiSpUpk5fYR984B5xftzgbkjnDqjuq5G5wyyJEmSVGJAliRJkkoMyJIkSVKJAVmSJEkqMSBLkiRJJd7FQloKK6ywYuU1XrzVyyqv8cCf7q68Rl/fKpXXGBxcWHkNLZu+95VvVl7jnz50YOU1fvrtn1ZeY8mTSyqv8dgjj1VeA2CFvhXaUqdq18z7ffVF3rB79TXayIDcfoO1Wq2/hfEzKupDkiRJIzAgt1m9Xj+8lfEthmlJkiQtJdcgS5IkSSUGZEmSJKnEgCxJkiSVGJAlSZKkEgOyJEmSVGJAliRJkkoMyJIkSapURGREHFna/lRE9Je23xkR10TEdRHx+4j4dkSsVjq+dkQ8GREHt6NfA7IkSZKq9jjw1ohYa/iBiNgD+ASwZ2ZuBWwP/AZYtzTsbcDlwMw29GpAliRJUuUWAwM0gvBwhwKfysx7ADJzSWYen5k3lcbMBA4BNoqIDatu1ifpdb9WH01dicsPntXpFiRJUpeKiFlAOSwMZObAsGHHAtdExJeH7d8KuHqMa28MrJeZV0bE6cB+wFcnoe1RGZC7XKuPpq7K4uMG5nS6B0mS1J2KMDw8EA8f80hEnAh8HFg00piIeAlwErAq8G+ZeRqwP3B6MeRU4DtUHJBdYiFJkqR2+RrwPmCV0r7raKw7JjOvzcxtgfOBlYrjM4GDIuIO4BzgpRGxeZVNGpAlSZLUFpn5Fxqzwe8r7T4MOCIiNirtWwkgIrYAVsnMDTNzRmbOKMbvX2WfBmRJkiS105HA3+9mkZnnAf8LnB8R10fEb4AlwAU0Zo/PHnb+mVR8NwvXIEuSJKlSmTm99P79wMrDjp8AnDDCqf0jXOsaYMtJbvEZnEGWJEmSSiY0g1yr1WYDfZPcS6fN6HQDkiRJ6ryJLrHoq9fr/ZPZSKd1w72GJUmS1HkusZAkSZJKDMiSJElSiXexUEcc87nPV3r95ZZrz+9+a65Z+ePgWXPNDSqv8c5/fd/4g5bS2f97ZuU1MrPyGucMVP9xvO6AN1Re4yffPqfyGgDLLTet8hq77feaymtssGGlzyQA4OIzf1l5jXU2Wr/yGstNq/7f36eWPFV5DYC+lXvj5VZ33nhHp1uYcpxBliRJkkoMyJIkSVKJAVmSJEkqMSBLkiRJJQZkSZIkqcSALEmSJJUYkCVJkqQSA7IkSZIqFxHrRsTJEXFbRFwVEZdFxD4RsWtEnDts7NyI+KfS9toR8WREHNyOXg3IkiRJqlREBPBD4JLMfGFm7gDsD2zU5CXeBlwOzKyoxWcwIEuSJKlqrwaeyMxvDu3IzDsz8+gmz58JHAJsFBGVP8bWgCxJkqSqbQVcPcbxnSNi/tAbsPfQgYjYGFgvM68ETgf2q7ZVWL7qAr2oVqvNBnrjAe1NuvzgWZ1uQZIkdamImAWUw8JAZg6MMf5Y4FXAE8CngV9l5l6l43NLw/enEYwBTgW+A3x1cjofmQF5Yvrq9Xp/p5top8XHDczpdA+SJKk7FWF41EAMXAfsWxr/kYhYC6g3cfmZwLoR8Y5ie4OI2Dwzb5lww+NwiYUkSZKq9gugLyI+VNq38ngnRcQWwCqZuWFmzsjMGcBhNGaVK2NAliRJUqUyM4G3ALtExO0RcSVwAvDZcU6dCZw9bN+ZVHw3C5dYSJIkqXKZeR+jz/zOGzb2oOLdM0a4zjXAlpPZ23DOIEuSJEklBmRJkiSpxIAsSZIklRiQJUmSpBIDsiRJklRiQJYkSZJKvM2bmnL+7n+b1Ot9tK/aB/Od8fUTK73+kE23eEnlNRYtWFR5jXOO/VHlNVZba43Ka7z/gE9WXuOsb5xSeY12eOP7925LnXO+dWZb6lTt1Qe8pvIag234Wa9fcFXlNQYXPVZ5jU9+6SOV1wA49/Sft6VO1dbZaL1OtzDlOIMsSZIklRiQJUmSpBIDsiRJklRiQJYkSZJKDMiSJElSiQFZkiRJKjEgS5IkSSUGZEmSJFUqIpZExPzS2+xi//IR8d8RcUvp2KER8bqIuCwiohg3rTi2Uzv69UEhTxus1Wr9TY6dUWEfkiRJvWZRZm47wv7/BNYDXpKZgxGxKnBIZl4YEe8F3gd8G/gY8NvM/E07mjUgF+r1+uHNjm0hSEuSJGkEEbEy8AFgRmYOAmTmo0B/MeQTwKURcRnwUeDl7erNgDyJarXabKCv031UYc4Z+3W6BUmS1KUiYhYwq7RrIDMHStsrRcT80vZhwA3AH4tQ/CyZeV9EfA24DPh4Zv5lsvsejQF5cvXV6/X+TjdRhR/f8ZU5ne5BkiR1pyIMD4wx5FlLLCJim2Hb7wH+GVgT2Ckz7wKOBQ7PzLmT2/HYfJGeJEmSOuFWYJNi3TGZ+d0iRP8NmFbsewrIdjdmQJYkSVLbZeZjwHeAYyKiDxp3qwBW7GhjuMRCkiRJ1Ru+BvmnmTkbOBT4IvB/EfEosAg4Abi3Az3+nQFZkiRJlcrMaaPsfxKYXbyNdu70qvoajUssJEmSpBIDsiRJklRiQJYkSZJKDMiSJElSiQFZkiRJKvEuFmrKnhc9b1Kv95Ev/vukXm+4jTd+UaXXH/Lwg9U/9fLNH96n8hrnfuucymv86e67Kq9x5tdvrLzG2z72rsprDC5YVHmNdtn74H0rrzG4cLDyGr1ihees0IYqK1de4fivnFJ5DYC1N167LXWqtuNeO3a6hSnHGWRJkiSpxIAsSZIklRiQJUmSpBIDsiRJklRiQJYkSZJKvIvFxAzWarX+EfbPaHMfkiRJmmQG5Amo1+uHj7R/lNAsSZKkKcQlFpIkSVKJAVmSJEmVi4hDI+K6iLgmIuZHxI4RMS8ibiq250fEGcXY/oh4LCLWKZ2/oF29usRCkiRJlYqIVwB7Adtn5uMRsRawYnH4HZlZH+G0B4FDgM+2qc2/cwZZkiRJVVsfeDAzHwfIzAcz895xzjke2C8i1qi8u2GcQe6wWq02G+jrdB/jufzgWZ1uQZIkdamImAWUw8JAZg6Uti8EPhcRNwM/A07LzIuLY9+PiEXF+xdl5qeL9xfQCMn/DMyprvtnMyB3Xl+9Xu/vdBPjWXzcQFu/MSVJ0tRRhOGBMY4viIgdgJ2B3YDTImJ2cXi0JRYA/wvMj4gjJ7XhcRiQJUmSVLnMXALMA+ZFxLXAgU2c83BEnAx8uOL2nsGALEmSpEpFxBbAU5l5S7FrW+BOYOsmTv8q8FvamFt9kZ4kSZKqNh04ISKuj4hrgC2B/uLY90u3efvZ8BMz80HgbOA57WrWGWRJkiRVKjOvAnYa4dCuo4zvH7b9SeCTk97YKJxBliRJkkoMyJIkSVKJAVmSJEkqMSBLkiRJJQZkSZIkqcS7WEyuwVqt1t/iOTMq6KPrbbLJlpVe//7776j0+kP6+latvMZFJ1xUeY2FCx+pvMZbP7Jf5TWeGHy88hpqze9/Ob/yGlu8/EWV1+gVbzj4DZXXuPTMSyuvseTJxZXXAFj5uSu3pY66jwF5EtXr9cNbPWcCgVqSJEkVcomFJEmSVGJAliRJkkoMyJIkSVKJAVmSJEkqMSBLkiRJJQZkSZIkqcSALEmSpMpExJoRMb94+1NE3FPaXjciTo6I2yLiqoi4LCL2KZ37qnbdKY0AACAASURBVIi4MiJuLN5mtaNn74MsSZKkymTmQ8C2ABHRDyzIzCMiIoDfACdk5gHF8ecDexfvrwecDLwlM6+OiLWACyLinsz8SZU9O4MsSZKkTng18ERmfnNoR2bemZlHF5sfAeZm5tXFsQeBzwCzq27MgCxJkqRO2Aq4epzjVw3bVy/2V8olFp03OBUeN335wW1Z8iNJkqagYm1wOSwMZOZAi9c4FngVjVnllwEB5AhDR9o3qQzIHVav1w/vdA/NWHzcwJxO9yBJkrpTEYZbCsTAdcC+pWt8pFhnXC8drwHnlM7ZAbh+KVptikssJEmS1Am/APoi4kOlfSuX3j8WOCgihl7gtybwJeDLVTfmDLIkSZLaLjMzIt4C/E9EfAb4M7AQ+Gxx/L6IeCdwXESsSmPJxdcy88dV92ZAliRJUltkZv+w7fuA/ccYfwnwsorbehaXWEiSJEklBmRJkiSpxIAsSZIklRiQJUmSpBIDsiRJklRiQJYkSZJKvM2bmrLZbRtO6vU+dvABk3q9TllltVUqrzFt2rTqa6xQfY3BBYOV11D3eelu21ZeY3Ch31vd5E0H7lF5jZVXXLHyGgAPPPJI5TX+cM1tlddQ65xBliRJkkoMyJIkSVKJAVmSJEkqMSBLkiRJJQZkSZIkqcSALEmSJJUYkCVJkqQS74MsSZKkykXEocABwBLgKeCvwOrAdGBt4PZi6IeB/wbWBwaBBcB7M/OmdvVqQJYkSVKlIuIVwF7A9pn5eESsBayYmfdGxK7ApzJzr9J4gHdkZj0iZgFfAfZuV78usZAkSVLV1gcezMzHATLzwcy8t8lzLwE2q6yzERiQJUmSVLULgY0j4uaI+HpE7NLCuW8Crq2orxG5xGIZUavVZgN9E77A7p+fvGYkSVJPKZZBzCrtGsjMgaGNzFwQETsAOwO7AadFxOzMnDvGZb8fEYuAO4CPTX7XozMgLzv66vV6/0RPnvGvP5kzib1IkqQeUoThgXHGLAHmAfMi4lrgQGDuGKe8IzPrk9VjK1xiIUmSpEpFxBYRsXlp17bAnZ3qZzzOIEuSJKlq04GjI2I1YDFwK89cktFVDMiSJEmqVGZeBew0yrF5NJZelPftWnlTY3CJhSRJklRiQJYkSZJKDMiSJElSiQFZkiRJKjEgS5IkSSXexUKSlkELH17AKqtN73QbUld7+447Vl7jsGtuq7yGWucMsiQtgwzHkjQ6A7IkSZJUYkCWJEmSSgzIkiRJUokBWZIkSSoxIEuSJEklXX+bt1qtNhvo63QfPWBGpxuQJEmaCro+IAN99Xq9v9NNTHW1Wq2/0z1IkiRNBS6xkCRJUuUiYr2IODUi/hAR10fEeRHxDxGREfHF0ri1IuLJiDim2O6PiHsiYn5x3syqezUgS5IkqVIREcDZwLzM3DQztwT+DVgXuA3YqzT8bcB1wy7xP5m5LfBm4FsRsUKV/RqQJUmSVLXdgCcz85tDOzJzPnAXsAi4ISJqxaH9gNNHukhm3gI8BqxeZbMGZEmSJC2ViJgVEfXS26xhQ7YGrhrjEqcC+0fERsAS4N5R6mwP3JKZD0xK46OYCi/SkyRJUhfLzAFgYCku8VPgi8D9wGkjHP9ERHwAeCGwx1LUaYozyJIkSaradcAOox3MzCdozDAfApw5wpD/ycwtaCy/ODEiKr0FsAFZkiRJVfsF8JxiFhiAiHgZ8PzSmCOBz2bmQ6NdJDPPAurAgVU1CgZkSZIkVSwzE9gH2L24zdt1QD+ltcaZeV1mntDE5b4AfDIiKsuxrkGWJElS5TLzXuDtIxzaeoSxc4G5xfv9w45dBWwx6Q2WOIMsSZIklTiDLEmSpJ5TvJBvMyCBP2TmYLPnOoMsSZKknhERy0fEl4G7gROA7wF3RcSXm30CnwFZkiRJveQrwBrACzJzh8zcDtgUWA04opkLGJAlSZLUS/YCPpCZjw7tyMxHgA8Bb2jmAq5BVlNufeE9k3q9o1hzUq8nSZJUyOK2csN3LomIZ+0fiQF52TFYq9X6J3ry5QcPf6S6JElSV7o+It6dmSeWd0bEO4Ebm7mAAXkZUa/XD1+a8xcfNzBnsnqRJEmq0EeAsyLivTQeX53Ay4CVaDysZFwGZEmSJPWMzLwH2DEiXg1sBQRwfmb+vNlrGJAlSZLUMyJiZeDJzPwF8IuI2AJ4Q0Q8NzPPbuYa3sVCkiRJveSnwAyAiNgMuAx4IfDRiDismQsYkCVJktRLVs/MW4r3DwROycyPAXvSuAXcuAzIkiRJ6iXlW7m9GrgIIDOfAJ5q5gKuQZYkSVIvuSYijgDuATYDLgSIiNWavYAzyJIkSapURGREnFTaXj4i/hwR5xbbBxXb8yPixoj4RES8vtieHxELIuKm4v0TR68EwAeAB2msQ35dZj5W7N+SJh817QyyJEmSqrYQ2DoiVsrMRcDuNGZ4y07LzI9GxJrATcB2mbktQETMAz6VmfXxChXXf9bzHzLzN8BvmmnWgCxJkqR2OB94I3AGMBM4Bdh5+KDMfCgibgXWB+5qtUhEXMsz1yEPv/42413DgCxJkqSlEhGzgFmlXQOZOTBs2KnA54plFdsAxzNCQI6ITYA+4JoJttPUnSrGYkCWJEnSUinC8PBAPHzMNRExg8bs8XkjDNkvInYDtgA+kJmDE+zlzomcV+aL9CRJktQu59B4odwpIxw7LTO3ojGrfGRErDfZxSNizBA/xIAsSZKkdjke+EJmXjvagMy8DDgJ+OeJFomIaRHxiREOfauZ8w3IkiRJaovMvDszj2pi6JeA90TEqhOsswR48wj7r2rmfNcgS5IkqVKZOX2EffOAecX7c4G5pWP3AuuVtnedQNlfR8QxwGk0bjM3dK2rxzvRgCxJkqRetFPx3y+U9iWNx0+PyYAsSZKknpOZu030XNcgS5IkqedExLoR8Z2IOL/Y3jIi3tfMuQZkSZIk9aK5wAXABsX2zcC/NHOiAVmSJEm9aK3MPB14CiAzFwNLmjnRNchqyvm7/21yL/irNSf3eh3y85N+XnmNiKi8xh7v36PyGr1i7uFHV17jgQf+WHmNzTbbvvIaAJlPVV5j7/e/vfIaat7Rs4+pvMaKK/ZVXgPgJzu8qPIaa6y/RuU1lmELI2JNGi/MIyL+EWgq0BiQJUmS1Is+SePJfZtGxK+BtYG3NXOiAVmSJEm96DpgF2ALIICbaHJ5sWuQJUmS1Isuy8zFmXldZv5fZj4JXNbMic4gS5IkqWdExHrAhsBKEbEdjdljgOcCKzdzDQOyJEmSesnrgYOAjYAjeTogPwL8WzMXMCBLkiSpZ2TmCRFxEjAzM78/kWu4BlmSJEk9JRv3mDx4ouc7gyxJkqRKRcQS4FpgBWAxcALwtcx8KiL+C3hjafjKwKbA8zJzQXH+j4B1MvMVLZS9KCI+BZwGLBzamZl/Ge9EA7IkSZKqtigztwWIiHWAk4HnAXMy81Dg0KGBEfF94PRSOF4N2B5YEBEvyMzbm6z53uK/HyntS+CF451oQJYkSVLbZOYDETEL+G1E9GdmDh2LiHcCmwEHlk7ZF/gxcD+wP3BYk3VeMNEeXYMsSZKktsrM22jk0HWG9kXEDOBw4B2Zubg0fCZwSvE2s9kaEbFCRHw8Is4o3j4aESs0c+5EZ5AHa7Va/wTPbdWMNtWpTK1Wmw2058HxFZlzxn6dbkGSJHWpYkZ4VmnXQGYOjHda6fxpwPeA/8jMW0v716Uxo3xpZmZELI6IrTPz/5po6xs01jx/vdh+V7Hv/eOdOKGAXK/XD5/IeRPRxiBepb56vd7f6SaWxo/v+MqcTvcgSZK6UxGGxwvEfxcRLwSWAA8Uu/4duC8zvzts6H7A6sDtEQGNh33sX4wfz8sy86Wl7V9ExO+b6c8lFpIkSWqbiFgb+CZwTDEr/I80Huwxa4ThM4E9MnNGZs4AdqARkJuxJCI2LdUdCuXj8kV6kiRJqtpKETGfp2/zdhLw1eLY52nc2u2XxSzxkH2BTYDLh3Zk5u0R8UhE7JiZV4xT89PFNW+jsZzj+cB7mmnWgCxJkqRKZea0MY69foxTNxxh/PZN1vx5RGwObEEjIN+YmY83c64BWZIkST0nIvqADwOvonH/419FxDczc3C8cw3IkiRJ6kUnAo8CRxfbM2ks7XjbeCcakCVJktSLthh2F4tfehcLSZIkLct+V9whA4CI2BH4dTMnOoMsSZKkXrQj8O6I+GOxvQlwQ0RcC2RmbjPaiQZkSZIk9aI9JnpiTwTkKfAo5xmdbmBpLfhr048+b8r5Jxw6qdcbbs8D9670+kNe867XVF5j2rRR74yjDlh55edWXuP++++ovMa66z6/8hoAm2yyVeU1Tjry6+MPWkrrrfeCymu8+u27V17jnKPPqbzGpltvUXmNwYXj3oRgUjzy0COV11hj/TUqr7Gsysw7I+JVwOaZ+d2IWAtYNTNvH+/cngjIdPmjnHvkcdmSJElTRkTMAWo07oP8XWBF4HvAK8c71xfpSZIkqRftA+wNLATIzHuBVZs50YAsSZKkXvREZiaNh4QQEas0e6IBWZIkST0lIgI4NyK+BawWER8AfgYc18z5vbIGWZIkSQIa93CLiLcAnwUeobEO+XOZeVEz5xuQJUmS1IsuAx7OzE+3eqIBWZIkSb1oN+DgiLiT4oV6AGM9IGSIAVmSJEmViogEvpeZ7yq2lwfuA67IzL0ioh9YkJlHlM65A6hl5oMRcShwALAEeAo4ODOvGKfsnhPt14AsSZKkqi0Eto6IlTJzEbA7cE8zJ0bEK4C9gO0z8/HigR8rjndeZt450Wa9i4UkSZLa4XzgjcX7M4FTmjxvfeDBzHwcIDMfLO5pXBlnkNtjcKo/Te+Q437Y6RYkSVKXiohZwKzSroHMHBg27FTgcxFxLrANcDywcxOXv7A472Yat2o7LTMvnoS2R2VAboN6vX54p3tYWqf87u45ne5BkiR1pyIMDw/Ew8dcExEzaMwenzf88Oin5YKI2IFGmN4NOC0iZmfm3KVqegwGZEmSJLXLOcARwK7AmqX9D9FYSlG2KvAwQGYuAeYB8yLiWuBAYG5VTboGWZIkSe1yPPCFzLx22P5LgL0jYlWAiHgr8PvMXBIRW0TE5qWx2wITfgFeM5xBliRJUltk5t3AUSPsvyYijgEuLW4J9wDw/uLwdODoiFgNWAzcyjPXO086A7IkSZIqlZnTR9g3j8ayiaHtbwHfGmHcVcBOFbb3LC6xkCRJkkoMyJIkSVKJAVmSJEkqMSBLkiRJJQZkSZIkqcS7WKgj9jxw7063oJKffvunldf4618eqLzGG9/75sprvP3jB1ZeY+8Fb6+8xhnfPLHyGgAPPHBH5TUGBxdWXmPhwr9VXqMd9v5Y9f/2XvmTKyuv8fiixyuvAdC3XF/lNb78mX+pvMZOO