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Course review - what we’ve learned so far

We want to know about relationships in the world: does smoking
cause cancer? do vitamins increase lifespan? does democracy cause
development? does HCL cure COVID-19?

First, we talked about how, even though we see a correlation between
two variables, it’s not necessarily a causal relationship.

Next, we talked about how exogeneity, usually through random
assignment, allows us to make a causal claim.

Then, we discussed the building blocks for probability and uncertainty.
This is where Lecture 3 pays off!

In Lecture 4, we learned how we can formally detect relationships
through linear regression, using a model Yi = β0 + β1Xi + εi which
we estimate.
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Today

Now, we move on to ask whether the relationship we observed is real
or just due to chance.

Say we estimate a certain β̂1 which implies that an additional year of
schooling is associated with $1,000 more in annual wage.

So, the slope of our regression line is positive. Great, right? Not so fast!
This could be due entirely to chance.

In this lecture, we will learn to detect statistically significant effects.

Important

Just because an effect is statistically significant, does not mean it is
causal. All the same rules from Lecture 2 on deciding whether a causal
claim is warranted still apply!
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Motivation for hypothesis testing

Scientists want to test hypotheses about patterns they observe in the
data.

Remember the multiverse? If you think probabilistically, you could have
observed other (more or less likely) outcomes in the data.

How can you be sure the pattern you observe is real? We are data
detectives.

We want to investigate whether the pattern we see if a signal, or if it is
just noise.
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A Shakespearean question

The philosophical question asked by the little ∆ will make sense at the end
of the lecture!
Reminder: read Chapter 4 of Real Stats!

Artwork by allison horst
Lépissier (UCSB) Political Science 15 5 / 70



First, let’s talk about beer

In 1908, William Sealy Gosset was the “Head Experimental Brewer”
at the Guinness Brewing Company in Dublin, Ireland.

He wanted to experiment on different barley varieties to see how they
impacted the quality of stout (i.e. beer).

Sealy Gosset came up with the statistical test called Student’s t-test.

Specifically, he came up with the t-distribution which help us make
inferences in small samples (more on that later).
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Two-sample tests

Definition

Two-sample tests allow us to test whether the difference between two
populations is statistically significant.

We can compare one sample to another sample and answer the question:
“Are these samples from the same population or from different
populations?”.

Key intuition behind hypothesis testing: We want to understand how
likely we are to observe some difference if there really is no difference.

This requires us to think about how “weird” our result is, if there really is
no difference at all!
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Null hypothesis

First, we need to define our null hypothesis, which is typically a hypothesis
of no effect (e.g. the beer samples are not different, the effect of schooling
on wage is 0, etc.).

Check. If two samples are drawn from populations that have the same
mean, then in theory, what do you expect the difference between the two
sample means to be? The difference in means would be 0, if the samples
came from populations with the same mean.

This is how we would state our null hypothesis formally.
H0: the means are equal (the difference in means = 0)

Now we need to specify an alternative hypothesis.
HA: the means are not equal (the difference in means 6= 0)
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The intuition behind hypothesis testing

How do we adjudicate between our two competing hypotheses?

We think probabilistically (recall Lecture 3) about what the state of the
world would be if the null hypothesis were true.

Use your best Hollywood trailer voice from the 90s:
“In a world” ...dum, dum, dum... “where the null hypothesis is true”.

This “null state of the world” will have a range of possible outcomes
which are more or less likely. This is the null distribution.

We then think about how likely we would be to observe the outcome that
we did, if the null were true.

If it is highly unlikely, we can reject the null hypothesis as an unreasonable
state of the world.

Thus, we can conclude that the outcome/effect we observed is unlikely to
be due to chance alone, and is hence statistically significant.
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The intuition behind hypothesis testing

If we are in the green, the outcome we observed would have been pretty
likely if the null hypothesis were true, so we fail to reject the null

hypothesis.