+1TeY0PvGH3ymu0kzPIkiRJUokBWZIkSSoxIEuSJEklBmRJkiSpxIAsSZIklRiQJUmSpBIDsiRJklRiQJYkSZJKfFCIJEmSKhMRawI/LzbXA5YAfwYCWAF4ojR8G+CNmXl+ce4ngMOAdTOzbU/sMSBLkiSpMpn5ELAtQET0Awsy84jh4yJiFvAO4ILS7pnAb4F9gLlV9zrEJRaSJEnqqIj4B+BzwLsy86li36bAdODfaQTltnEGGajVarOB6h+4PoUdctwPO92CJEnqUsXs76zSroHMHGjy3BWAk4FPZeYfS4dmAqcAvwK2iIh1MvOByep5LAbkhr56vd7f6Sa62Sm/u3tOp3uQJEndqQjDTQXiEXwRuC4zTx22f39gn8x8KiLOAt4GHLsUbTbNgCxJkqSOiIhdgX2B7Yft3wbYHLgoIgBWBG6jTQHZNciSJElqu4hYHfgu8O7MfHTY4ZlAf2bOKN42ADaMiOe3ozdnkCVJktQJHwTWAb5RzBIPOYzG8oo9h40/u9j/paobMyBLkiSpLTKzv/T+YTTC8EhOG+HcT1bU1rNMhYA8WKvV+scZM6MNfUiSJGkZ0PUBuV6vHz7emCYCtCRJktQUX6QnSZIklRiQJUmSpBIDsiRJklTS9WuQJVVvj/fvUXmNwQWDldd4YvDxymv8+qxfV17jkb/9pfIaB87+cOU12uWCuedXXuO173xd5TUGFyyqvMZFJ1xUeY1p06ZVXuN9nzmg8hoAZ373J5XX+MyXv1Z5jXPnnl55jV7jDLIkSZJUYkCWJEmSSgzIkiRJUokBWZIkSSoxIEuSJEklBmRJkiSpxIAsSZIklRiQJUmSVKmIyIg4qbS9fET8OSLOLbYPKrZ/FxG3RMQFEbHTsGt8MiJujIhrI+L3EfHViFihin4NyJIkSaraQmDriFip2N4duGfYmNMyc7vM3Bw4HDgrIl4MEBEfBF4H/GNmvgR4GfAAsBIVMCBLkiSpHc4H3li8PxM4ZbSBmflLYACYVew6FPhQZj5cHH8iMw/PzEeqaNSALEmSpHY4Fdg/IvqAbYArxhl/NfCiiFgVmJ6Zt1fd4JDl21VIz1Sr1WYDfZ3uo1mHHPfDTrcgSZK6VETM4unZXoCBzBwoj8nMayJiBo3Z4/OauWzpv1mq9XrgS8BqwAGZ+ZuJdz4yA3Ln9NXr9f5ON9GsU35395xO9yBJkrpTEYYHxh0I5wBHALsCa44zdjvghsx8JCIWRsQLMvP2zLwAuKB4gd+KS9P3aFxiIUmSpHY5HvhCZl471qCI2IXGjPRxxa7DgG9ExGrF8aDCv8Q7gyxJkqS2yMy7gaNGObxfRLwKWBm4Hdg3M28ojn2j2H9FRDwOLAB+Dfyuij4NyJIkSapUZk4fYd88YF7x/lxg7hjnJ42lGUdU0d9wLrGQJEmSSgzIkiRJUokBWZIkSSoxIEuSJEklBmRJkiSpxIAsSZIklXibtwo0+RjpGW1oRWrKjVfcWHmNGVvNqLxGO7zyra+svMbggkWV17joxAsrrwGw+7tfV3mNXd62W+U1esXuB+5eeY0Lj7+g8hqnfOPsymsArNhXyUPa2m7atBU63cKUY0CuxriPka7VamMelyRJUme4xEKSJEkqMSBLkiRJJQZkSZIkqcSALEmSJJUYkCVJkqQSA7IkSZJUYkCWJElS5SLi0Ii4LiKuiYj5EXF+RHypdPz5EXFbRKwWES+PiEsi4qaIuDEivh0RK7erV++DLEmSpEpFxCuAvYDtM/PxiFgLeA7w84iYm5k3AEcB/1Hs/wGwf2ZeFhEB7AusCjzWjn6dQZYkSVLV1gcezMzHATLzwcy8B/gk8PWI2BNYNTO/D3wEOCEzLyvGZmaekZn3t6tZA7IkSZKqdiGwcUTcHBFfj4hdADLzPOAvwInAh4uxWwNXdabNBpdYdM7gVHrc9CHH/bDTLUiSpC4VEbOAWaVdA5k5MLSRmQsiYgdgZ2A34LSImJ2Zc4FjgZUy86Z29jyWXgnISxs2Z0xSH02r1+uHt7vm0jjld3fP6XQPkiSpOxVheGCcMUuAecC8iLgWOBCYCzxVvA25DtgB+FEVvTajJwLy0obNqTSTK0mSNNVExBbAU5l5S7FrW+DOUYYfA1wZET/JzCuK898J/Cwz/1R9tz0SkCVJktTVpgNHR8RqwGLgVp65JOPvMvP+iNgfOCIi1qExu3wJcFa7mjUgS5IkqVKZeRWw0yjH5tFYelHedxmN9cod4V0sJEmSpBIDsiRJklRiQJYkSZJKDMiSJElSiQFZkiRJKvEuFlKXu+QHl1ReY7cDdqu8xuCCwcprqHk77b0Tq6w2vfI63/3voyuvMfOfP1B5jV5x4he+U3mNl7xiu8prLGrTvyfTV1+1LXWq9uLtqv+a9BoD8jhqtdpsoK/F02ZU0IokTZp2hGNJmqoMyOPrq9fr/a2c4JP5JEmSpi7XIEuSJEklBmRJkiSpxIAsSZIklRiQJUmSpBIDsiRJklRiQJYkSZJKDMiSJEmqVEQsiYj5EfH7iLg6InYq9s+IiEUR8buIuCEiroyIA0vnHRQRx7S7X++DLEmSpKotysxtASLi9cBhwC7FsT9k5nbFsRcCZ0XEcpn53c606gyyJEmS2uu5wF9HOpCZtwGfBD7e1o6GcQa5zSb46OqOO+S4H3a6BUmS1KUiYhYwq7RrIDMHStsrRcR8GhlofeDVY1zuauBFk99l8wzI7dfyo6u7wSm/u/v/t3fn4ZJV5b3Hvz+mgAwqokZBaSUqGmRsckEJjqgkcQQVjGO84BRHjAMmgpeoqKBRgka8V0WjoF5n71VxQkVxaEYZzFUBFTVhcAQBBd77x96H3hSnD92nVlX1ab6f5zlP1967znrXOaer6t1rr/Xuw2bdB0mStHbqk+HjFnjKcIrFnsD7kuywiuemdf/WlFMsJEmSNDVVdSqwFXD7VTxlF+D86fXopkyQJUmSNDVJtgfWBy6f59gy4CjgmOn26sacYiFJkqRJm5uDDN0UiqdV1XVJALZLcgbd/OTfAcfMsoIFmCBLkiRpwqpq/VXsvwjYZIHvey/w3ol0agFOsZAkSZIGTJAlSZKkARNkSZIkacAEWZIkSRowQZYkSZIGrGIhreWqauIxvvLBr0w8xp6P2nPiMbT2ecahz594jKuvvHriMdYV11577cRjXH/95N+zfnPZbyYeA+Ca318z8RhHHvrsicd45COfN/EY6xoT5Mm4evny5Yev4tiyKfZDkiRJa8gEeQJWrFhx5KqOLZA4S5IkaS3gHGRJkiRpwARZkiRJGjBBliRJkgZMkCVJkqQBE2RJkiRpwARZkiRJGjBBliRJ0kQlWZbknJF9hyd5af/4JUm+n+R7Sc5K8uYkGw6eu0uSSvLwafTXBFmSJEkzk+TZwMOAParqvsDuwCXAJoOnHQic0v87cd4oRJIkSbP0KmDvqvo1QFX9AbjhpmtJAuwP7AN8PcnGVTXRe8ybIE/fQrehXmsd8q5PzLoLkiRpLZXkYODgwa7jquq41fjWTYDNqurCBZ5zf+DCqvpRkpOBvwI+tujOrgYT5Clb6DbUa7MTzrj4sFn3QZIkrZ36ZHihhLhWsX+94bF+jvEbgNsAT6qqb9JNqzixf8qJwFOYcILsHGRJkiRN2uXAbUf2bQlcBFyZ5G4AVfX5qtoZOAfYKMn6wH7Aq5NcBBwD7Jtk80l21hHkzkLTHpZNsR+SJEnrnKq6Iskvkjykqr6UZEvgEcBbgdcD70hyQFX9up9zvHH/rQ8FzqqqG6pXJDkeeAzw/kn11wSZhac9LMX5wpIkSWuhpwLHJjm6335NP6/4HcCtgG8nuQa4AvgGcAZdAv3xkXY+CjwHE2RJkiQtZVV1HvCgefYXcFT/Nerp8zz/U8CnWvdvyDnIkiRJ0oAJsiRJkjRggixJkiQNmCBLkiRJAybIkiRJ0oBVLLRajj5736btHbje4U3bW5c94AkPmHiM8791/sRjSJNy9MtfPvEY22x9z4nH2P85T5t4jHvtvMPEYzx0v8m/Z5393em8Z51/6nkTj/G64z448Rhbbb3VxGOsaxxBliRJkgZMkCVJkqQBE2RJkiRpwARZkiRJGjBBliRJkgZMkCVJkqQBE2RJkiRpwARZkiRJE5XkuiRnJjkryelJ7pfkNkkuT5L+OXsmqSTb9Nu3TvLLJOv12y9OcnWSW0+6vybIkiRJmrSrqmrnqtoJeCXw+qr6NfCfwL3759wPOKP/F2AP4NtVdX2/fSDwXeCxk+6sCbIkSZKmaQvgV/3jb7AyIb4f8JaR7W8CJNkO2Az4R7pEeaJMkCVJkjRpm/RTLL4P/E/giH7/N1mZEN8d+AiwvN++H10CDV1SfALwdeBeSe4wyc5uMMnGb2mWL1/+CmDjWfdjIp4/6w5IkqS1VZKDgYMHu46rquMG21dV1c79c/cE3pdkB7oE+BVJ7gZcVFVXp7MZsBvwnf77DwAeW1XXJ/kY8Hjg2En9PCbIbW28YsWKw2fdiUlYfvx9D5t1HyRJ0tqpT4aPu9knds89NclWwO2r6gdJbgs8Eji1f8ppwDOAC6vqiiQ7AvcAvtCv59sIuIAJJshOsZAkSdLUJNkeWB+4vN91KvBCVibIpwIvop9/TDe94vCqWtZ/3RnYOsm2k+qjCbIkSZImbW4O8pnAh4CnVdV1/bFvAHcBVvTbp9LNR55LkA8APj7S3sf7/RPhFAtJkiRNVFWtv8CxNwFvGmxfBGSwfbd5vucljbt4I44gS5IkSQMmyJIkSdKACbIkSZI0YIIsSZIkDZggS5IkSQMmyJIkSdKAZd60Wg7Z8bNN2/v5Od9u2p7Gs8Nf7jDxGFdfcfXEY2j1nfKxU6YSZ6/H7TXxGIe84Q0Tj/HZ4z818RhvedWhE4/xgAftP/EYp51y1sRjXP7zX048BgDJzT9nCfjk20dLCLd30F/tM/EY0+QIsiRJkjRggixJkiQNmCBLkiRJAybIkiRJ0oAJsiRJkjRgFYubd/Xy5csPX83nLptgPyRJkjQFJsg3Y8WKFUeu7nPXIJGWJEnSWsopFpIkSZqoJJXk/YPtDZJcmuQzg32PSXJ2ku8n+V6Sx/T7109y5sjXZUk+NKn+OoIsSZKkSbsS2CHJJlV1FbAP8LO5g0l2Ao4C9qmqC5PcDfhCkguq6mxg58Fz7wR8BzhiUp11BFmSJEnT8Fngr/vHBwInDI69FHhdVV0I0P/7euAfhg0kCXA88KaqOmdSHXUEeS22fPnyVwAbz7ofAIe86xOz7oIkSVpLJTkYOHiw67iqOm7kaScCr+6nVewIvBv4y/7Yn9ONIA+tAJ43su/FwLXAMS36vSomyGu3jVesWHH4rDsBcMIZFx826z5IkqS1U58MjybEo885O8kyutHj/ztyOEAttK+fhvEiYPeqGn1uU06xkCRJ0rR8im6k+ISR/ecCy0f27QqcB5BkE+ADwHOr6r8m3UlHkCVJkjQt7wZ+U1XfS/LAwf6jgI8k+XJVXdSPNB8K7D848+AJlAAAH1xJREFU/tWq+gxTYIIsSZKkqaiqi4G3zrP/zCQvBz6dZEPgj8DL+v13Bp4LfD/JmYNvO7eq/nYS/TRBliRJ0kRV1Wbz7DsZOHmw/THgY/M87+d085GnxjnIkiRJ0oAJsiRJkjRggixJkiQNmCBLkiRJAybIkiRJ0oBVLLRajj5736btHbje4U3bk7Rm9nrcXrPuwpLyqIP3m3iMrz/lIxOPsemtb1JIoLnd9tpp4jHOOf0/Jh4D4LKfXTaVOJP26Oc+dtZdWHJMkNu6evny5Yc3bG9Zw7YkSZK0GkyQG1qxYsWRLdtrnGxLkiRpNTgHWZIkSRowQZYkSZIGTJAlSZKkARNkSZIkacAEWZIkSRowQZYkSZIGTJAlSZI0UUkqydGD7ZcmOXzkOWclOWFk33uT/D7J5oN9b+3b22pS/TVBliRJ0qRdAzxuVUltknvT5aV7J9l05PAPgUf3z1sPeBDwswn21QRZkiRJE3ctcBzw4lUcfxLwfuAk4FEjx04Antg/fiDwjb69ifFOemu31reuXrznz7oDkiRpbZXkYODgwa7jquq4kacdC5yd5I3zNPFEYB/gXsDf0yXFc34APDrJbYEDgX8H9m3V9/mYIK/FWt+6ehzLj7/vYbPugyRJWjv1yfBoQjz6nN8meR/wAuCquf1JdgcuraofJ7kYeHeS21bVrwbf/jHgAOC/Ac9q/gOMcIqFJEmSpuVfgGcCw3nGBwLbJ7kI+BGwBbDfyPedCBwBfKGqrp90J02QJUmSNBVV9Uvgw3RJ8tyiu8cDO1bVsqpaRrcg78CR7/sJ8Crg7dPopwmyJEmSpuloYK6axd7Az6pqWJXia8B9ktxp+E1V9c6q+tE0OugcZEmSJE1UVW02ePxfwK0Gh/cYee51wFxy/PRVtLesbQ9vzBFkSZIkacAEWZIkSRowQZYkSZIGTJAlSZKkARNkSZIkaaiq/PKr2Rdw8FJqd9ox1qWfxRi3vBjr0s9ijFtejHXpZ1lXYqzNX44gq7WDb/4pa1W7044xrTjGMMZSjmMMYyzlOMZYB5ggS5IkSQMmyJIkSdKACbJaO26JtTvtGNOKYwxjLOU4xjDGUo5jjHVA+onYkiRJknAEWZIkSboRE2RJkiRpwARZkiRJGjBBliRJq5TkLkn+Ydb9kKbJBFljS/InSZ6U5NAkr577GqO9LRf6atn3kbjbJfnHJOc0bPO9rdpam0zid3Uz8XZv1M6+Sb6W5LIklyb5apK/atH2SJz1k2w12N4oycFJzm/U/sZJbj/P/jsk2bhFjL699ZNsNtjeI8ne/dfmreLME3fTJE9O8n8atXdCknuv4tj7G8WYyftWH7t5AptkqyTPSfI14GTgjo3avTDJBYOv4faPWsQYxNqjZXvrsiS7J/nTwfZTk3wyydsm/f93bbXBrDugdcIngd8ApwHXNGjvNKCAzHOsgLs3iAFAkjsBTwSeBOwIvB44sFX7fZsTk+R3dL8TWPn7KrrX9kZV1ew1PoXf1Wi8+wAH9DF+Aywfs72DgGcBLwNW9LuXA0cm2aaqmpQ0SnIA8E7gyiQ/AA4H3g98F/jbFjGAtwGfAz42sn8fYC/gOY3ivAG4BHhjv30CcA6wMXA68PJGcUiyEfBXdP+/HgF8FPi3Rs0/FLhfkjdW1bEjx/68UYzLgIuBa/vt4ftX0/ct6BJY4PF0r4+tgY83aHNz4LF0f4N79m3evaq2GbftgdHX8XrAE4CXAmc0jAPwjiTfAV5eVb9u3DZJTqqqh/WPX1lVr28do2/7GFa+z99EVb2gQZh30r1OSLI3cCTwfGBnunJv+zeIsaRY5k1jS3JOVe0wpVhbV9XPGrRzEN0HyzbAh/uvT1bV3cZteyTO9/s48yX7VNXpjeNtDjyXLhH8eFUd0qDNqfyu+ljb9rEOpEs0tgWWV9VFDdo+D9irqn45sv92wClVNe8I4yLinAM8pqp+mGRX4FTggKoaO4EZxDivqu6zimPnVlWTpC/JGcDuVXXt3HZV7ZIkwNeraq8GMfah+3s/HPgK8CHgmKpaNm7bgxhnAPsCxwN/BJ5eVZf1x06vql0bxHgr8EDgG3QnEqdU4w/YVSSwT2yVwCa5CvgO8I/0/U9yQVU1Te77WOsBTwH+ATgTeF1VnTeBGC+ge088oqqaXC0YtH9GVe3SP27y/2gVcZ620PGqOr5BjLOqaqf+8bHApVV1eL99ZlXtPG6MpcYRZLXwzST3rarvTSHWqcBdG7RzbN/Wk6pqBUCSSZwtbg0czapHwx/cIkiS2wAvAp4KfJAuqbm8RdtM6XeV5JvArYETgf2r6gdJLmyRHM+FGE2OAarq8i7fa+YPVfXDvu3T+5+hWXLcW6jDLafOrTeXHPdeDtAnTput4nvW1OeBr9OdvFwINySbLVVV/Sfw8CQvAVYkeU5VfZaFf5drEuCF/YnDA+kSv2OSnAS8Y+7nauASbprAPrZR2wCH0l21eQfwwSQfatg2AEk2BP4OeDFwCvDoqmo6tWJOVV0P/Ev/dzg1ydtZeXWyqmqLcUOM28fVCtIgAV4N6yfZoH+9PwQ4eHDsFpkr3iJ/aDW3F/D0JBfSTbGYe/OZxPSCVpnMnekuT745yR3pRkU3bNT20A+rqkkSPJ/+MushdFMf3g3sUlW/aRxmWr+rS+lGqe8I3B74AW0/gH6bZKeqOmu4M8lOwO8axrlDn4TN2Wy4XVVvbhDjkiR/UVXfGe5MN1f70gbtz9koyeZV9TuAqjqpj3NrumkWLexGl5R9MckFdCdI6zdq+yaq6s1JvgT8e7r55xs1bLuAr/Qj1gcAR9D9P35XoxATTWCr6i3AW5LcnW5U/xPAnZO8nO6K1P9rEOZCuqtD/wL8BNipfw3O9WF02tBYkjwTeAXwKuDYxqP6d0/yKbrPpbnHN6iqR7UK1I8ivxC4V7/rfOBtVfW+RiFOAL6a5DLgKrqTVpL8Gd0Ut1scp1hobP1l8Zuoqh9PINZPqqrFCPKwzW1YOdf1VnQfBIc2avuGS3DzHNu0qq4cs/0r6RKi9zBPktcoGRvGm9jvqm//1sB+fft/BtwGePhoIrjItvcCPkD3u5qb57478DTgyVV1yrgx+jiHLXS8ql7TIMZf0J2ovJfuZ4FubudT6aZzfHvcGH2cl9DNS3x2Vf2k37ctXYL2pao6ukWcQbz70/3t96O77P7xFnPD53sdplvMeDTdzzZ2Qp5kU+DRdCert6ebH/6hqvrpuG3PE2sugT0AuAdwGO0S2NFY9+1jPbGqtmvQ3ntZ9YlvVdXfjRtjEOubwEXAS/orCE0lecBCx6vqq43iPJVuxP0ldHP/A+wKvAl4a6skuV/UeCfgpLnPpiT3BDZrPR1wKTBBVhP9CMBf9ptfHx2lW8O2VrUgIcDTGlwWWyj2PYEDWyQxfXsPA86le9M5u6r+kOQOdNMhnl5Vdx6z/cNZePFGk59jFbGb/q7maf8OdMnGgcBdquouDdr8U7r5iH9O9//pXLpRpeYfnpOUZAu6EdznAXPz/88F/rWqLmkc69l0I5eb9ruuAI6sqne0jDMScz26xPzAqnpGi/b6y+3zHbtTVf2iQYwr6UaLTwB+yMjrsvXI6CBuswQ2ycOr6vOrOPaEqvrwOO1PW5J9quoLg+2tWXl14ucj04daxr0L3Ynqmxq1962+vYtG9i8DTqyqsat15KaVKgr4det59EuJCbLGluSFwEGsXFH/WOC4qjpmke1NY0HCFsAdq+oH/fbjgU36w5+vqv8aN0bf7ovoLu39EPgT4K3Am4H3AW9s8cE8aUket9DxVh/8SW5VVb9fxbG7V9UFLeJMWpK3LXS8Gqw4T1cO61VVdeK4ba1BzM3oPjNaTkchyfrAJlV1Rb+9ByunPZzRKl6SHegqmNyH7sP/POCoVmsnpjEymuRy4FvAN+kWA35nVa+ZRbZ/HfA1uisqPxs51mox40tGdhVdBZBTGs7Vnov1SmDDqvof/fZPgF/T/f86vhpWncg8VUWq6qWN2l5oUe4qj61hjAu5aUWkzYCzgP/ecC3IkmGCrLElORvYc3BJZlPg1AnNQW4iyXHAN6vqvf32D4HP0iXJ11bVsxvFuaFyQpK70iXKe1fVtxq1/+GqekL/+A1V9fLBsRtKEI0Z4z2DzUcCnx5sN7skmuSPwOuA14yO9rX4cE7yaGCb6st8Jfk23aVw6MpAfWSc9gdx/kBXCu3DwM8ZmTff6ARvW7o5nJsBz6l+UeAkJLkX3YKd7ftd59OdADe5nJ/kKOCSqnpjv30hK0vJnVZVr2gQ49HAUXSlCVfQ/U12A14JvLSqPjlujJuJf8cWJ939if0ewP36r92AC+gT5nFHePu5028HXk03LeEjw2Ormi62hjHmm4K0JV0Vk8NbnvQlOR34y8Fn01wVlvWBr9aYVVgy4aoigzinVdVua3qsUezHAQdX1SMmFWNtZYKssSX5Hl3VhKv77Y2B71bVfRfZ3qcWOt5i4UP/QbDr3OWj3LhczynjvnEO4twosUvjknhZoMxQqw+0VcVrLcl/0NUK3o6uYsaFg2Njx03yDbrLlD/tt8+kW629KfCeqnrIOO0P4tyObiTpiXSLkT4EfLSqftWi/ZFYj6ArXfZd4IaTihavkb79PemuDB3HyrmPu9BdMXpcixO9TKeU3Fl01RIuGtm/jK5k4U7zfNu4Mefm0z8JuHdVbT2BGJsCz6CbsnW3cedSz72H9NOnPkB3ovK8qvp9qxHkBWJvCXyxZYx53hOfPhgUGTuxzJTK4iX5Pd3gyk0O0dWp3nSeYy3jT/Rvv7ayioVaeA/w7SRzpaweA/yvMdrbE/gp3Vy+b0OzyhVDG4zMrXrK4PFtGsbZZuSS+x2G2w0uty90hjuJs99JnlFfWVVPTvJk4GtJXlUrF5+0iLtR3XjB1CnVlcK7vE80mujb/Dfg3/o5jwcC5yZ5eTWsw9qP7L6MbrX5sQwS5IZeTTcP+OTBvk8k+TLdwrB9G8SYRim5Dee7RFxVF6UrO9ZEkk2AR9ElxbsCm9O9H36tUft3ZuXo8dzdJU+jS9BObREDoKr+X39y9M/AGekWiU1Uf5Wt9Xv9Zkk2rKo/9jHeC5DkT4AWa1kmXhav16RG+2L0r8Fb5F2XTZA1turKJp1MV+4twDOqapw7Iv0p3R3BDqT7oPk/wAlVde64fR24PsmfVr84q6rOgRsWcbRMNEZv/3ravM9avFsl2YXuDWyTdDemgO7vsMmqv23tVVX/nuQU4P3pynA9q1HTtx2J8/eDzZvctnlc/d/iQLr/y5+l4d8+yZF0idgh1dXynZTtRpJjoFud309TamEapeT+mOSu1VfimNNPVWmyUCvJB4C9gZOAfwW+TFfm8eQW7fcuphvJfwvwiqr6Q8O2YVDyrj9peUWSz9ENVjR/jQwleTDQ+irL/wbemeTv5+Zq9yfD/9ofG0tNpyzevBWh+jnPl48M9CzaPHPDoXvPfBTd7+sWxwRZi5Zki6r6bX9p7KL+a+7YljXPTRlWR1VdR3cb3c/1Z/oHAicn+R+1yIV/83gT8Okkh7Dy9qa70s1TbLLyGKZS4P0XrLwRyX/S9X9Ok8oMST7NyhHcYa3PuXrXrWp93jB61I/sPQD4J7q/T4tk/9tJDqqqG9WkTfIsusukTSR5DfA3dHN1TwReWe1Xy98XeGhV/byP+VS6y/k/ppvHuajX3jwWWiA3VonCgXcBH0oyXym5VvWDD6Ors/w6blzi7xW0u132DnQJ3vnA96vqurS/oc796a6wPRZ4SZKL6EaOTwVWVNU1Y7Z/k/+nVXVykt1odKKa7k6To4MQW9LN1289Uv1PwGuBnySZSzLvSneF85/GbTx91Y/qFhC/FnhtVlYV+SzddLGxpVu4eiTwS7ra2u8HtgLWS/LUqvpcgzCbj2wX3WfIk2s6NwFb6zgHWYuW5DNV9Te58epXWJk4LXoeVp8Y/zXdG80y4FPAu6vBbaYHMR5Bd4ls7ra859CVr2o2Ijfp+dTp6uH+tPpqGOkqgOxHd7LSJFHK/LU+b1jtXO1qff5zVf3jPPv3oPtZxlokkq5s3CfobmYzV9NzN7rqIo9psYiqj3M93cKpq/pdo+W+xl682i8+emh/WXpvukT8+cDOdPNd9x83Rh/nkr7tmxwCnlBVd2wU51l01V42pft9XUnjUnLpSlEewo1L/B1VY5SknCfG9nRXvZ5Id9e77YH71oTKCPZzqB9JdwOJbapqrBH3acw1TfIruv+nc4puJLTVCdd8MTehq6sO3aj+VQs9fw3aXajqR7P1GklW0H1W3ZpuPcC+VfWt/v/bCZNaF3JLZ4KstU6S4+lGYz5LV+PxnBl3adGSXMoC86nHTS6nkSjlptUfvkN3ubVoWP1hJObtAaqq2V3hBguQHkJX6gvg3Kr6cqsYfZx70N0NcPQGEdvS1V4du+JEkjOrauf+8bHApVV1+OixBnGmUXJx7tLu3LSg9ehO8L5ejct+TVOS5XTJ8v7AxVV1v0btbs/Kecj3p7sMfipdFYujFvre1Wj7YroylPOqBjcemuaCryQvq5XVUR5fN67K8boa8yZHWbjqR7Ofc+T1fn5V3XtwrFV1kYkvjl9qnGKhsQ3mvQ79BvjxIi8tP4VuBOmewAsG6zbmRqbHXlyR5NULHK6qOmLcGL1Jz6defzBK/ES68lsfBT6arkpDCy+jW4gyZyO6u7ZtSrdAs1mCnO7GJ39P97deL8m1wDHV1zEdt3mAqvoS8KUG7a3KW4BDR+cN9kn/W+hG/Ma1QZIN+tfXQ+jKsN1wrEH7wFSmCMFNL+1CN7J/aJImZb9m8eFfVSuAFf00rr1btJnuNsC/oCvr9nW6UfaWJf7WpysdOImF0XNGb8V+Iy2S8IEDgDf2j1/Jjd+r5q4gjqOq6l1Jvgp8oF8z8bx+vnPL3+FwSsro6HerUc5pLI5fUkyQ1cLb6ebvnk33orovXXHx2/XzCk9ak8aqahorZue7nLcp8EzgdnTzvMY2hfnU608hUZpK9YckL6YbEdt9buSwX/zyjiQv7hfEjOP2U/pgXlZVZ8/T/or+kngLJwBf7ROmq+iSJZL8Gd3JaRPTSCxrFXdi7Nc2fJH5p3isqYl/+N/MSTdAi6lI21XVjf6+jRdr/aLRyehCppGEz8kqHs+3vWg1f9WPlpfnd0ryW/qrLP1j+u1WC1mnsTh+STFBVgsXAc+ceyEluQ9d9YYj6GqorlGCPA1VdfTc43TF3l9IV0/0RLpFb83MM5/6bay86+C4ppEoTav6w1OBfarqskGsC9KVfTuJbvR1HNP6YF7oA6tJZZGqem2SL9HdwvykQXK0Ht0Um1ZmNqpUbct+TePD/+ZOulsknvdO8nq6xYCTWKw1jb/vNJLwObWKx/NtL8ZwYfHEqn7UmPWtVzPGNBbHLykmyGph++EHTVWdl2SXPrmZZb8W1I9QvQT4W7qbLexajW/mMDKf+jWt51NPKVGaSvUHulq1l43urKpL06ZW7bQ+mL+7it/XM2lY6q3muUlHNSorNTCzUaU0LPs1jQ//KZ10/ysrF2t9mZHFWnQ/4zia3CznZkzzQ2HSI683ufpRjat+TNOEB3OWHBfpaWzpiqP/kpWXQp9IN6rxFLrL8buv6ntnJcmbgMfRrQg+tqqumFCc61k5sjRfpY8WxeonaorVH1a5qKXFgpeWq8pvJs4d6W45+wdWJsTL6eZuP3ZSFQ0mbZBYvglollimuxPn6AfRDWW/qur7jeJMozLO6En3W1uedE9jsdakZYwSoJqcdWlxfCsmyBpbX0Lnuay8UcgpdPOSrwZuNankcxx94noNXd3PJZm4Tls/ojdXEm8S1R+uY/7L1AE2rqqxRpGn/cGc5EF0Hzgwgd/XtEw6sUxX83ioedmvaXz4T+Oke3iiOHrSOM3qEFr3rAuDOa2ZIKuJPkm+a1X9x6z7IqmNdWVUaRof/tM46R6cRM6VxPv9IMbYJ5GSVjJB1tiSPIrusutGVXW3JDvTXYK9xdVNlNYljipJuqVykZ5aOAz4C+BkgKo6s2E5K0kzMqWSi5K01vHNTy1cO1qbU5IkaalyBFktnJPkSXQ3rbgH8AK6Oz1JkiQtOY4gq4Xn01U3uIauFudv6GqASpIkLTku0lNzfdH6Q6rqoFn3RZIkaU05gqxFS7JjkpOSnJPkiCR3TPJR4IvAebPunyRJ0mKYIGsc7wI+COwHXEZ3l7ULgD+rqrfMsmOSJEmL5RQLLdrwtqf99k+BZVV13Qy7JUmSNBarWGgcGyfZhe6mAQBXADsmCUBVnT6znkmSJC2SI8hatCRfWeBwVdWDp9YZSZKkRkyQNXFJ9qmqL8y6H5IkSavDBFkTl+T0qtp11v2QJElaHVax0DTk5p8iSZK0djBB1jR4mUKSJC0ZJsiSJEnSgAmypuGiWXdAkiRpdblIT2NLcivgEOCuVXVQknsA96qqz8y4a5IkSWvMEWS18B7gGmDPfvti4J9n1x1JkqTFM0FWC9tV1RuBPwJU1VVYuUKSJC1RJshq4Q9JNqGvVpFkO7oRZUmSpCVng1l3QOuEw4HPAXdJ8gHg/sAzZtojSZKkRXKRnppIcjtgD7qpFd+qqstm3CVJkqRFMUHW2JJ8qaoecnP7JEmSlgKnWGjRkmwM3ArYKsltWbkwbwvgzjPrmCRJ0hhMkDWOZwEvokuGT2Nlgvxb4NhZdUqSJGkcTrHQ2JI8v6qOmXU/JEmSWjBBVhNJdgDuA2w8t6+q3je7HkmSJC2OCbLGluQw4IF0CfL/BfYFTqmq/WfZL0mSpMXwRiFqYX/gIcB/VtUzgJ2AP5ltlyRJkhbHBFktXFVV1wPXJtkCuAS4+4z7JEmStChWsVALK5LcBngXXTWLK4DvzLZLkiRJi+McZDWVZBmwRVWdPeOuSJIkLYoJshYtyfZV9f0ku853vKpOn3afJEmSxmWCrEVL8q6qOijJV+Y5XFX14Kl3SpIkaUwmyJIkSdKAi/S0aEket9DxqvrYtPoiSZLUigmyxvHI/t87APcDvtxvPwg4GTBBliRJS44JshatvykIST4D3KeqftFv3wk4dpZ9kyRJWixvFKIWls0lx73/Au45q85IkiSNwxFktXByks8DJwAFHADMV9lCkiRprWcVCzWR5LHA3v3m16rq47PsjyRJ0mKZIKuJJNsC96iqLya5FbB+Vf1u1v2SJElaU85B1tiSHAT8b+Cd/a6tgU/MrkeSJEmLZ4KsFp4H3B/4LUBV/YCu9JskSdKSY4KsFq6pqj/MbSTZgG6xniRJ0pJjgqwWvprkUGCTJPsAHwE+PeM+SZIkLYqL9DS2JOsBzwQeBgT4PPA/y/9ckiRpCTJBliRJkgacYqGxJfmbJGck+WWS3yb5XZLfzrpfkiRJi+EIssaW5IfA44DvOa1CkiQtdY4gq4WfAueYHEuSpHWBI8gaW5LdgSOArwLXzO2vqjfPrFOSJEmLtMGsO6B1wmuBK4CNgY1m3BdJkqSxmCCrhS2r6mGz7oQkSVILzkFWC19MYoIsSZLWCc5B1tiS/A7YlG7+8R/pbhZSVbXFTDsmSZK0CCbIGkt/F709q+obs+6LJElSC06x0Fiq6nrgqFn3Q5IkqRUTZLVwUpL9kmTWHZEkSRqXUyw0tsEc5OuAq3AOsiRJWsJMkCVJkqQBp1hobOk8Ock/9dt3SfIXs+6XJEnSYjiCrLEleQdwPfDgqrp3ktsCJ1XV7jPumiRJ0hrzTnpq4b9V1a5JzgCoql8l8ZbTkiRpSXKKhVr4Y5L1gQJIcnu6EWVJkqQlxwRZLbwN+DhwhySvBU4BXj/bLkmSJC2Oc5DVRJLtgYfQlXj7UlWdP+MuSZIkLYoJssaW5P1V9ZSb2ydJkrQUOMVCLfz5cKOfj7zbjPoiSZI0FhNkLVqSV/Z30dsxyW+T/K7fvgT45Iy7J0mStChOsdDYkry+ql45635IkiS1YIKsJpJsDWzLoLZ2VX1tdj2SJElaHG8UorElORI4ADgPuK7fXYAJsiRJWnIcQdbYkvwHsGNVXTPrvkiSJI3LRXpq4QJgw1l3QpIkqQWnWKiF3wNnJvkScMMoclW9YHZdkiRJWhwTZLXwqf5LkiRpyXMOsiRJkjTgCLIWLcn36KpVzKuqdpxidyRJkppwBFmLlmTbhY5X1Y+n1RdJkqRWTJA1cUlOrao9Z90PSZKk1WGZN03DxrPugCRJ0uoyQdY0eJlCkiQtGSbIkiRJ0oAJsqYhs+6AJEnS6jJB1jQ8ZdYdkCRJWl1WsdCiJbmQG88vzmC7qmq76fdKkiRpPN4oRONYPrK9HvAE4KXAGdPvjiRJ0vhMkLVoVXU5QJL16KZR/ANwJvDXVXXeLPsmSZK0WCbIWrQkGwJ/B7wYOAV4dFX9aLa9kiRJGo9zkLVoSS4GrgX+BfjJ6PGq+tjUOyVJkjQmE2QtWpL39A9HF+pBt0jv76bcJUmSpLE5xULjOIcuOb4hKQYuBU6pqgtn1itJkqQxWAdZ49gM2Lz/d+7xcuCzSQ6YZcckSZIWyykWai7JlsAXq2rXWfdFkiRpTTmCrOaq6pd4e2lJkrREmSCruSQPBn41635IkiQthov0tGhJvseNK1gAbAn8HHjq9HskSZI0Pucga9GSbDuyq4DLq+rKWfRHkiSpBRNkSZIkacA5yJIkSdKACbIkSZI0YIIsSZIkDZggS5IkSQMmyJIkSdLA/wfnlDOQq3/prwAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Plot heatmap and corresponding dendograms\n",
"g = sns.clustermap(data_scaled,\n",
" method='ward',\n",
" cmap='bone_r',\n",
" row_colors=region_color,\n",
" );\n",
"g.fig.suptitle('Hierarchical clustering with Ward linkage', y=1);"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Network analysis"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The matrix of bilateral mis-invoiced imports between African reporter countries and partner countries can be conceptualized as a *weighted directed graph*. Recall that the data-set `IFF_Dest` contains the mis-invoiced imports and exports for a reporter-partner-year tuple. The underlying data has been aggregated across commodity sectors using the Gross Excluding Reversals (GER) method, which ignores all inflows of capital (i.e. negative values), and simply sums up the positive outflows across trading partners."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The table below shows the `IFF_Dest` data-set that we are working with:"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
reporter
\n",
"
reporter.ISO
\n",
"
rIncome
\n",
"
rDev
\n",
"
year
\n",
"
partner
\n",
"
partner.ISO
\n",
"
pRegion
\n",
"
pIncome
\n",
"
pDev
\n",
"
Imp_IFF_lo
\n",
"
Imp_IFF_hi
\n",
"
Exp_IFF_lo
\n",
"
Exp_IFF_hi
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Algeria
\n",
"
DZA
\n",
"
UMC
\n",
"
Developing
\n",
"
2001
\n",
"
Andorra
\n",
"
AND
\n",
"
Europe
\n",
"
HIC
\n",
"
Developed
\n",
"
7.925637e+03
\n",
"
1.609561e+04
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
1
\n",
"
Algeria
\n",
"
DZA
\n",
"
UMC
\n",
"
Developing
\n",
"
2001
\n",
"
Argentina
\n",
"
ARG
\n",
"
Americas
\n",
"
HIC
\n",
"
Developing
\n",
"
1.914238e+07
\n",
"
4.717459e+07
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