Lépissier (UCSB) Political Science 15 10 / 70



The intuition behind hypothesis testing

If we are in the white, the outcome we observed would have been pretty
unlikely if the null hypothesis were true, so we reject the null hypothesis

(in favor of the alternative).
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The intuition behind hypothesis testing

This is the intuition behind hypothesis testing: we ask how “weird” our
observed outcome is in a world where the null is true, and on that basis
decide if the null is an unreasonable state of the word (i.e. we reject H0),
or if it is not that weird (i.e. we fail to reject H0).

We need to add more bells and whistles to this statistical machinery,
namely:

How do we measure the outcome, i.e. what statistic do we use? (E.g.
Z-score, t-statistic)

What distribution do we use for the null? (E.g. normal, t)

Do we need 1 or 2 rejection regions? (I.e. one or two-sided HA)

How do we decide where to place the fences? (I.e. What critical
values do we use? What significance level?)

And... we will finally learn what the mysterious “t-statistics” and
“p-values” in our regression table mean!
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Watch out for this common mistake

If the outcome we observe is pretty likely if the null hypothesis were true,
we fail to reject the null hypothesis.

We never “accept” the null hypothesis! This just means that we
haven’t found enough evidence to reject the null of no effect.

Think of a “not guilty” verdict rendered by a jury. The accused may be
guilty (i.e. the jury may be making a mistake), but the evidence was not
sufficient to convict.
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Two-sample tests

Let us now go back to two-sample tests.

The quantity of interest here is the difference in means between two
groups on some outcome, for example:

difference in “tastiness” of Guinness beer depending on which type of
barley it is brewed with

difference in voter turnout among two groups of people (e.g.
Republicans vs. Democrats)

difference in probability of war in two groups of countries (e.g.
autocracies vs. democracies)
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Two-sample test: political science example

Our running example will be vote intention.

We survey 60 people from campus, asking whether they intend to
vote in the next election.

25 reported being Republican, 35 reported being Democrat, which
gives us two groups.

We’ll get a mean vote intention for both, which we’ll call

VoteR and VoteD .

Check: why is there a line over these quantities?

They are sample means, just like X̄ .

We expect VoteR won’t exactly equal VoteD , but we want to know if
the difference is just due to chance, or if it is a real difference.
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Let us test this

1 First, we need to state our null and alternative hypotheses.

What is our null hypothesis here?

in words: there is no difference in the average vote intention between
Republicans and Democrats

in math: H0 : VoteR = VoteD

What is the alternative hypothesis (two-sided)?

in words: there is some difference in the average vote intention
between Republicans and Democrats

in math: HA : VoteR 6= VoteD
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Let us test this

1 Second, we need to estimate a statistic, in this case, the difference
in means (DIM).

We find that:

among Republicans, 19/25 report that they will vote (VoteR = 0.76)

among Democrats, 22/35 (VoteD = 0.63) say they will vote

⇒ DIM = VoteR − VoteD = 0.13

1 Third, we need to derive the null distribution, i.e. the distribution
of possible outcomes if the null hypothesis were true.

We will do this formally later on. But first, a thought experiment.
Consider the tale of the sloppy research assistant.
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The tale of the Sloppy Research Assistant

Imagine an Excel sheet for this dataset:

one row per person

in the first column, we record Vote equals 0 or 1 to indicate whether that
person says they will vote

in the second column, we record R or D

ID Vote Party

1 1 R
2 0 D
...

...
...

60 1 D

You compute a mean of Vote for those with R, a separate mean of Vote for those
with D, and subtract:

DIM = VoteR − VoteD = 0.13

Coding note: how would you do this in R? See Section 2 material.

mean(dat$Vote[dat$Party == "R"]) - mean(dat$Vote[dat$Party == "D"])
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The tale of the Sloppy Research Assistant

Now, suppose the RA accidentally scrambled the order of the second
column:

What do you expect to see for your difference in means using these
“wrong” data?

What if you rescrambled it, still getting the wrong order, would you
see the same thing?