2
\n",
"
Algeria
\n",
"
DZA
\n",
"
UMC
\n",
"
Developing
\n",
"
2001
\n",
"
Australia
\n",
"
AUS
\n",
"
Oceania
\n",
"
HIC
\n",
"
Developed
\n",
"
1.589172e+06
\n",
"
2.027641e+07
\n",
"
NaN
\n",
"
1412.374399
\n",
"
\n",
"
\n",
"
3
\n",
"
Algeria
\n",
"
DZA
\n",
"
UMC
\n",
"
Developing
\n",
"
2001
\n",
"
Austria
\n",
"
AUT
\n",
"
Europe
\n",
"
HIC
\n",
"
Developed
\n",
"
1.511117e+07
\n",
"
7.641706e+07
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
4
\n",
"
Algeria
\n",
"
DZA
\n",
"
UMC
\n",
"
Developing
\n",
"
2001
\n",
"
Belgium
\n",
"
BEL
\n",
"
Europe
\n",
"
HIC
\n",
"
Developed
\n",
"
9.357981e+06
\n",
"
2.285729e+07
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" reporter reporter.ISO rIncome rDev year partner partner.ISO \\\n",
"0 Algeria DZA UMC Developing 2001 Andorra AND \n",
"1 Algeria DZA UMC Developing 2001 Argentina ARG \n",
"2 Algeria DZA UMC Developing 2001 Australia AUS \n",
"3 Algeria DZA UMC Developing 2001 Austria AUT \n",
"4 Algeria DZA UMC Developing 2001 Belgium BEL \n",
"\n",
" pRegion pIncome pDev Imp_IFF_lo Imp_IFF_hi Exp_IFF_lo \\\n",
"0 Europe HIC Developed 7.925637e+03 1.609561e+04 NaN \n",
"1 Americas HIC Developing 1.914238e+07 4.717459e+07 NaN \n",
"2 Oceania HIC Developed 1.589172e+06 2.027641e+07 NaN \n",
"3 Europe HIC Developed 1.511117e+07 7.641706e+07 NaN \n",
"4 Europe HIC Developed 9.357981e+06 2.285729e+07 NaN \n",
"\n",
" Exp_IFF_hi \n",
"0 NaN \n",
"1 NaN \n",
"2 1412.374399 \n",
"3 NaN \n",
"4 NaN "
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IFF_Dest.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Thus, the values in the import column of `IFF_Dest` correspond to import over-invoicing which result in an illicit outflow from reporter $i$ to partner $j$. Therefore, we can consider each entry in `IFF_Dest` to represent an edge going out from the reporter into the partner country."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"### Data wrangling"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Let's download some indicators from the World Bank that we can use as node attributes."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-cell"
]
},
"source": [
"The covariates `control-corruption` and `rule-of-law` refer to the percentile rank that each country achieves on these governance dimensions. The control of corruption measure captures perceptions of the extent to which public power is exercised for private gain, including both petty and grand forms of corruption, as well as \"capture\" of the state by elites and private interests. The rule of law variable captures perceptions of the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, property rights, the police, and the courts, as well as the likelihood of crime and violence. The underlying source for these data is the World Bank's [Worldwide Governance Indicators (WGI) database](https://info.worldbank.org/governance/wgi/).\n",
"\n",
"*Nota bene*: these will be used in further work and are not exploited in this project."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The variable `gdp-pc` measures each country's GDP per capita in current US $ and is sourced from the World Bank's [World Development Indicators (WDI) database](http://datatopics.worldbank.org/world-development-indicators/)."
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {
"slideshow": {
"slide_type": "skip"
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
country
\n",
"
control-corruption
\n",
"
rule-of-law
\n",
"
gdp-pc
\n",
"
\n",
"
\n",
"
ISO3166.3
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
AFG
\n",
"
Afghanistan
\n",
"
3.365385
\n",
"
5.769231
\n",
"
547.228110
\n",
"
\n",
"
\n",
"
ALB
\n",
"
Albania
\n",
"
40.865380
\n",
"
41.826920
\n",
"
4124.055726
\n",
"
\n",
"
\n",
"
DZA
\n",
"
Algeria
\n",
"
27.884610
\n",
"
18.750000
\n",
"
3946.443977
\n",
"
\n",
"
\n",
"
ASM
\n",
"
American Samoa
\n",
"
87.500000
\n",
"
87.980770
\n",
"
11696.955562
\n",
"
\n",
"
\n",
"
AND
\n",
"
Andorra
\n",
"
87.500000
\n",
"
90.865390
\n",
"
37474.665406
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
VIR
\n",
"
Virgin Islands (U.S.)
\n",
"
72.115390
\n",
"
73.076920
\n",
"
35931.541252
\n",
"
\n",
"
\n",
"
PSE
\n",
"
West Bank and Gaza
\n",
"
51.923080
\n",
"
40.865380
\n",
"
3074.291152
\n",
"
\n",
"
\n",
"
YEM
\n",
"
Yemen, Rep.
\n",
"
1.442308
\n",
"
3.365385
\n",
"
1033.733043
\n",
"
\n",
"
\n",
"
ZMB
\n",
"
Zambia
\n",
"
41.346150
\n",
"
43.269230
\n",
"
1280.578898
\n",
"
\n",
"
\n",
"
ZWE
\n",
"
Zimbabwe
\n",
"
9.615385
\n",
"
8.173077
\n",
"
1464.583529
\n",
"
\n",
" \n",
"
\n",
"
223 rows × 4 columns
\n",
"
"
],
"text/plain": [
" country control-corruption rule-of-law \\\n",
"ISO3166.3 \n",
"AFG Afghanistan 3.365385 5.769231 \n",
"ALB Albania 40.865380 41.826920 \n",
"DZA Algeria 27.884610 18.750000 \n",
"ASM American Samoa 87.500000 87.980770 \n",
"AND Andorra 87.500000 90.865390 \n",
"... ... ... ... \n",
"VIR Virgin Islands (U.S.) 72.115390 73.076920 \n",
"PSE West Bank and Gaza 51.923080 40.865380 \n",
"YEM Yemen, Rep. 1.442308 3.365385 \n",
"ZMB Zambia 41.346150 43.269230 \n",
"ZWE Zimbabwe 9.615385 8.173077 \n",
"\n",
" gdp-pc \n",
"ISO3166.3 \n",
"AFG 547.228110 \n",
"ALB 4124.055726 \n",
"DZA 3946.443977 \n",
"ASM 11696.955562 \n",
"AND 37474.665406 \n",
"... ... \n",
"VIR 35931.541252 \n",
"PSE 3074.291152 \n",
"YEM 1033.733043 \n",
"ZMB 1280.578898 \n",
"ZWE 1464.583529 \n",
"\n",
"[223 rows x 4 columns]"
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Specify indicators of interest to import from World Bank\n",
"indicators = {'CC.PER.RNK': 'control-corruption', \n",
" 'RL.PER.RNK': 'rule-of-law',\n",
" 'NY.GDP.PCAP.CD': 'gdp-pc'}\n",
"\n",
"# Import covariates\n",
"covariates = wb.get_dataframe(indicators, \n",
" data_date=(datetime.datetime(2016, 1, 1)))\n",
"\n",
"# Merge in ISO codes from the crosswalk\n",
"covariates = pd.merge(left=covariates.reset_index().rename(columns={'index': 'country'}), \n",
" right=crosswalk[['country', 'ISO3166.3']], \n",
" how='left', on='country').rename(columns={'date': 'year'})\n",
"covariates = covariates.dropna(subset=['ISO3166.3']).set_index('ISO3166.3')\n",
"covariates"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Now, let's create an auxiliary function that transforms `IFF_Dest` into an appropriate format for network analysis, and applies some thresholding.\n",
"\n",
"The function `create_graph_data()` accomplishes the following:\n",
"- Extract data from a specific year, in order to perform network analysis at a specific snapshot in time.\n",
"- Ignore illicit flows that are less than a certain value specifid by `flow_threshold`. The default is to ignore flows that are less than $10,000. This is necessary because the mis-invoicing estimation procedure, by construction, will locate IFF as discrepancies between a country's reported imports and the mirror exports declared by its partner country (after adjustment). But any discrepancy, no matter how small, would result in the creation of an edge between a given dyad. If no thresholding on the value of the mis-invoiced flow were applied, then the directed graph would simply recover the topology of international trade networks.\n",
"- Further restrict the graph, if `threshold` is `True`, to reporting countries which are considered \"conduits\" because they have the highest value of IFF in relation to either their GDP or total trade value."
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def create_graph_data(year='2016', threshold=True, threshold_var='GDP', flow_threshold=10000):\n",
" \"\"\"\n",
" Returns data-set to be used to generate a directed graph.\n",
" \n",
" year: as string, specify which year to use for the network analysis (between 2000-2016)\n",
" threshold: as boolean, indicate whether to restrict reporting countries to conduits\n",
" threshold_var: as string, indicate which variable to use when determining which \n",
" reporting countries are conduits ('GDP' or 'trade')\n",
" flow_threshold: as numeric, specify the cut-off under which to ignore the dollar values\n",
" of mis-invoiced imports\n",
" \"\"\"\n",
" flow_data = IFF_Dest.reset_index().query('year == @year')\n",
" flow_data = flow_data.loc[flow_data['Imp_IFF_hi'].notnull(), :]\n",
" flow_data = flow_data.query('Imp_IFF_hi >= @flow_threshold')\n",
" \n",
" if threshold:\n",
" conduits = 'conduits_' + threshold_var\n",
" flow_data = flow_data[flow_data['reporter.ISO'].isin(eval(conduits).index)]\n",
" return flow_data"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Thresholding"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The figure below displays the distribution of over-invoiced imports by African countries in 2016, as a proportion of their GDP and of their total trade value, respectively. The distribution of outflows relative to trade value has a higher variance than that of outflows relative to GDP, with some countries' experiencing up to 30% of mis-invoicing in their total trade with the rest of the world."