So if you rescramble it and get the DIM many times, what do you
obtain?
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The distribution of our scrambled data

So if we look at the distribution of our fake, scrambled data what do we
have? We’ll call this our “Fake difference in means (DIM)”.

Remember, each time we are taking a sample and then computing the
difference in mean between the Dems and Reps.
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What to note about the distribution of our scrambled data

What does the shape of the distribution look like?

What value is it centered on?

Histogram of fakeDIMs
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What to note about the distribution of our scrambled data

What does the shape of the distribution look like? Like a normal
distribution.

Why? Hint: one of the two awesome theorems from Lecture 3.
The Central Limit Theorem! This is so cool! Because of the CLT, we are
guaranteed that this distribution will always be normal. We don’t need to
simulate the multiverse any more!

What value is the distribution centered on?
Centered on 0.

⇒ This is a simulated null distribution centered on the expected value if
the null hypothesis were true (H0: no difference in voting intention
between 2 groups).
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How “weird” is “weird”?

How do we decide that our observed DIM is super weird, if the null were
true?

Just count up the proportion of outcomes more extreme than ours under
the null:

>right_tail=sum(fakeDIMs>=DIM)

>left_tail=sum(fakeDIMs<= (-DIM))

>pval = (right_tail + left_tail)/iters

>pval

[1] 0.17865

This number is the probability of observing an outcome as extreme as we
did if the null were true.

This is the definition of a p-value!

How do we interpret this p-value?
We fail to reject the null hypothesis that the DIM is 0, that is, we cannot
reject the null that the vote intentions VoteR and VoteD are from
populations with the same mean.
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Graphical representation of p-values

Let’s replot our histogram of scrambled data, but now using a continuous
approximation:

plot(density(fakeDIMs), main="Density Plot")

abline(v=DIM, col=2, lwd=4)

abline(v=-DIM, col=2, lwd=4)
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One-sided versus two-sided test

Let’s add one of the bells and whistles to our analysis.

! Do we need 1 or 2 rejection regions? (I.e. one or two-sided HA)

In this case, our alternative hypothesis was “two-sided”:

in words: there is some difference in the average vote intention
between Republicans and Democrats

in math: HA : VoteR 6= VoteD

Instead, we could use a “one-sided” alternative hypothesis:
1 Option 1.

in words: Republicans have, on average, a higher vote intention than
Democrats
in math: HA : VoteR > VoteD or HA : DIM > 0

2 Option 2.
in words: Republicans have, on average, a lower vote intention than
Democrats
in math: HA : VoteR < VoteD or HA : DIM < 0
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One-sided versus two-sided tests

Two-sided: rejection region is in both tails

One-sided: rejection region is in one of the tails
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In practice, we use two-sided tests. One-sided tests are not appropriate
unless we have strong theoretical priors on the direction of the effect.
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Back to p-values

Key definition

A p-value is the probability of observing an outcome (e.g. a DIM or a
coefficient) as extreme as we did if the null hypothesis were true.

To conclude the tale of the sloppy RA, we decided that a p-value of ≈ 0.18
was still a pretty likely outcome (≈ 4 in 20 cases) if the null were true.

But how do we decide how unlikely the observed outcome has to be before
we can reject the null?

1 First, decide on a one- or two-sided test.

Let’s go with a two-sided test.

2 Second, decide on a significance level, which states how unlikely an
outcome has to be for us to reject the null H0.

Let’s go with α = 0.05, or 1 in 20 cases.
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Significance level α

Bell and whistle #2

! How do we decide where to place the fences? (I.e. What critical
values do we use? What significance level?)

When we pick a significance level of α = 0.05:

We have a 5% probability of observing the effect due to chance alone.

We’re okay with that. α = 0.05 is the conventional level used for
determining statistical significance.

Easy steps to remember

If the p-value is less than 0.05, you reject the null hypothesis.

If the p-value is greater than 0.05, you fail to reject the null
hypothesis.