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAGDCAYAAAAYtQWTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXycZbn/8c+Vyb6nTbol3VvovtMFCmUtBZGigmxKQQVcOHqOokflHEXE4++g5xxxRVwQZJFFBKqsIlCgC7SlLdC96Zau2dNmz8z9+2OmNYSkmTQzeSaZ7/v1yqvJPNs1SZp8c9/X3I855xARERGRyErwugARERGRvkghS0RERCQKFLJEREREokAhS0RERCQKFLJEREREokAhS0RERCQKFLJEepiZ3WNm/xmhcw0zs6Nm5gt9/KqZfS4S5w6d7zkzWxKp83XhuneaWZmZHeyh611rZi9G6dxpZrbUzKrN7PGeun7b7w0R6XkKWSIRZGa7zKzezI6YWZWZLTezz5vZ8f9rzrnPO+e+H+a5zj/RPs65Pc65TOecPwK1325mD7Y5/0XOufu7e+4u1jEU+BowwTk3qJ3tZ5tZSauPXzWzhlCgOPY2L7TNmVltq8er2rumc+4h59zCbtZ9feh6n2yz6XJgINDfOXdFtK7fzjlP+nvDzOaa2UtmVmFmpWb2uJkNbrXdzOy/zaw89HaXmVmr7d83s3fNrMXMbm/n/AVm9nDo/0ilmT100k9UJIYpZIlE3kedc1nAcOD/Af8O/C7SFzGzxEifM0YMB8qdc4e7cMwtoUBx7G1Fq21TWz2eG+FaW1sCVIT+bW04sNU519LeQTH6dcwD7gVGEKz/CHBfq+03AZcBU4EpwCXAza22bwe+Afytg/M/CRwMnXsA8OPIlS4SOxSyRKLEOVftnHsGuBJYYmaTAMzsD2Z2Z+j9fDP7a+gv+goze93MEszsj8AwYGloBOYbZjYiNFLyWTPbA/yj1WOtf1GPNrO3QtNTT5tZv9C1PjACFHpsl5mdb2aLgG8DV4autz60/fj0Y6iu/zCz3WZ22MweMLOc0LZjdSwxsz2hqb7bOvrcmFlO6PjS0Pn+I3T+84GXgCGhOv4QgS9Fp0KjUG+0+tiFRiC3hUZaftF6pKad44cDCwiGjwvNbGDo8e8B3+Gfn9fPhq71ppn9n5lVALe3c/2JrUaSDpnZt0OPzzazFaHvlwNm9nMzS+6gpg98b4S+lt8PXfuImb1oZvntHeuce84597hzrsY5Vwf8HDij1S5LgP9xzpU45/YB/wNc3+r4+51zzxEMZ23rWggMBb4e+j/S7Jx7p6PPrUhvppAlEmXOubeAEuDMdjZ/LbStgOCU0reDh7hPA3sIjoplOufuanXMAmA8cGEHl7wO+AwwBGgBfhpGjc8D/wU8Grre1HZ2uz70dg4wCsgk+Mu3tfnAqcB5wHfMbHwHl/wZkBM6z4JQzTc45/4OXATsD9VxfWe1R9ElwGkER2s+ScefbwjWv9o592dgE3AtgHPuu3zw83psRHMOUExwFOcHrU9kZlnA34HnCX4NxwAvhzb7gX8D8oF5BD/PX+zCc7oGuCF03WTg1jCPOwt4v9XHE4H1rT5eH3osHHOBLcD9oanGt81sQZjHivQqClkiPWM/0K+dx5uBwcDw0F/0r7vObyh6u3Ou1jlX38H2Pzrn3nPO1QL/CXzSItP8fC3wv865YufcUeBbwFVtRtG+55yrd86tJ/iL90NhLVTLlcC3nHNHnHO7CI6EfLobtf00NLpTZWZr22xb22pbp4Gzlf/nnKtyzu0BXgGmnWDf64CHQ+8/zIenDNva75z7mXOupZ2v4yXAQefc/zjnGkKfo1UAzrk1zrmVoeN2Ab8mGFLDdZ9zbmvomo918pwAMLMpBEfjvt7q4UygutXH1UDmiUb7WikCFhL8nA4i+LV/uqNRNZHeTCFLpGcUEuzXaetHBPtXXjSzYjP7Zhjn2tuF7buBJIIjH901JHS+1udOJDgCd0zrVwPWEfxl3FY+wVGUtucq7EZtX3bO5YbeZrTZNqPVti934ZzhPBfM7AxgJPCn0EMPA5PN7EQB5kRfw6HAjg6udUpoevmgmdUQHCXrytc2rOfU6npjgOeArzjnXm+16SiQ3erjbOBoGH8gANQDu5xzvwv9YfEngp+PMzo5TqTXUcgSiTIzO41ggHij7bbQKMXXnHOjgI8CXzWz845t7uCUnf0iG9rq/WEER8vKgFogvVVdPoLTlOGedz/BRuXW524BDnVyXFtloZranmtfF88TK5YABqyz4JITq0KPX3eCY070ud4LjO5g26+AzcBY51w2wenlcEaPuizUZ/Z34PvOuT+22fw+HxylnMoHpxNPZAOdf6+J9AkKWSJRYmbZZnYJwRGOB51z77azzyVmNiY0zVJDsOfm2EvuDxHsWeqqT5nZBDNLB+4Angi9jH8rkGpmHzGzJOA/gJRWxx0CRlir5SbaeAT4NzMbaWaZ/LPXqN1XzXUkVMtjwA/MLCv0y/yrwIMnPjL2mFkqwX6tmwhOvR17+xfgWju5Vw7+FRhkZv9qZimhz9Gc0LYsgt8nR81sHPCFbj+JdphZIfAP4BfOuXva2eUBgn8QFJrZEIK9hX9odXxS6HOTACSaWWqrKeu/AHmhF0n4zOxygn+EvBmN5yLiJYUskchbamZHCI5I3Ab8L8Fm4/aMJThacBRYAfzSOfdqaNsPgf8I9RKF26AM8EeCv/AOAqnAlyH4akeCTdK/JThqVEuw6f6YYwtllrfT1wTw+9C5lwE7gQaCYeJk/Evo+sUER/geDp2/t7mM4PTXA865g8feCC7Z4QMWdfWEzrkjwAUERzYPAtsIvtgAgo3q1xB81d5vgEe7/Qza9zmCAf+71mr9sVbbfw0sBd4F3iO4VMOvW23/DcHPy9UE/w/UE+q5c85VAJeGnks18E1gsXOuLErPRcQzFt4UuoiIiIh0hUayRERERKJAIUtEREQkChSyRERERKJAIUtEREQkChSyRERERKIgFu/+Tn5+vhsxYoTXZYiIiIh0as2aNWXOuYK2j8dkyBoxYgSrV6/2ugwRERGRTpnZ7vYe13ShiIiISBQoZImIiIhEgUKWiIiISBTEZE+WiIiI9Izm5mZKSkpoaGjwupSYl5qaSlFREUlJSWHtr5AlIiISx0pKSsjKymLEiBGYmdflxCznHOXl5ZSUlDBy5MiwjtF0oYiISBxraGigf//+ClidMDP69+/fpRE/hSwREZE4p4AVnq5+nhSyRERExDOlpaXMnz+fSZMm8dRTTx1/fPHixezfv7/D4x588EGmTJnCxIkTmTp1Kp/73OeoqqoC4Oyzz+bUU09lypQpjBs3jltuueX4NgCfz8e0adOYNGkSV1xxBXV1dVF5burJEhERkeMeXrUnoue7Zs6wE25/5JFHWLJkCVdddRWLFi3isssuY+nSpcyYMYMhQ4a0e8zzzz/P//3f//Hcc89RWFiI3+/n/vvv59ChQ+Tm5gLw0EMPMWvWLJqamvjWt77F4sWLee211wBIS0tj3bp1AFx77bXcc889fPWrX43gsw5SyBIRERHPJCUlUV9fT2NjIwkJCbS0tPCTn/yEpUuXdnjMD37wA3784x9TWFgIBEemPvOZz7S7b3JyMnfddRdjxoxh/fr1TJ069QPbzzzzTDZs2BC5J9RKWNOFZrbIzLaY2XYz+2Y728eZ2QozazSzW7tyrIiIiMSva665hhdeeIFFixZx++2388tf/pLrrruO9PT0Do95//33mTFjRtjX8Pl8TJ06lc2bN3/g8ZaWFp577jkmT5580vWfSKchy8x8wC+Ai4AJwNVmNqHNbhXAl4Efn8SxIiIiEqdycnL429/+xurVq5kxYwZ//etf+cQnPsGNN97I5ZdfzooVK054/Lvvvsu0adMYPXo0jz76aIf7OeeOv19fX8+0adOYNWsWw4YN47Of/WzEnk9r4UwXzga2O+eKAczsT8BiYOOxHZxzh4HDZvaRrh4rIiIiAnDHHXdw22238cgjjzBz5kyuueYaFi9ezCuvvPKB/SZOnMjatWs555xzmDx5MuvWreOWW26hvr6+3fP6/X7effddxo8fD3ywJyuawglZhcDeVh+XAHPCPH93jhXpUyLdTBoJnTWkioj0lG3btrF//34WLFjAunXrSEtLw8zaXZfqW9/6FrfeeitPP/00RUVFAB0GrObmZm677TaGDh3KlClTovoc2gonZLW3KIRr57FuHWtmNwE3AQwbph/8IiIi8eS2227jBz/4AQBXX301l112GXfffTd33HHHh/a9+OKLKS0t5aKLLsLv95Obm8ukSZO48MILj+9z7bXXkpKSQmNjI+effz5PP/10jz2XY8IJWSXA0FYfFwEdL1xxksc65+4F7gWYNWtWuCFOREREIsirEe7HHnvs+PsDBgxg+fLlJ9x/yZIlLFmypN1tr7766gmPPXr0aJfrOxnhvLrwbWCsmY00s2TgKuCZMM/fnWNFREREeq1OR7Kccy1mdgvwAuADfu+ce9/MPh/afo+ZDQJWA9lAwMz+FZjgnKtp79hoPRkRERGRWBHWYqTOuWeBZ9s8dk+r9w8SnAoM61gRERGRvk73LhQRERGJAoUsERERkShQyBIRERGJAoUsERER8UxpaSnz589n0qRJPPXUU8cfX7x4Mfv3t79i1FNPPcXGjd2/ecyIESMoKyvr9nk6Elbju4iIiMSJ1fdF9nyzbjjh5kceeYQlS5Zw1VVXsWjRIi677DKWLl3KjBkzGDJkSLvHPPXUU1xyySVMmPDh2yG3tLSQmBgb8UYjWSIiIuKZpKQk6uvraWxsJCEhgZaWFn7yk5/w9a9/vd39ly9fzjPPPMPXv/51pk2bxo4dOzj77LP59re/zYIFC7j77rtZunQpc+bMYfr06Zx//vkcOnQIgPLychYuXMj06dO5+eabP3DT6AcffJDZs2czbdo0br75Zvx+f7efm0KWiIiIeOaaa67hhRdeYNGiRdx+++388pe/5LrrriM9Pb3d/U8//XQuvfRSfvSjH7Fu3TpGjx4NQFVVFa+99hpf+9rXmD9/PitXruSdd97hqquu4q677gLge9/7HvPnz+edd97h0ksvZc+e4D1lN23axKOPPsqbb77JunXr8Pl8PPTQQ91+brExniYiIiJxKScnh7/97W8AVFZW8t///d88+eST3HjjjVRWVvK1r32NefPmdXqeK6+88vj7JSUlXHnllRw4cICmpiZGjhwJwLJly3jyyScB+MhHPkJeXh4AL7/8MmvWrOG0004DgjebHjBgQLefm0KWiIiIxIQ77riD2267jUceeYSZM2dyzTXXsHjxYl555ZVOj83IyDj+/r/8y7/w1a9+lUsvvZRXX32V22+//fg2M/vQsc45lixZwg9/+MOIPI9jNF0oIiIintu2bRv79+9nwYIF1NXVkZCQgJnR0NDwoX2zsrI4cuRIh+eqrq6msLAQgPvvv//442edddbxacDnnnuOyspKAM477zyeeOIJDh8+DEBFRQW7d+/u9nNSyBIRERHP3Xbbbdx5550AXH311fzhD39g7ty53HrrrR/a96qrruJHP/oR06dPZ8eOHR/afvvtt3PFFVdw5plnkp+ff/zx7373uyxbtowZM2bw4osvMmzYMAAmTJjAnXfeycKFC5kyZQoXXHABBw4c6PZzstad9bFi1qxZbvXq1V6XIRJRD6/a43UJH3LNnGFelyAiHtu0aRPjx4/3uoxeo73Pl5mtcc7NaruvRrJEREREokAhS0RERCQKFLJEREREokAhS0REJM7FYn92LOrq50khS0REJI6lpqZSXl6uoNUJ5xzl5eWkpqaGfYwWIxUREYljRUVFlJSUUFpa6nUpMS81NZWioqKw91fIEhERiWNJSUnHbzsjkaXpQhEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiQKFLBEREZEoUMgSERERiYKwQpaZLTKzLWa23cy+2c52M7OfhrZvMLMZrbb9m5m9b2bvmdkjZpYayScgIiIiEos6DVlm5gN+AVwETACuNrMJbXa7CBgbersJ+FXo2ELgy8As59wkwAdcFbHqRURERGJUOCNZs4Htzrli51wT8CdgcZt9FgMPuKCVQK6ZDQ5tSwTSzCwRSAf2R6h2ERERkZiVGMY+hcDeVh+XAHPC2KfQObfazH4M7AHqgRedcy92o16RTj28ao/XJYiIiIQ1kmXtPObC2cfM8giOco0EhgAZZvapdi9idpOZrTaz1aWlpWGUJSIiIhK7wglZJcDQVh8X8eEpv472OR/Y6Zwrdc41A08Cp7d3Eefcvc65Wc65WQUFBeHWLxJ3Glv8NLUECLi2f+uIiEgsCWe68G1grJmNBPYRbFy/ps0+zwC3mNmfCE4lVjvnDpjZHmCumaUTnC48D1gdsepF4kBdUwvr91ax7fBR9lfVU9PQcnxbfmYK4wZlMXFINsP7Z3hYpYiItNVpyHLOtZjZLcALBF8d+Hvn3Ptm9vnQ9nuAZ4GLge1AHXBDaNsqM3sCWAu0AO8A90bjiYj0NeVHG3l582He21dNS8CRn5nMqIJMBmalgBnN/gB7K+pYUVzOG9vLmFSYw0cmDyYnLcnr0kVEhPBGsnDOPUswSLV+7J5W7zvgSx0c+13gu92oUSSu1Df5+fvmQ6wqLicxIYFZI/oxa3geQ3LT2t2/scXPm9vLeXXLYbYePMLlM4uYVJjTw1WLiEhbYYUsEekZO0qP8sSaEmrqmzltRD/OGz+ArNQTj0ylJPo4d9wApg3N5bHVe/nT23u4PDCUaUNze6hqERFpj0KWSAwIOMeL7x9k2bYy8jNT+MLZoynKS+/SOfplJHPDGSN4YMVuHl+9l0DAMWN4XpQqFhGRzihkiXisodnPo2/vZcuhI8we0Y+LJw8mOfHkbiuakuhjybwR/HHlLv6ybh+DclI7nGYUEZHo0g2iRTxUXd/MvcuK2Xb4CIunDeGy6YUnHbCOSU5M4KrThpGR7OORt/bQ2OKPULUiItIVClkiHqmqa+I3rxdTUdfEktNHMGdk/4idOyMlkU/OGkpFbRNL1+tOViIiXlDIEvFAZShg1Ta28JkzRjJ2QFbErzGqIJOzTx3A2j1VbDt0JOLnFxGRE1PIEulhtY0t/P6NndQ3+/ns/JEM69e1BveuOOfUAvplJPPcewe1QryISA9TyBLpQU0tAR5YsYvq+maWzBvR5VcQdlWiL4GFEwZysKaBd/ZURvVaIiLyQQpZIj0k4ByPvr2Hksp6rjxtaI/dBmdyYQ5D89J4aeMhmloCPXJNERFRyBLpMS9vOsymg0f4yJTBTBzScyuymxkXTRpMTUMLK4rLe+y6IiLxTiFLpAdsPlDDK1sOM2NYHvNGRe5VhOEakZ/BmAGZrNhRRktAo1kiIj1BIUskysqPNvLYmr0MyU1l8bQhmJkndZwxOp+ahhbe21ftyfVFROKNQpZIFPkDjsdW7wXgmtnDSfJ5919u7MBM8jNTeHN7OU6vNBQRiTqFLJEoenXLYfZW1nPZtEL6ZSR7WkuCGaeP7s++qnr2VNR5WouISDxQyBKJkr0Vdbyy5TDThuYypSjX63IAmDEsj7QkH29sL/O6FBGRPk8hSyQKWvwBHl9TQlZqEh+dMsTrco5LTkxg1vA8Nh2o4Whji9fliIj0aQpZIlHw6tZSyo428rHphaQl+7wu5wOmD88j4GBDSZXXpYiI9GkKWSIRdrimgde2ljK1KIdTBkb+noTdNSg7lcE5qazbq5AlIhJNClkiERRwjqfW7SPZl8BHYmiasK3pQ3MpqaxnR+lRr0sREemzFLJEImj93ip2ldexaNIgMlMSvS6nQ1OG5mLAX9bu87oUEZE+SyFLJEKaWgK88P5BivLSmDk8z+tyTig7NYkxAzJ5at0+AgGtmSUiEg0KWSIR8trWUmoaWvjI5MEkeLSqe1dMC00ZrtlT6XUpIiJ9kkKWSARU1jXx+rZSphTlMLx/htflhGXC4GySfQk8/95Br0sREemTFLJEIuCljYcwg0UTB3ldSthSknzMG92flzYe0m12RESiQCFLpJsOVNezfm8Vp4/OJzfd21vndNUFEwayp6KOrYf0KkMRkUhTyBLpppc2HiIlKYGzxhZ4XUqXXTBhIAAvbdSUoYhIpClkiXTD7vJaNh88wlljC2JuZfdwDMxOZWpRDi9tPOR1KSIifU7sLuQjEuOcc7y48RCZKYmcPjrf63JO2sKJg/jRC1s4VNPAwOzUni9g9X09d61ZN/TctUQk7mkkS+Qk7SyrZWdZLWefWkByYu/9r/TPKUONZomIRFLv/c0g4rF/bD5MVmoip43o53Up3TJ2QCbD+6fz8iaFLBGRSFLIEjkJu8pqKS6r5ayxBST5evd/IzNjwSkFrCyuoLHF73U5IiJ9Ru/+7SDikVe2HCYjpfePYh0zf0w+9c1+1u6u8roUEZE+QyFLpIv2VtSx7fBRzhyT36t7sVqbN7o/vgTjje2lXpciItJn9I3fECI9aNm2UlKTEpgzsm+MYgFkpSYxfWgur28r87oUEZE+QyFLpAvKjjaycX8Nc0f2JyWp962LdSJnji3g3X3VVNY2eV2KiEifoJAl0gVvbCvDl2DMG93f61Iibv7YfJyDN3doNEtEJBIUskTCdKShmbV7Kpk+LJes1CSvy4m4qUU5ZKUm8oamDEVEIkIhSyRMK4vL8Qcc88f0vnsUhiPRl8Dpo/vz+rYynHNelyMi0uspZImEodkfYNXOCsYNyqIgK8XrcqJm/tgC9lXVs7u8zutSRER6PYUskTCs31tFXZOf08f03nsUhmNu6BWTb+2s8LgSEZHeTyFLpBPOOZbvKGdQdiqj8jO8LieqxgzIpF9GMqsUskREuk0hS6QTxWW1HKxp4PTR/TEzr8uJKjNj9oh+rNpZ7nUpIiK9nkKWSCeW7ygnPdnH1KG5XpfSI2aP7EdJZT37quq9LkVEpFdTyBI5gcraJjYfqGH2iH69/kbQ4Zoz6lhflkazRES6Iz5+a4icpLd2BXuTZvehW+h0ZtygbLJSE9X8LiLSTQpZIh1o8QdYvauCcYOzyU1P9rqcHuNLONaXpZAlItIdClkiHXh/fw21Tf7jyxrEk9kj+1FcWsvhIw1elyIi0mspZIl0YOXOcvplJDN6QKbXpfS4OaOC92bUlKGIyMlTyBJpx8HqBnaX1zFnZD8S+viyDe2ZOCSbtCQfq3dVel2KiEivpZAl0o63d1WQmGDMHJbndSmeSPIlMHVoDmv3KGSJiJwshSyRNpr9AdbtrWLCkGzSUxK9LsczM4blsXF/DfVNfq9LERHplRSyRNrYdKCG+mY/M4fH5yjWMTOH59EScGwoqfK6FBGRXkkhS6SNNbsryU1LYnRB/DW8tzY9NFW6do9ClojIyQgrZJnZIjPbYmbbzeyb7Ww3M/tpaPsGM5vRaluumT1hZpvNbJOZzYvkExCJpKq6JrYfPsr0YXlx2fDeWr+MZEblZ7Bmt/qyRERORqchy8x8wC+Ai4AJwNVmNqHNbhcBY0NvNwG/arXtbuB559w4YCqwKQJ1i0TFO3urcBD3U4XHzBiex9o9lTjnvC5FRKTXCWckazaw3TlX7JxrAv4ELG6zz2LgARe0Esg1s8Fmlg2cBfwOwDnX5JzT3IPEpIBzrNldyaj8DPplxM8K7ycyY1geFbVN7C6v87oUEZFeJ5yXThUCe1t9XALMCWOfQqAFKAXuM7OpwBrgK8652pOuWCRKdpXXUlHbxHnjBnhdSo95eNWeE24/WBNc8f3nr2xnxgmWs7hmzrCI1iUi0heEM5LVXmNK27mDjvZJBGYAv3LOTQdqgQ/1dAGY2U1mttrMVpeWloZRlkhkrdlVSUpiAhOH5HhdSswYkJVCSmICeyo0kiUi0lXhhKwSYGirj4uA/WHuUwKUOOdWhR5/gmDo+hDn3L3OuVnOuVkFBQXh1C4SMQ3Nft7bX82UolySE/Wi22MSzBjWL509mi4UEemycH6bvA2MNbORZpYMXAU802afZ4DrQq8ynAtUO+cOOOcOAnvN7NTQfucBGyNVvEikvLuvmma/Y5Ya3j+kKC+dQzUNNLUEvC5FRKRX6bQnyznXYma3AC8APuD3zrn3zezzoe33AM8CFwPbgTrghlan+BfgoVBAK26zTSQmrNldSUFWCkV5aV6XEnOK8tJwwP6qekbkZ3hdjohIrxHWPUOcc88SDFKtH7un1fsO+FIHx64DZnWjRpGoOnykgT0VdVw0aRAW52tjtedY8CxRyBIR6RI1n0jcW7+3GgOmDs31upSYlJWaRE5aEiWV6ssSEekKhSyJa84F7803qiCD7NQkr8uJWYW5aeyrrPe6DBGRXkUhS+Lavqp6ymubmFKkUawTKcpLo7y2ifomv9eliIj0GgpZEtc2lFTjM2OS1sY6oaK8dABKqjRlKCISLoUsiVuB0FTh2IGZpCX7vC4nphXmBpvfNWUoIhI+hSyJW7vL66hpaGGqpgo7lZbsIz8zmb0KWSIiYVPIkri1vqSKJJ8xfnC216X0CkV56ezTKwxFRMKmkCVxyR9wvLevmvGDs3UbnTAV5qZR09BCTX2z16WIiPQKYS1GKtKbjN7zeKf7vFOdQV3TUBamvM/oPas63b8jO4ZdcdLH9jbHFyWtrGdCWi9d7mL1fT1znVm6sYWIaCRL4tSbFdlk+PxMy671upReY3BOGgmmVxiKiIRLIUviTlPAWF2VyezcIyQlOK/L6TWSExMYmJ2qVxiKiIRJIUvizof7ghAAACAASURBVDvVmdQHfJzer8brUnqdorw0SirrCd6uVERETkQhS+LOmxVZ5CS2MClL015dVZSbTn2zn4raJq9LERGJeQpZElfq/Qmsrc5kbt4REszranqfwlbN7yIicmIKWRJX3qnOoNklMC9PU4UnY2B2KokJRonWyxIR6ZRClsSVt6qCU4WnZmok5mT4EowhuWmUVOnzJyLSGYUsiRtNAWNtdSan5WqqsDsK89LYX1WPP6DmdxGRE1HIkrixoSaDxkACs/OOeF1Kr1aUm0az31F6pNHrUkREYppClsSNVZVZZPj8TNSrCrulKC8dQH1ZIiKdUMiSuNDiYE11JjNzjpKoqcJu6Z+ZTGpSgvqyREQ6oZAlceH9I+nU+n3M0VRhtyVYsPldK7+LiJyYQpbEhdVVWaQkBJiiexVGRGFuGgdrGmgJBLwuRUQkZilkSZ/nHKytzmRyVi3JuldhRBTmpuEPOA7XqPldRKQjClnS5+2pT6GsKYkZuUe9LqXPKMwNrvyuKUMRkY4pZEmft7Y6E4AZOQpZkdIvI9j8vk/N7yIiHVLIkj5vbXUGo9LryUvye11Kn2HHmt8VskREOqSQJX1adbOPbbVpGsWKgiI1v4uInJBClvRp62oycBgz1Y8VcUNCze+H1PwuItIuhSzp09ZUZZKX1MzINAWBSDvW/L5fze8iIu1SyJI+qyUA62symJFTi2mV94g71vyuld9FRNqnkCV91saj6TQEfMxUP1ZUmBmFuWnsV8gSEWmXQpb0WWurM0myAJO0ynvUFOamcbC6gcYWvXJTRKQthSzpk5wL9mNNzq4jRau8R01hXjp+59h6UKOFIiJtKWRJn7SvIZnDTclauiHKjjW/v7uv2uNKRERij0KW9ElrtMp7j8hLTyItyaeQJSLSDoUs6ZPWVmcyIq2B/sktXpfSpx1rfn93X5XXpYiIxByFLOlzjrQksOWoVnnvKUNy09hy8Iia30VE2lDIkj7n3dAq79MVsnpEYV4azX41v4uItKWQJX3OhpoMMnx+xmQ0eF1KXDjW/L5BU4YiIh+gkCV9inOODTUZTMqqJUGrvPeIvPQkctKSeE/N7yIiH6CQJX3KjtJaypuTmKIFSHuMmTG5MEevMBQRaSPR6wJEIun1baUATMmu87iS+DK5KIffvl5MY4uflERf9C4U8ENdGbQ0gr8Z/E3Bx1IyIDUXUrIhIYrXFxHpAoUs6VNe31bGoJQmBqQ0e11KXJlcmEOz37Hl4BGmFOVG7sS1pXBoI9SUQM1+OHowGKo6ZJCaA3kjIH8s9B8LGQXoDuEi4gWFLOkzmloCrCwuZ36Opgp72uTCHCC48nu3Q1bNfjiwHg5ugCMHgo+lZEP2EMg/FbIHQVIG+JKCb+aDpqNQXw0NlVBXDuU74MC64LGpuVA4E4bNg4z87tUmItIFClnSZ6zdU0ldk1/9WB4oyksjNz2Jd0uqYc5JnMAF4NB7UPwqVBQDBv1GwYTLYNBkSO/fxfM5qC2D8q1weCMUvwI7XoaCU2HY6cFzmlpSRSS6FLKkz3h9Wym+BGNilvqxetpJN7+3NMKu16H4tWCvVVpeMFgVzoSUrO4UBJkFwbfhZ0B9FexdCXtWwpr7IGswjPsoDBivqUQRiRqFLOkz3thWxvShuaT7Al6XEpcmFQab3xua/aQmddJ87hxsegZe+g5U7oLc4TDukuAIUzQa19Ny4ZRFMOYCOLgeNj8Lb98b7Nka/1HIHRb5a4pI3FPIkj6hsraJDfuq+dfzToFKr6uJT1NaNb9PHXqCvqySNfDibbBnBQyYALNvDo4o9YQEHwyZAYOmwO7lsO0FeON/Yfj8YNhKTOmZOkQkLqgpQfqEN3eU4RyceYoam70yqVXze7uaauHZb8Bvz4Xy7fDRu+Hm13suYLWWkAgjz4Jz/hNGLoDdb8KyH4X6wUREIkMjWdInvL61jKzURKYU5rDG62Li1LHm93ZXft/5OjxzS3BqcPbNcN5/dq/nKlKSUmHix4IjW+sfhuU/g1EL4NRLwKcfjyLSPfopIr2ec443tpdxxuh8En0anPXKseb3DSWtQlZTXbDv6u3fQN5IuP5ZGHGGd0V2pP9oOOsbsOnp0Cscd8LMG4K9XCIiJ0m/kaTXKy6rZV9VvaYKY8Dkwhy2HjpCQ7MfSrfAb88LBqw5X4AvLI/NgHVMYgpM/mQwXB05EOzVqtjpdVUi0otpJEt6vde3Bm+lc9bYAo8r6TtG73m8awf4+gEwuSGFlkAOhx/9CsN2Pgq+5OD0YMGpsOHRKFQaBYOnQsYAWP07WPFzmPQJGH6611WJSC8U1kiWmS0ysy1mtt3MvtnOdjOzn4a2bzCzGW22+8zsHTP7a6QKFznmje1lDO+fztB+6V6XEvcmZ9dyV+KvGbb9j5AzFM76ujeN7d2VPRjmfzV4a553H4ONTweXnRAR6YJOQ5aZ+YBfABcBE4CrzWxCm90uAsaG3m4CftVm+1eATd2uVqSNZn+AFTvKmT9GU4Weq6+icP3dfDLxNV7OuATmfjF4H8HeKjkdZt8EI84Mrhi//uFO7psoIvJB4YxkzQa2O+eKnXNNwJ+AxW32WQw84IJWArlmNhjAzIqAjwC/jWDdIkBwuYDaJj9nKGR5q6IY3vgfrPYw/5v+ZX7cckV0FhXtaZYAEz8eXMi05G1Y83vwN3ldlYj0EuGErEJgb6uPS0KPhbvPT4BvAFqGWyJuZXE5AHNG9vO4kvhVUPkOrPgF+FLgjH8jMGAyW2sSqW/xurIIMQuGrEmXw6GNsOoeaK73uioR6QXCCVnt3dirbXNCu/uY2SXAYedcp0sXmdlNZrbazFaXlpaGUZYIrNhRzqkDs+ifqZW6e5xzDD30d0btXwr5Y4I9TFmDmNqvGb8z3q9K8rrCyBoxH2ZcB5W7Q0GrweuKRCTGhROySoChrT4uAvaHuc8ZwKVmtovgNOO5ZvZgexdxzt3rnJvlnJtVUKBXiUnnmv0BVu+qZO4ojWL1NAv4Gb3vKYaULedQ3kw47aZgDxMwNS84hLW+sg++eHnIdJixBKr3wlu/Dt7gWkSkA+GErLeBsWY20sySgauAZ9rs8wxwXehVhnOBaufcAefct5xzRc65EaHj/uGc+1Qkn4DErw0l1dQ3+5k7qr/XpcQVn7+BU/c8TH71u+wdcA67Bl/8gf6rAWkBBqf5WV/Rx0ayjhk8BaZfB1W74a17FbREpEOd/qnpnGsxs1uAFwAf8Hvn3Ptm9vnQ9nuAZ4GLge1AHXBD9EoWCTrej6WQ1WOSmms4dfcjpDWWsqNwMWW5U9vdb2q/ZtZX9MGRrGOGTAPnh3cehLd/C7NvDK4JJiLSSlg/BZ1zzxIMUq0fu6fV+w74UifneBV4tcsVinRgZXE54wZl0S9Dv9x6QlrDYU7d8zCJ/ga2Dr+a6szRHe47Na+F5/elUtVk5Cb30fWlCmcG185a9xCsfSC4UnxfeEWliESMbqsjvVJTy7F+LI1i9YSs2l1M2PkHzAXYOOL6EwYsCI5kAX13yvCYolnBJR4OvQfvPq4FS0XkAxSypFd6d1+V+rF6SL/q9xm3+yGaEzN5f+RnqEsb1Okxk/JaMFzfnjI8ZuSZMOYC2LsStj7ndTUiEkPi4Ceg9EUrdmh9rJ4wqGwlww+9SE36ULYOvQp/YlpYx2UnOUZl+dlQ2cdHso459WJorIFtL0JKNsxSW6qIaCRLeqmVxRWMG5RFnvqxosM5hh14geGHXqQiezybh3867IB1zNR+zayrSIyPGTQzmPxJGDgR3vszbP6b1xWJSAxQyJJep6klwOrdFZoqjJIEfyNjSv7M4IpVHOw3m21Fn8AldH3Qe1peC2WNPvbVxcmPmQRfcA2t3KHw58/BgfVeVyQiHouTn37Sl6wvqaKhOcC80QpZkZbUXM05b99M/5qN7B54AbsHXRi8f99JONb8vq6vN7+35kuGWZ+DtH7w8FVQc8DrikTEQwpZ0uus3FGOmfqxIi29/gALV1xHftUGthV9nIP584LTYCdpfG4LKQmOd+IpZAGkZsM1jwZ7tB65CprqvK5IRDyikCW9zsqd5YwblE1uuvqxIiW3ZgsLV1xLWmMpr5z2aypyJnX7nMkJMDmvmXfK4yxkAQyaBJ/4XXDK8C83QSDgdUUi4gGFLOlVGlv8rNldyTz1Y0XMwLIVXLByCc4SeGnu/Rzuf1rEzj2jfzPvVSXS6I/YKXuPUxfBhT+ATUvh1R96XY2IeEAhS3qV9XuraWgO6KbQETKq5C+cvfqLHE0fwotzH6Q6a2xEzz+9XwtNAWNjVZyuFjP3izDtU7DsrmDYEpG4opAlvcrK4mA/1mz1Y3WPCzB1y93Mffc7HO53Gn+fcz/1YSwy2lUz+geb3+OuL+sYM/jI/wRvwfOXz8PhzV5XJCI9SCFLepWVxeWMVz9Wt/j8DcxfdysTi3/LtqFX8OqsX9CclBWVaw1MCzAkzc/aeOzLOiYpFa58EJLS4U9XQ32V1xWJSA9RyJJe43g/lpZuOGmpjWWct+ozDD34d9aOu5W3J/4nLiG6AWh6/+b4Hck6JnsIXPlHqNoLf/4sBOKxSU0k/ihkSa+xbk8VjS0BLUJ6knKObGPhimvJPbqd12f8H5tHLunWEg3hmt6vmX11Pg7Xx/mPm2Fz4eK7YPvf4bX/9roaEekBcf5TT3qTlcUVwX6sEerH6qrBpW+ycMWnSQg089Kc+ygZeF6PXXt6qC9rbTzcLLozsz4D066F10JhS0T6NIUs6TVWFJcxcUg2OelxPvXURWN2P8qCNV/iaHoRL8x7mMqciT16/Um5LSQnuPhcL6s9F/8YBkyAP98I1SVeVyMiUaSQJb1CQ7OftXuqmDtSU4XhSvA3cdp732P2xjs5kD+fl+Y+EJVXEHYmxRdclHS1QlZQcjp88gHwN8PjN0BLk9cViUiUKGRJr7BubxVN6scKW3r9Qc5fdT1j9z7B+6M+x7KZd9OSmO5ZPbP6N7OhIokG9XsH5Y+BxT+Dkrfg79/1uhoRiRKFLOkVVhaXk2BwmtbH6tSA8rdYtPxKco4Ws2z6T1h/6ldw5vO0ptPym2l2xvp4f5VhaxM/BnM+Dyt/CRuf9roaEYkChSzpFVbsKGfikBxy0vRLuiPm/Ezafg/nvnUjjUk5vHD6w5QM6rkG9xOZGWp+X12mr98HXPB9KJwFT30Jynd4XY2IRJhClsS8hmY/7+yt0q10TiCt4TDnvHUTU7b9gj2DL+SFeQ9TkznK67KOy0txnJLdwtvqy/qgxGS44g/gS4THroPmeq8rEpEIUsiSmPfOHvVjncjg0je46M0ryK/awMpJd7B86n/TkpTpdVkfMiu/mTXlSfid15XEmNyh8PHfwqH34dlbva5GRCJIIUti3gr1Y7UrsaWOWe/fyTmrv0B9Sn+eP+NRiod+rEcWGD0Zp/Vv4khzAluqtV7Wh4w9H866Fd55MPgmIn2CftpJzFtZXM6kwhyyUzXVdExBxVrmvvsfZNaVsHnEp1l/ypfx+1K9LuuEZuX/sy9rQm6Lx9XEoLO/BXtXwd++BkOmw8CeXc9MRCJPI1kS0xqa/azbU6WpwhBfSx3TN/+Y81ddj7kAf5/ze9aO/0bMByyAovQAg9P86svqSIIPPvE7SM2Bx6+HxqNeVyQi3aSQJTFt7e5KmvwBNb0DQw4v4yNvfIzxO+9n+9DLeXb+k5T2m+V1WWEzC45mvV2WhFNfVvsyB8Anfgvl29WfJdIHKGRJTDu+PlYc368wreEQ89d+lbPXfAl/QiovzbmPtyd9x9PFRU/W7PxmDtb72F3r7bpdMW3kWbDg32H9I7DuYa+rEZFuUE+WxLSVxRVMLswhKw77sRL8jYzb9Ucm7vgN5vysO+XLbB55PYGE3vu5mFcQvIXMisNJjMjU8u8dOuvrsOuNUH/WDBgwzuuKROQkaCRLYlZ9k591e+OwH8s5hh14nktev5RpW+/mUP/ZPDv/STaOvrFXByyA0Vl+ClL9rChN9rqU2JbgC04bJqUH+7Oa6ryuSEROgkKWxKy1e0L9WKPjJ2QNKH+bC1Z+mvnrvk5zYhYvz/4ty2b+jKMZw7wuLSLMYF5BMytK1ZfVqaxB8PF7oXQzPP/vXlcjIidB04USs1YWl+NLMGYNz/O6lKjrX7meqdt+xqDyVdSlDGDlpO+xs2ix5/ccjIbTBzTxzN5UdhzxMSZbU4YnNOY8OPOr8Pr/wIizYMoVXlckIl2gkCUx69j6WH25Hyu/ch0Td9xLYenrNCT3Y824r7N92Cd7xZIMJ2teQXC9rBWlyYzJ1m1kOnX2t2H3cvjrvwbXz8of43VFIhImTRdKTPpnP1YffFWhcwwufZPzVt3AwpWfJr9qA+tO+TLPLHiOLSOv69MBC2BYhp8haX5WHO674TmifInB9bN8ycH+rOYGrysSkTBpJEti0prdlTT7HfNivOl99J7Hw97XAs30r36fQRVvkdFwkKbELHYPXMjhvBkEfMkM3/+3Ex6/Y1jfmCoyg7kDmnj1QAoBBwmxeReg7ll9X+TPOekT8PZv4MGPw+RW3wuzboj8tUQkIhSyJCYd78fqA+tjpTRVMqBiNQVV60jy11OXUkDxkI9SljMZlxCf/wXnFTTz5O40ttb4GJejvqywDJwIo86B4leg/5jg1KGIxLT4/AkvMW9FcTmTC3PITOml36LOkVO7g4Hlb5N7dBtgVGaP42C/0ziSPjxmb+LcU04fEFwv641DyYzLUV9W2MZdAhXFsOFRyBkKGfleVyQiJ6CeLIk5dU0trN9bxbxeuHSDz9/AoPKVTNn+C8btfpjM+v3szz+Tdad8hW1Dr+BIxoi4D1gAhekBxmS18NohrZfVJQk+mHFd8Hto7f3g1422RWJZLx0mkL5sze5KWgKuVy1CmtZwiIEVq8mv2oDPNXMkrYjthQuoyB4ft1OCnTlrYBMPFafR4IfUvrdSRfSk94epV8Pq38OmZ2DOjV5XJCId0E9/iTm9ZX0sc37yajYzsOJtsuv2ELBEynImcajfadSlDfa6vJi3YFATv9+ezsrSZM4e1OR1Ob3LoCnBexzuXAab/grjL/G6IhFph0KWxJwVO8qZUpRDRoz2YyU1H2FA5VoGVK4hueUoDUm57Bl4PqW503rlTZu9MqegiZQEx7KDClknZdylULETnv4iDJoMecO9rkhE2ojN32ISt442trChpJqbzhrldSkfkl5/gEHlq+hf8x4JLkBV5mh29ruEqswxYGpv7KpUXzBoqS/rJPkSYcYSWP5TeOIzcMNzkKjPpUgsUciSmPLWznJaAo4zxsTIq6ZcgLwj2xhUvpLsut34E5I4nDeLg/1OozGl9/SMxaoFg5r4/vosSmoTKMoIeF1O75ORD5f+NLhI6T/ugIV3el2RiLSikCUx5c3t5aQkJjDT436sBH8TBVXrGFTxFqlNFTQmZbN74PmU5s3o8yuy96QFA5v4PrDsUDLXjNJK5idl4sdg5+uw/Gcw4kw45UKvKxKREIUsiSlvbi9j1og8UpO8eblZYstRBpevZEDFWhIDDRxNK2Rb0SeoyB6vKcEoGJ3lpzDdz2