Here, we compare our computed p-value to the threshold of our chosen
significance level α.
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Standard normal distribution

When we have N (0, 1), we call it the “standard normal” distribution.
Check: what does this mean? This is a normal distribution with a mean of
0 and a standard deviation of 1.

Two key critical values from this distribution are 1.64 and 1.96.
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Standard normal distribution

When we have N (0, 1), we call it the “standard normal” distribution.
Check: what does this mean? This is a normal distribution with a mean of
0 and a standard deviation of 1.

Two key critical values from this distribution are 1.64 and 1.96.
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Standard normal distribution

When we have N (0, 1), we call it the “standard normal” distribution.
Check: what does this mean? This is a normal distribution with a mean of
0 and a standard deviation of 1.

Two key critical values from this distribution are 1.64 and 1.96.
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Standard normal distribution

When we have N (0, 1), we call it the “standard normal” distribution.
Check: what does this mean? This is a normal distribution with a mean of
0 and a standard deviation of 1.

Two key critical values from this distribution are 1.64 and 1.96.
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Another way to place the fences

We could compare our DIM to the threshold of our chosen critical value c .

The critical value is how many deviations away from 0 our observed
outcome is. (If it is many deviations away, it is pretty unlikely).

1 First, choose between a one-sided or two-sided test. Again, let’s go
for two-sided.

2 Second, choose a critical value c above which the observed effect
would be so unlikely that we reject the null.

For example, let’s choose c = 1.96.
This means our effect would need to be 1.96 standard deviations away
from 0 (i.e. super unlikely) for us to reject the null hypothesis of no
effect.
The critical value is the threshold. What do we compare against it? A
test statistic (more on that later).
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Relationship between critical value and significance level

There is a relationship between the critical value c and the significance
level α. Both can be used as thresholds.

Lépissier (UCSB) Political Science 15 35 / 70



Review so far

We want to test whether an observed effect is statistically significant,
or if it is due to chance alone.

For example, whether Republicans and Democrats differ significantly
in their intention to vote.

We formally state our null and alternative hypotheses.
Usually, the null hypothesis H0 is of no effect (i.e. no difference).
Usually, the alternative hypothesis HA is two-sided, i.e. there is some
non-zero effect (i.e. some difference).

Next, we need to determine just how “weird” our observed effect is,
“in a world” where the null hypothesis is true. That is, how unlikely
the observed outcome is in the null distribution.

If it is not that weird, we fail to reject the null. It is a plausible
outcome “in a world” of no effect.
If it is very weird, we reject the null hypothesis, as there is only a tiny
chance that the effect occurred due to chance alone.

We use p-values and critical values as thresholds to determine what is
likely and what is unlikely.
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Remember this picture?

Applied to our vote intention example, the population mean for Democrats
is µ1 and the population mean for Republicans is µ2. We use data to
estimate the sample equivalent VoteD and VoteR . ∆ is the true
difference, which we estimate with DIM. Finally, we test H0 : ∆ = 0.
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Next time

We just learned the basic statistical machinery to do hypothesis testing.

Next, we add the remaining bells and whistles:

How do we measure the outcome, i.e. what test statistic do we use?
(E.g. Z-score, t-statistic)

What distribution do we use for the null hypothesis? (E.g. normal, t)

We will also cover:

How to conduct hypothesis testing in the context of regression

How to do this in R

Type I and Type II errors

Confidence intervals
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Review of previous modules

We want to test whether an observed effect is statistically
significant, or if it is due to chance alone.

For example, whether Republicans and Democrats differ significantly
in their intention to vote.

We formally state our null and alternative hypotheses.
Usually, the null hypothesis H0 is of no effect (i.e. no difference).
Usually, the alternative hypothesis HA is two-sided, i.e. there is some
non-zero effect (i.e. some difference).

Next, we need to determine just how “weird” our observed effect is,
“in a world” where the null hypothesis is true. That is, how unlikely
the observed outcome is in the null distribution.

If it is not that weird, we fail to reject the null. It is a plausible
outcome “in a world” of no effect.
If it is very weird, we reject the null hypothesis, as there is only a tiny
chance that the effect occurred due to chance alone.

We use p-values and critical values as thresholds to determine what
is likely and what is unlikely.
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Review of previous modules

We developed our intuition for the machinery of hypothesis testing. We
also talked about the following bells and whistles:

! Do we need 1 or 2 rejection regions? (I.e. one or two-sided HA)

! How do we decide where to place the fences? (I.e. What critical
values do we use? What significance level?)

f How do we measure the outcome, i.e. what test statistic do we use?
(E.g. t-statistic)

f What distribution do we use for the null? (E.g. normal, t)
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Today

Today, we’ll discuss

How to conduct hypothesis testing in the context of regression

How to do this in R

Type I and Type II errors

We’ll cover the other two “bells and whistles”:

What test statistic to use to measure the effect.

What distribution to use for the null hypothesis.
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Hypothesis testing with regression

Recall that in our previous modules, we conducted hypothesis testing using
two-sample tests.

That is, we asked whether two samples were statistically significantly
different from each other.

The quantity of interest was the Difference in Means (DIM).

Today, we will conduct hypothesis testing in the context of regression
analysis.

Here, the quantity of interest will be slope coefficient β1.
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Hypothesis testing with regression

We estimate a bivariate regression model Yi = β0 + β1Xi + εi .

We want to find out if the relationship between X and Y is real, or if
it is just by chance?

We want to answer the question “Is the association between X and Y
statistically significant, or did we just get lucky?”

Remember the multiverse. It could be that the sample we drew
showed a relationship between X and Y . But with a slightly different
sample, maybe we would not have observed any relationship after all.
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Stating our hypotheses in regression

1 First, we need to state our null and alternative hypotheses.

What is the null hypothesis in this context?

in words: there is no association between X and Y (or X has no
effect on Y )

in math: H0 : β1 = 0

Check. Why is there no hat on β1? Because we want to make
inferences on the underlying population parameter!

What is the alternative hypothesis (two-sided)?

in words: there is some association between X and Y (or X has some
effect on Y , whether positive or negative)

in math: HA : β1 6= 0
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Let us test this

2 Second, we need to estimate a statistic.

Could we just use our β̂1 estimate and place it on the null distribution to
see how unlikely it would be if the null were true?

Problem: the scale of β̂1 could be anything!

Lépissier (UCSB) Political Science 15 46 / 70



Problem: where to place β̂1 depends on its spread

Here, the observed β̂1 is pretty unlikely if the null were true.
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Problem: where to place β̂1 depends on its spread

When the variance is greater, the (same) observed β̂1 is not so unlikely if
the null were true.
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Solution: we standardize β̂1

Solution: we will standardize (rescale) β̂1 by dividing it by its standard
deviation.

Pro-tip: remember that the standard error is an estimate of the standard
deviation of a parameter.

This is the t-statistic!

t-statistic =
β̂1

SE (β̂1)

So we’ve added this bell and whistle to our machinery:

! How do we measure the outcome, i.e. what test statistic do we use?
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What distribution should we use for the null?

3 Third, we need to derive the null distribution, i.e. the distribution
of possible outcomes if the null hypothesis were true.

To do this, we need to answer the question: “what is the distribution of
the t-statistic?”.

Turns out,
β̂1

SE (β̂1)
follows a t distribution.

(Thanks Guinness Brewing Company!)

The t distribution is chunkier than the normal distribution. It has fatter
tails (that’s a technical term!) than the normal when the sample size is
small, which allows us to be more conservative.
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t-distributions versus normal distributions
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What distribution should we use for the null?

To test hypotheses in regression analysis, we use the t-distribution for the
null hypothesis.

Allows us to proceed with caution in small sample sizes (so that we
do not incorrectly reject H0).

It is virtually indistinguishable from the normal distribution in large
samples.

We’ve added the final piece to our machinery!