sHFbK65cL/gr1vwV9uhs+/CTmFXlckIihkSQwpPdLI5oNH+MaiU3v82knNRxhcvpwBFWtIcH4qssdxsP9cjqYP7fFa4okZnDOokSd3p2oph+5ISoUr/gD3Lgj2Z13/t2DPloh4Sn+aS8xYvqMMgDNG91w/VmJLLcMPPM+0bT9lUPlbVORMZMOYL7J96BUKWD3kgiFN1PkTWH5YTdvdkj8GLvkJ7F0JL9/udTUigkayJIYs315Odmoikwpzon6tBH8jg8tXMrh8BQmBZkpzp7K/YD6Nyb3/Xom9zdyCJjITA7y4P4VzB2sph26ZckUwZC3/GRTODPZriYhnFLIkJjjneGN7GfNG98eXEMXbzrgAAyrXUHR4GUn+Wsqzx1My4BwaUmLk1YxxKMUHZw9q4u/7kwnMgGh++ePChT+EA+vhqS9BwXgYMM7rikTilqYLJSbsqahjX1V9VJduyKrdxeQd9zLywHPUp/TnvZGfYfvQKxSwYsAFQxopa/TxToX+7uu2xGS44n5ITodHPwUNNV5XJBK3FLIkJry5vRwgKiErubmaMXufYMKuB/AFGtk69Ao2jVhCbXpRxK8lJ+fsQU0kmuPFfSlel9I35BTC5fdBRXFwRXjnvK5IJC4pZElMeHN7GYOyUxmVnxG5k7oAA8tXMWX7L8k7spWSgrPYMOaLVGaPD76sTWJGTrJjbkEzLx1QyIqYkWfCBd+DTUvhzbu9rkYkLmlsXjwXCDiW7yjj3HEDsQiFn7SGw4zcv5Ss+n1UZY5m1+CLaUyO7RtOx7uFQxr5zrosttX4GJvt97qcvmHeLVCyGl7+HgyZBqPO9roikbiikSzx3KaDNVTWNXPGmAjcpsbfTOHh15hUfC+pTRVsL7yMLcOuUcDqBRYVNZKAY+leragfMWaw+OfQf2xw/azqEq8rEokrYYUsM1tkZlvMbLuZfbOd7WZmPw1t32BmM0KPDzWzV8xsk5m9b2ZfifQTkN7vze2h9bG6249Vth1+t5Ci0teoyJ7AhjFfpDx3iqYGe4kBqQHmFjSzdG+KWogiKSULrnwQWprgseugpdHrikTiRqchy8x8wC+Ai4AJwNVmNqHNbhcBY0NvNwG/Cj3eAnzNOTcemAt8qZ1jJc69ub2cMQMyGZh9kiMYzsHq38Ovz4SKYrYVXc6Ooo/TkhjB/i7pEZcOa2Dn0UTeq1InQ0QVnAKX/RL2rYHn/t3rakTiRjgjWbOB7c65YudcE/AnYHGbfRYDD7iglUCumQ12zh1wzq0FcM4dATYBuqmWHNfUEuCtnRWcMfokpwrrKuCRq+Gv/wZD58AXV1CRoxzfWy0qbCTJHEv3qgE+4iZcCmd8BdbcB6vv87oakbgQTsgqBPa2+riEDwelTvcxsxHAdGBVV4uUvuudPZXUN/tPbqpw71twz5mw4+XgAoyfehKyh0S+SOkxucmOswY1sXRvKgFNGUbeud+BMefDs7fCrje8rkakzwtnTL69hpa2P/5OuI+ZZQJ/Bv7VOdfuynhmdhPBqUaGDRsWRlnSF7y5o5wEgzmjujCS5Rys+Dn8/XbILoTPvghDpketRulZ41PKebl+CH98r55xmfXdOteckbF3m6RVOysidq4uPz9fIlz+e/jt+fDop+HGf0C/kRGrR0Q+KJyRrBKg9Z1yi4D94e5jZkkEA9ZDzrknO7qIc+5e59ws59ysgoKCcGqXPuD1baVMKcolJy0pvAMaquFP18KL/wGnLIKblylg9TGn5R4h2QIsK8/2upS+KTUHrv4TuEBwql0rwotETTgh621grJmNNLNk4CrgmTb7PANcF3qV4Vyg2jl3wIKLHv0O2OSc+9+IVi69XmVtE+v2VrHglDBDddk2+M15sPX54PTglQ9CWm50i5Qel+pzzM07wvKKbBr8emVoVPQfDZ98AMq2wp8/BwGtSyYSDZ2GLOdcC3AL8ALBxvXHnHPvm9nnzezzod2eBYqB7cBvgC+GHj8D+DRwrpmtC71dHOknIb3Tsm2lOAdnnxpGyNryPPzmXKivhCXPwLwvammGPuzc/CrqAz5WVWV5XUrfNWoBXHwXbHsBXrjN62pE+qSwXiftnHuWYJBq/dg9rd53wJfaOe4N2u/XEuHVLaXkpScxpegEo1HOwbIfwys/gMFT4MqHIHdox/tLnzAus57BKY38oyyXBf01nRU1p30OynfAyl9C3nCY+wWvKxLpU7Tiu3giEHAs21rKWacU4EvoIIc3N8CTN8Erd8LkK+AzLyhgxQkzOCe/ms1H09nfkOx1OX3bwjth3CXw/LeC9zkUkYhRyBJPvLuvmvLaJs45dUD7O9SWwQOXwruPwbn/CR+/F5LSerZI8dSC/tUk4PhHWY7XpfRtCT74+G+gcGawP6tktdcVifQZClniiVe3lGIGZ7XX9H54c7D/6sB6uOIPcNat6r+KQ7lJfmbmHuW18hyaAvr6R1VyevAVh1mD4OErg1OIItJtClniiVe3HmZKUS79MtpMBe1eDr9bCM31cP2zMPFj3hQoMWFhQSU1LYksr9ByDlGXWQDX/hlw8MfLoKbtSj0i0lUKWdLjKkJLN5zddhRr01/hgcsgcwDc+DIUzfSmQIkZk7PqGJrawLOH83TT6J6QPwaufSJ4u6o/fjz4r4icNIUs6XH/2HwY5+C88a36sdbcD499GgZNDjW4a9V/Cc4SXzywkt31qWw8mu51OfGhcAZc/QhU7ICHPwlNtV5XJNJrKWRJj3tp40EGZacyuTDnn0s0LP0yjD43uAZWxkneLFr6pPn9ashKbOHZQ3lelxI/Rp4Fl98H+9bAo5+ClkavKxLplRSypEc1NPtZtrWM8ycMwJyD5/4d/vF9mHJlsPE2OcPrEiXGJCc4LsivYk11Jgcbwrz9knTf+Evg0p/Bjn/A49dDS5PXFYn0OgpZ0qOW7yijvtnPwlP7wZOfg7d+DfNugcvuAZ9+gUr7Fg6oJNEcTx/SKGePmv4puPjHsOVZeOIG8Dd7XZFIr6KQJT3qpY2HGJDSzPy3vgDv/RkuuAMu/AEk6FtROpaX5Ofc/GpeK8uhtDGsG1VIpMy+ES66Czb/FZ74jIKWSBfoN5v0mEDAsXrjNh5P/S8Sdr0Bi38J/7+9+46PqkobOP57Msmk904okd6kSBWUVUARLKALll0V+7qru7rvqu+uumt51y3quu7aXbsrNkRFLChYEFA60kGkSICQEAIJ6ZOc949zI0NMhcxMyvP9fO5n7tw2556ZZJ4599znjL4p0MVSrcTktDxEDO9ma2uW3434hR2UfeNsmHUtVHoCXSKlWgX9Saj8ZuPGtTxVfjsZIQfh4hnQ66xAF0m1IoluD6cnHeLTQCmUHAAAIABJREFU/XFMSc8jya1f9H518q/AVMLHd9r+WVOfg5CwQJdKqRZNW7KUf2Svo/M755MghZRePEsDLHVMpqTlAWhrVqCM+jVMfAA2v2/TO5QdDnSJlGrRNMhSvrdjEeb5iZR4DPenP0xUj9GBLpFqpZLcHsYmHWR+bhx79E7DwBhxnb1RZcdCmxm+JD/QJVKqxdLLhcq3NtrOsmVRHZly6CZuHnpyoEvUanX7/s1AF6FFmJq+ny/zYpixO4Vbuu0OdHECb/nz/nutoVfax0GXQGi0vePwhXNslviY9OZ9rUCcl1LNTFuylO94ZXF/ouvj5LqSmdA3LdClUq1cXEglk9MOsOxgNJsOhwe6OO1Xn3PgZ29A/g54Zhxkrwt0iZRqcTTIUs3vqCzu4zCXv8vMjcWc2iOZ2Ai9xKOO39mpB0gIqeDlXSlU6ZiGgdPtdLjyQ/s3/9xZsHVeoEukVIuiQZZqXlVVNbK4v8qqfRXsPljC2Sc28+UE1W6FBhkuzshla3E4X+TFBro47Vv6ALhmHsRnwisX+vcyn1ItnAZZqvl4ymvN4j7nm724XUGc0S810CVUbcipCQX0jirmlaxkCjyuQBenfYvNgKs+tOOPzrkZ3r9Fh+FRCg2yVHMpK4QZ036Uxb2yyvD+2j2M6ZlMTJheKlTNJ0jg6s7ZFFe6mJGVHOjiqNBoO/7oqF/Dsv/Ai+dAwd5Al0qpgNIgSx2/ov3w4rmw/UuY8sRRWdwXbt3PvoIyfnpSRgALqNqqzuHlnJ16gM/y4thQqJ3gA84VDGf+GaY+bzvCP/0T2Lk40KVSKmA0yFLH58A2ePZMyNkEl7wKg3521OqZK7KIiwhhbJ+UABVQtXU/Td9PsrucJ3emU1opgS6OAuh/AVw7H9xR9gfYggehqjLQpVLK7zTIUscuazk8c4ZNRjh9NvSccNTqQyUVzF2fzeSBHQgN1j4zyjfCXIZfZe4lpyyEV3ZrMN9ipPSB6z6DPufZG2FePA8OZQW6VEr5lQZZ6thsnGOTEIZG2zuLOg3/0SZz1uyh3FPF1CGdAlBA1Z70jS5hUko+H+fGs6YgItDFUdXCYu0Yh1OegL2r4YlRsG5WoEullN9okKWabslT8PqlkNoPrv4EErvVutnMFVn0So2mf0aMnwuo2qOLM3LpEFbG4zvSKajQltMWQ8R2I7j+S0jsYbPEv3E5FO4LdMmU8jkNslTjVVXB3Dvgw9ug99kw/T2Iqv2urq05haz6/iDThnZERPvJKN9zBxluOmEPhz0uHtuRrklKW5qErnDVRzD2j7D5I3hsGKx82SYyVaqN0iBLNU5FCbw5Hb56FIb/Ai58Cdx1X5Z56auduF1BTBmsdxUq/8mMKGN6pxxWF0Qxe19CoIujanKFwJhb4JeLILU/zL7RdozP2RTokinlExpkqYYV5cFLk2HjbDjzPpj4dwiq+3JMYWkFb63I4pyB6SRFhfqxoErB+KSDnBxfwOu7k1mco7nZWqSkHjB9DpzzMGSvsX21PrgVig8EumRKNSsNslT9cjfDs+Nhz2qY9gKMutH2sajHzBVZFJVXcsWoTL8UUSlvInBdl2w6hJXzq69j2XlY+2e1SEFBMPRK+PUqGHIFLHsG/j3Y9vnUbPGqjdAgS9Vty8fwzHgoLbApGvqd3+AuVVWGl77ayeDOcQzoGOeHQir1YxGuKm7tbtMFXLM4lsIK7RfYYkUmwjkPwfWLoMMg2+fzkSHw/deaW0u1ehpkqR8zBhY+DDMutIO+Xvc5dB7ZqF0XfJvL9v1F2oqlAi4ttILHRx5iW6GLG76OoaIq0CVS9UrtC5e9A5e+BZFJsOY1+PyvkLVMgy3VammQpY5WXgSzroN5d0G/KXDVXIhrfJ6rZxduJzk6lIn9031YSKUaZ1RKBX85qZAF+0K5bXmM3nHY0olA9/Fw7acw7BoIdsPqV+CzP8O2L8BTFugSKtUkwYEugGpB9m+FNy6DnI0w9k449ZYG+195W/l9Pl9+u5/bJ/XGHazxu2oZLjqhlNzSIB5cH0VSaBW3DzjclI91i5Ff4SKrJJS88hAKPC5cYthcGU56RCXdoyvpFFlJm/mzE7F3H6b0hX0bYNunsOFt+PYj6DLaTuHxgS6lUg3SIEtZG96Fd26wt1hfNgu6jW3yIR6Z/y3xESH8fEQXHxRQqWN3Q+9ickuD+M+3EYS6DL/rV9TiAy2PgbUFkSzJj2ZDYQT7yt0/3shrlJqo4CpOTS1nbHo5Z2WUER3SBprtJAjS+tspfwds+wy2zrdTSl/oMsoO3yNtJbpUbY0GWe2dpwzm3QNfPwYZQ+0dhE24PFhtbdYhPtucy60TehEZqh8r1bKIwF2DDlNeJTy6KRKgxQZauWXBzM2N5/O8WAo9wUS4KukXXcyZKflkRpSRFFJBbEglBujfMZ6sIhdbC4NZmRfCp3vdfLg7jLtXV3F+51Ku6F5C95g20p8pPhOGXGnTPOz62naMX/Yf26KVMRQ6DoWo1ECXUqmj6Ldhe5a7Bd662uapGX6dzYEVXMuv5Ub496ffEhsewuUnayuWapmCBO47qRCARzdFUlIp3DHgMEEtJNDaU+rmzT1JfJ0fDcCwuELGJBYwMKaIkKDaW6WSwwzJYR4GJ3qYllmKMbDqQDCvbAvnjR3hzNgWzpQupdzcp4jOUW2k539EAvSaBD0mwL518P1XsHUebP0E4jrbgCttAITr3c0q8DTIao+MgZUvwoe/h5BwuPhV6D3pmA+3YucBPtmwj9+O70l0mCZ/VC1XdaAV6jI8+20EOaVBPDi0gNAAptLKKw9m5t4kPt8fS0iQ4ezUA5yVkk+S29PkY4nASYkeTkos5PYBh3lyUyQvfRfOe9+HcW3PYm7sU0REW/mvH+SC9IF2Kj0Eu1fC7mWwfpad4rpA2ol20hYuFSBt5c9NNdbhHJjzW9g0B7qeBlOehJhjvxOwqspwz3sbSI0J5ZpTT2i2YirlK0ECdw08TFp4FX9bG8W+kiAeG3mI5DD/9mEq9ATxTnYic3PiqUKYkJLP+Wl5xIY0z+W9xFDDHQMPc03PYv6+LpLHN0fy7q4w/jy4kNPT21iyz7BY6Ha6nQqzIXutbaHfNMdOUam2dSvtRIjt1KQbepQ6HhpktRfGwNo3baK/8mI44//g5Btt1uXjMGvVbtZkHeKhCwdqXyzVaojA9b2KSQ+v5H9XxHDOvAQeH3mIIUlNbz1qqtJK4f2cBN7LTqC0KogxiQVMTd9PSmiFT14vNbyKh4YVcnFmKXeuiubKRXFcckIJdw48TGRwG+gcX1N0mp16nAEl+ZC9zgZc3823lxTDYiG5NyT1gqSeEBoV6BKrNky/FduDgr229WrLh9BxGEx+DJJ7HfdhD5d5uP+jTQzsFMeUQToQtGp9Jncuo2fMAa7/KpaLvojnht7F3NCnCLcPblYrq4RXt4fzz3UJHPIEMyyukIs65NIp3D+tSsOTK5g97gD/XB/J01siWJTj5h/DChiW5JvgrkUIj4cTTrVTeRHkrIfs9Tbo2rXEbhPb0d652O106DQSQsICWmTVtmiQ1ZZVemDp0zZrcmUFTPgLjLi+3sGdm+LBuZvJKSzjycuGENRSeg8r1UR94iqZPS6fu1dH86+NkczdE8qfBxcytJmCj7JKmLUzjMc2RZJV7KJvVBG3ZGTRM6q0WY7fFGEu+MOAIsall/O75TFc+Hkc1/Us5n/6FQW0X5pfuCOh43A7mSo4uAv2b7bjs371KCx6GILDocvJkHmKzcXVYTAE6yD36thpkNVW7VgEH9wCORtsBuWJ90Nit2Y7/OKt+3lh8Q6mn9yFkzprUkDVusW6Df8cXsDZHUu5Y2U0Uz+PZ1x6Gf/Tr4h+ccd2CTG3VJi5I5znt4aTU+piQLzNPu8uzg54l6DhyRV8OP4A962J4qktkSzY5+ZfwwvoGdtG0j00RIIgvoudepwJJ06DnYvgu09tZvn599rtgsNs63+X0TYnV8dh4I4IbNlVq6JBVluTvwPm/x+smwmxneHiGfZ252b8r15QWsGtM9dwQlIkv5/Yp9mOq1Sgje9QzqiUPJ7fGsGTmyM4e14CgxMquPiEEk5PLyclrP40CPtLhQX7Qpm72838vaF4jDAquZyHhhUwOqUCEViy3U8n04CoEMNfhxQyPr2M21bEcO78BG4fcJjLu5UEPAj0u9Ao6DnBTgBFeTY1xM5Fdlpwv239CgqxrVuZTtb5TiMgLCawZVctmgZZbcXhXFjwACx/DoKCYcxtcMpvm/1XlzGGu99dz95DJcz85SjC3W39GoNqbyKCbYb4n3ctYeaOMF7bHs7/rrBfpF2jPfSL85AWVkVCaBXlVVDsEXYWudhSEMz2QhcGITmskqt7FDMts7TFJwMd16GcjxLyuG15DHetjuazbDf3Dy1sMKBs0yIToc85dgKbIuL7JU7QtRgWPwIL/+lkpD/R9uXqNNwGXceQzFm1XRpktXbFB2DJk/DVY1BRAiddBj/5/XGlZajPswu3M2vVbm4a10MvE6o2Lc5tuKZnCVf3KGHdwWAW57hZkhvCmgPBfFzioqzKNve4gwwZEZX0jPFwfudSTk8rp2+cp8UkOW2M5DDDc6MP8fJ34dy3JoqzPk7g/qEFjO/QxlI9HKuwWOh5pp3AdqLPWmYDrp2LYdXLsPQpuy4m40jA1Wm4TR3h0vyB7ZUGWa1VwV7bWXP581BRBH0nw9g/QlIPn73kZ5tz+MsHG5nQL5WbxvnudZRqSUTgxHgPJ8Z7+IVzU64xUFoJbhe4WlEwVR8RuLx7CSenlHPT0hiuWRzHz7qWcOeAwraTwLS5uCNtnsGup9nnlR6bfX7XEmdaCuvftuuCwyFjiA24Oo+0/boiEgJTbuV3+qfT2uxdY+8YXPM6VFXCiVPtZcEU3/aNWpt1iN/MWEXvtBj+edEgvZtQtWsiEN5G/3v2iKnk7dPz+cf6SJ7eEskX2W7uHVTIOG3VqpsrGDoMstOIX9hlh3YfCbh2LYHF/4aFD9l1ST29WrtGQGKP485ZqFqmNvpvoo3xlMGGd2HZM/aPNTgcBl8Ko34DCb7Psr7q+3wuf24pMeEhPDN9KBFu/dgo1ZaFuuD2AUWc0aGc21dGc/XiOCZmlHJXj1LSYjWPVKPEZkDsBdD/Avu8vBj2rLKDW+9aCpveh1X/tetCY2yAljHETh1OgpgOmpm+DdBvy5bKGMhaDmteg3WzoOQAJHS1ua4G/cwm2fODr7flcc2Ly0mIdPPqdSPpEBful9dVSgXesKQK3h9/gP9sieDfGyL58qEv+N2ZPblsZBeCXdry0iTuCHtXYuZo+9wYyNtqfzjvXgm7V8DiR6HKyc8WleYEXYOdwGuw3/7vq+ajQVZLYgzs/cb+wlk3Ew5ss3laek2CwT+HrmP91qRsjOG5RTv46wcb6ZwYwYxrRuovWKXaIXeQvdvynI5l/HFbb+55bwMvf7WTWyf04qz+aYi2thwbEduHNqmHvTIBUFFq+3btXuFMK2Hz+0f2Sexug63qcRjTBtg7IVWLpUFWoJUX2Xwsmz+CzR9CQZa9LbjLaDj1d9DnPL/nYcktLOOu2ev4YG02E/ql8sC0gcSE6d0xSrVnXaIqefHKYczbmMP9H23il6+spG96DL86vRsT+6fj0n6axy8kDDoOtVO1koP2MuPuFfZxxyI7Dm216A5OwOVMqf1tN5JmGtlDHR8NsvytvBj2roYdC2Hb5/bafFWF7WfVbSyc/gfoeRZEJvm9aJ7KKl5d+j33z91MaUUlv5/Ym1+M6aq/VJVSAIgIZ/RNZWzvFGatzOKJL77jxhmr6JK4mUtHdGHqkI7ER7oDXcy2JTzOjqvY7fQjy4ryYN9ayK6e1sHWeWCcnGyuUNvqldzLDoad3NM+JnSDYH1//EmDLF/ylEHuJti33jb7Zi2zTcFVHkAgfQCM/CV0/Ql0HhWw4RpKyit5c8Uunl6wjaz8Ek7pnsQ9k/vRLVlHp1dK/ZgrSJg2tBMXnNSRueuzeX7Rdu77YCMPfLyZcb1TOHdgB8b2TiEsRFtTfCIy8egUEmAvNeZust8xuZth/xbYs9JJJWHsNuKyrVzxJziPmXY+PtNOOmRQs2tUkCUiZwH/AlzAM8aYv9VYL876SUAxcIUxZmVj9m31jIGSfNt/Ku8725ExbyvkbLQf8upfFu5oyDgJRt9s86R0Gh7QXCnF5R6WbDvAe2v28PH6fRwu83BS5zjuOrcf4/ukaOuVUqpBriBh0onpTDoxnU3ZBby2dBdz1uzhw3XZhAYHMbJrIj/pmcywzAT6pEdrZ3lfCgk7kkbCW3kx5H0LuVtsELZ/ix1+bdcSKCs4etuoVIjrYu9srJ6i04+e1wGzm6TBIEtEXMBjwBlAFrBMRGYbYzZ4bTYR6OFMI4AngBGN3LdlqiiBov1QvN82zRblOvPOVLgHDmXZqaL4yH4SBHGdbdNs77MhtZ+9Tp7QNWDXyI0xrN51kC37CtmUXciarEN8s+sgnipDdFgwk05MY+qQTgzLjNfgSil1THqnxXD3ef248+w+LNl+gHkb9/HF5lzunWP/3Ue4XfRJj6FXWjTdk6NIiw0jNSaMtNgwUqJDCaknAPNUQbDGZ8fGHQHpA+3krbqBIH87HNhuA6/87ZC/07aGffuJTXRdU3iC7c4SkXhk+uF5km08CI22aSlCo22fYndUu+0j1piWrOHAVmPMNgAReQ2YDHgHSpOBl4wxBvhaROJEJB3IbMS+/vfF/bblqfyw7XheXgRlh49+7impfd+gEPuBik63gVT3M+xYVXFd7DXw+MwWd81bRLj2peXsP1xOeIiL3unRXDumKyO7JjKyawKhwe3zw6+Uan7BriBGd09idPckOBd2Hyxhxc58Vu7MZ8PeAt5fs5dDJRVH7SMCESEuXEFCiCsIV5Dg8iRSWikUeYSu0ZV8dMaBAJ1RGyViA6KIBJsioiZjbEtXwR47Fe51HrOhOM9OB7bZfsXFeUeu2tTFHe0EX1H2rvmQcDsFh9tWuB8ew2xjRZDLjsMrLjtf/fjDfPCRwM0Y+/pVlfbRVDnzVfZYY25p/vprpMYEWRnALq/nWdjWqoa2yWjkvv63Y6GN3N2RR6aIJPsYGgUhEbazYWSyXR6ZbAOryCQbnbfC1p4nLx1CcnQoneIjNFu7UspvMuLCyYgL57yBHQDbsp5fXEH2oVL2FZSSXVDK3kOlFJd58FQZPFVVVFYZPDlbCHMZooINHSLa8WDVgSJix2wMi214RBFjoPSgHUu3+IANzsoKoKwQSp1H72UVpbYho7zYBmgVpeAptVeQPGVHB0xVnuM7j+CwFh9k1faNbBq5TWP2tQcQuQ64znl6WEQ2N6JsbUESsD/QhWhjtE59Q+vVN1pRvV4VsFe+vOm7NKFeA3derVAr+rwCFMAf/dKw0KW2hY0JsrKATl7POwJ7GrmNuxH7AmCMeRp4uhHlaVNEZLkxZmjDW6rG0jr1Da1X39B69Q2tV9/Qem2axnQlXAb0EJETRMQNXAzMrrHNbOBysUYCh4wxexu5r1JKKaVUm9NgS5YxxiMiNwJzsWkYnjPGrBeR6531TwIfYNM3bMWmcLiyvn19ciZKKaWUUi1Io/JkGWM+wAZS3sue9Jo3wA2N3Vcdpd1dIvUDrVPf0Hr1Da1X39B69Q2t1yYQGx8ppZRSSqnmpOndlFJKKaV8QIOsABCRaSKyXkSqRGRojXV/EJGtIrJZRCYEqoytlYic5dTdVhH5faDL01qJyHMikiMi67yWJYjIJyLyrfMYH8gytjYi0klEPhORjc7f/03Ocq3X4yAiYSKyVES+cer1Hme51mszEBGXiKwSkTnOc63XJtAgKzDWARcAC7wXikhf7B2Y/YCzgMedoYlUI3gN4zQR6Atc4tSparoXsJ9Bb78H5htjegDzneeq8TzA74wxfYCRwA3O51Pr9fiUAWONMQOBQcBZzl3uWq/N4yZgo9dzrdcm0CArAIwxG40xtSVbnQy8ZowpM8Zsx96tOdy/pWvVfhgCyhhTDlQP46SayBizAKg5jslk4EVn/kVgil8L1coZY/YaY1Y684XYL64MtF6Pi7EOO09DnMmg9XrcRKQjcDbwjNdirdcm0CCrZalreCLVOFp/vpXq5L/DeUwJcHlaLRHJBAYDS9B6PW7OJa3VQA7wiTFG67V5PAzcBniPa6T12gSNSuGgmk5E5gFptay6wxjzbl271bJMb/9sPK0/1eKJSBTwFnCzMaZAWuFYqC2NMaYSGCQiccDbItI/0GVq7UTkHCDHGLNCRE4LdHlaKw2yfMQYM/4YdmvMEEaqblp/vrVPRNKNMXtFJB3baqCaQERCsAHWK8aYWc5irddmYow5KCKfY/sTar0en9HAeSIyCQgDYkTkv2i9NoleLmxZZgMXi0ioiJwA9ACWBrhMrYkO4+Rbs4Hpzvx0oK4WWVULsU1WzwIbjTEPea3Sej0OIpLstGAhIuHAeGATWq/HxRjzB2NMR2NMJvZ/6afGmEvRem0STUYaACJyPvAIkAwcBFYbYyY46+7ADgnvwV5O+DBgBW2FnF9dD3NkGKf7AlykVklEXgVOA5KAfcBdwDvAG0Bn4HtgmjGmZud4VQcROQX4EljLkT4ut2P7ZWm9HiMRGYDtgO3CNhy8YYy5V0QS0XptFs7lwluMMedovTaNBllKKaWUUj6glwuVUkoppXxAgyyllFJKKR/QIEsppZRSygc0yFJKKaWU8gENspRSSimlfECDLKX8QESMiLzs9TxYRHK9RrY/T0QaPdCqiNwrIseS8La+Y14vIpc3w3HuFpFbalk+pTkG7BaRHSKS1ITtTxWR9SKy2smjdKyvO9h5Hyd4LQsVkXnOsS+qZZ9mf5/8SUROE5FR9axv0udWqfZGM74r5R9FQH8RCTfGlABnALurVxpjZtOExKnGmD81dwGNMU829zFrmALMATbUXCEiwcYYj49e9+fAg8aY5xuzsYi4nGFaaroEWOg8znWWDQZCjDGD6jhOs79PfnYacBhYXHOF85416XOrVHujLVlK+c+H2BHtwX5Rv1q9QkSuEJFHnflpIrJORL4RkQW1HUhEXhCRqc78DhG5R0RWishaEektIkHO8jivfbaKSKqIdBGR+SKyxnns7Kz/oQVKRLo7LTTfOMft5iy/VUSWOfve43XsO0RkszNmZ69ayjsKOA94wGn16SYin4vIX0TkC+AmETlXRJaIyCrntVOdfRNF5GNn+VN4jVEpIpeKyFLnmE+JiKvG614DXAj8SUReEesBp37XVrc+OS02n4nIDGyy0JrlF2AqcAVwpoiEiUgK8F/smHnV57RDRP4kIguBaTXep2Eistip06UiEi0imSLypVPHK6tbjZzyfC4iM0VkU3XZaynXj96nBs5xjte+j4rIFfV8hjKB64HfOud3qnM+D4nIZ8Dfa3xuk0XkLefzsUxERjvLf+Lsv9p5D6NrnodSbZYxRieddPLxhG0NGADMxI4DthrbSjDHWX8F8KgzvxbIcObj6jjeC8BUZ34H8Gtn/lfAM878v4ArnfkRwDxn/j1gujN/FfCOM383Nqsz2Czk5zvzYUAEcCbwNDbICcK2So0BhjhljgBigK3Vx6mrzM7zz4HHvZ7HcyRB8jXAP5z5fwN/cubPxg76nQT0cc4lxFn3OHB5A3X1U+ATbHbwVGzG6nTnvSgCTqijvk8B5jvzM4ALnPkf3kOv9+K2mq8NuIFtwDBneQz2SkIEEOYs6wEs9zruIez4m0HAV8AptZSrtvepvnP0LuujwBUNfIZ++Ex4nc8cwFXL53ZGdRmx2cA3en3eRjvzUUBwoP8eddLJX5NeLlTKT4wxa5zWgUuAD+rZdBHwgoi8AcyqZztv1dutAC5w5l8H/gQ8jx177HVn+cle27wM3O99IKelIcMY87ZT7lJn+ZnYQGuVs2kUNjCIBt42xhQ72zXl8tHrXvMdgdfFDjrrBrY7y8dUl9cY876I5DvLx2EDvGVOI084DQ9WewrwqrGXA/c5rWjDgAJgqTFmex37XQK85sy/BlxG3e/N67Us6wXsNcYsc86jAEBEIoFHRWQQUAn09NpnqTEmy9luNZCJvVyJs6yu96m+c6xPbZ+h2rxpar+cOh7o69XgFuOUcRHwkIi8AsyqPiel2gMNspTyr9nAg9hWhcTaNjDGXC8iI7CtNqudL+AHsf1/9hhjJtWyW5nzWMmRv+uvgO4ikoztD/XnOspUc2ytH12W8lr+V2PMU0ctFLm5lmM0VpHX/CPAQ8aY2WLHSru7njJWl+dFY8wfmvB6dZ1bzbIc2cFegvwpcJ7YsUUFSKznsldtxxFqP4ffYseGHIhtsSr1WlfmNe/9vnofs9Yi17Hcw9FdRMJqrK/tM1SbWuvJOfbJxvY59PY3EXkfmAR8LSLjjTGb6jm+Um2G9slSyr+eA+41xvyo3081EelmjFlibKfp/UAnY8yVxphBdQRYtTLGGOBt4CHspZs8Z9VibMsW2E7hC2vsVwBkicgUpzyhIhKB7ex9lYhEOcsznH5JC4DzRSTcCTzOraNIhdhWr7rEcuRmgOleyxc45UREJmIvKwLMB6Y6ZUBEEkSkSz3Hrz7WRSLicoLPMcDSBvYZD3xjjOlkjMk0xnQB3sIGro21CeggIsOcskaLSDD2nPcaY6qwrWOueo5xlHrep7rOcSe2pSlURGKxLYENaeg98/YxcGP1E+fHQfXnea0x5u/AcqB3I4+nVKunQZZSfmSMyTLG/KuBzR5wOh+vw35hfnMcL/k6cClHX8L6DXCliKzBfrHfVMt+lwG/cbZZDKQZYz7G9rv5SkTWYvuXRRtjVjrHX40NPr6soyyvAbc6nZ+71bL+buBNEfkSG1xWuwcYIyIrsZcrvwcwxmwA7gQ+dsr5CbbvUX3eBtZg6/RTbP+p7AYqKepEAAAAtUlEQVT2ucTZz9tbwM8a2O8Hxphy4CLgERH5xilrGLYf2XQR+Rp7qbCuVqK6/Oh9oo5zNMbsAt5w1r3Ckcu+9XkPG0CvFpFTG9j2N8BQsTdFbMB2mge42emE/w1Qgr0BRKl2obqTqVJKKaWUakbakqWUUkop5QMaZCmllFJK+YAGWUoppZRSPqBBllJKKaWUD2iQpZRSSinlAxpkKaWUUkr5gAZZSimllFI+oEGWUkoppZQP/D8MUccAK+5u2gAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Import data on mis-invoiced trade aggregated by destination and sector for each African country\n",
"IFF_Year = pd.read_csv('Data/GER_Orig_Year_Africa.csv')\n",
"\n",
"# Restrict data to 2016 as an illustrative example\n",
"IFF_Year = IFF_Year.query('year == \"2016\"')\n",
"\n",
"# Plot distribution of proportional mis-invoiced imports for each African country\n",
"sns.distplot(IFF_Year['Tot_IFF_hi_GDP'].apply(lambda x: x*100), \n",
" kde=True, label='% GDP', bins=10);\n",
"sns.distplot(IFF_Year['Tot_IFF_hi_trade'].apply(lambda x: x*100),\n",
" kde=True, label='% trade', bins=10);\n",
"plt.legend()\n",
"plt.title('Distribution of IFF in Africa in 2016')\n",
"plt.xlabel('Mis-invoiced trade for African countries');"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {
"slideshow": {
"slide_type": "subslide"
},
"tags": [
"remove-input"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean outflow as proportion of GDP: 0.06371070220761896 \n",
"Mean outflow as proportion of trade 0.006736362224603777\n"
]
}
],
"source": [
"print('Mean outflow as proportion of GDP:',IFF_Year['Tot_IFF_hi_GDP'].mean(),\n",
" '\\nMean outflow as proportion of trade', IFF_Year['Tot_IFF_hi_trade'].var())"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Those countries that experience disproportionately high outflows can be considered as \"conduits\" on which we can perform the network analysis.\n",
"\n",
"We can use the figure above to inform our choice of thresholds for the proportion of IFF relative to GDP and trade, respectively, above which countries are considered conduits. Those thresholds are assigned to the variables `thresh_GDP` and `thresh_trade`, respectively."
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"thresh_GDP = 0.1\n",
"thresh_trade = 0.17\n",
"conduits_GDP = IFF_Year.query('Tot_IFF_hi_GDP >= @thresh_GDP').set_index('reporter.ISO')\n",
"conduits_trade = IFF_Year.query('Tot_IFF_hi_trade >= @thresh_trade').set_index('reporter.ISO')"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The conduit countries respective to GDP are the Seychelles, where illicit outflows represented 22% of GDP in 2016, followed by Mozambique, Mali, and Tunisia."
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"slideshow": {
"slide_type": "subslide"
},
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
reporter
\n",
"
year
\n",
"
Tot_IFF_hi_GDP
\n",
"
GDP
\n",
"
\n",
"
\n",
"
reporter.ISO
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
MLI
\n",
"
Mali
\n",
"
2016
\n",
"
0.102023
\n",
"
1.401079e+10
\n",
"
\n",
"
\n",
"
MOZ
\n",
"
Mozambique
\n",
"
2016
\n",
"
0.141781
\n",
"
1.098136e+10
\n",
"
\n",
"
\n",
"
SYC
\n",
"
Seychelles
\n",
"
2016
\n",
"
0.216881
\n",
"
1.427525e+09
\n",
"
\n",
"
\n",
"
TUN
\n",
"
Tunisia
\n",
"
2016
\n",
"
0.100490
\n",
"
4.180838e+10
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" reporter year Tot_IFF_hi_GDP GDP\n",
"reporter.ISO \n",
"MLI Mali 2016 0.102023 1.401079e+10\n",
"MOZ Mozambique 2016 0.141781 1.098136e+10\n",
"SYC Seychelles 2016 0.216881 1.427525e+09\n",
"TUN Tunisia 2016 0.100490 4.180838e+10"
]
},
"execution_count": 95,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conduits_GDP[['reporter', 'year', 'Tot_IFF_hi_GDP', 'GDP']]"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The countries which experienced the highest level of mis-invoicing relative to their trading activity in 2016 were Burundi, where up to 31% of trade was illicit, followed by Uganda and Mali. \n",
"Mali and Mozambique are conduit countries both when considering outflows relative to GDP and relative to trade openness."
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {
"slideshow": {
"slide_type": "subslide"
},
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"