! What distribution do we use for the null? (E.g. normal, t)
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Summary of hypothesis testing in regression analysis

1 State your null hypothesis
H0 : β1 = 0

2 Decide whether to use a one-sided or two-sided alternative
hypothesis

HA : β1 6= 0 (two-sided)

3 Decide on a significance level α
Conventionally, choose α = 0.05

4 Estimate your regression model Yi = β0 + β1Xi + εi
You obtain a β̂1 estimate

5 Compute your test statistic (i.e. standardize your coefficient)

t-statistic = β̂1/SE (β̂1)

6 Decide how unlikely your test statistic is under the null.
There are two (equivalent) ways to proceed here:

1 p-value approach
2 Critical value approach
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Procedure for computing how “weird” result is

You want to decide how unlikely you would be to observe this effect if the
null hypothesis were true. Both approaches will lead to the same
conclusion.

1 p-value approach
Compute the p-value associated with your test statistic. (R does this
for you).
Compare your computed p-value to your significance level α:

If p-value < α, reject the null hypothesis H0 in favor of the alternative
HA.
If p-value > α, fail to reject the null hypothesis H0.

2 Critical value approach
Look up the critical value c associated with your α level. Here,
c = 1.96. Check. Why is that? Because α = 0.05, we have chosen a
two-sided test, and our sample is large.
Compare your computed t-statistic to your critical value c :

If |t-statistic| > c, reject the null hypothesis H0 in favor of the
alternative HA.
If |t-statistic| < c, fail to reject the null hypothesis H0.
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Remember

Reject the null H0 Fail to reject the null H0

p-value approach p-value < α p-value > α
Critical value approach |t-statistic| > c |t-statistic| < c

Note: for a two-sided HA

Significance level α and critical value c are thresholds to which you
compare stuff to. You get to decide what these are (according to how
cautious you want to be, more on that later).

The p-value and the t-statistic are computed from your data. You
don’t get to decide what these are. You get what you get.
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How to do hypothesis testing in R

Let’s use the Fearon and Laitin data-set from Problem Sets 2 and 3.

Research question: Does ethnic fractionalization explain how long civil
wars last?

Dependent variable: years of civil war

Independent variable: ethnic fractionalization

Hypothesis testing:
1 State your null hypothesis

H0 : β1 = 0 (there is no association between ethnic fractionalization
and years of war)

2 Decide on alternative hypothesis
HA : β1 6= 0 (there is some association between ethnic fractionalization
and years of war)

3 Decide on a significance level α
Let’s choose α = 0.05
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How to do hypothesis testing in R

4 Estimate your regression model

numyearsi = β0 + β1ethfraci + εi

We get β̂1 = −9.830
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How to do hypothesis testing in R

5 Compute your test statistic (i.e. standardize your coefficient)

We get SE (β̂1) = 4.205
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How to do hypothesis testing in R

5 Compute your test statistic (i.e. standardize your coefficient)

We get SE (β̂1) = 4.205

t-statistic = β̂1/SE (β̂1) = −9.830/4.205 = −2.338
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How to do hypothesis testing in R

6 Decide how unlikely your test statistic is under the null.

Critical value approach

The critical value c corresponding to α = 0.05 is 1.96
We find that | − 2.338| > 1.96
We reject the null hypothesis that there is no association between
ethnic fractionalization and years of civil war at α = 0.05
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How to do hypothesis testing in R

6 Decide how unlikely your test statistic is under the null.

p-value approach

We get a p-value of 0.0207
We find that 0.0207 < 0.05
We reject the null hypothesis that there is no association between
ethnic fractionalization and years of civil war at α = 0.05
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Visualizing Fearon and Laitin results
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Normal Distribution

Critical Value (1.96)Critical Value (−1.96)

Our estimate (−2.338)
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Political Science 15
Introduction to Research in Political Science

Lecture 5d: Type I and Type II errors

Alice Lépissier
University of California Santa Barbara

Special thanks to Chad Hazlett and Allison Horst for select slides and images, used with
permission.
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Back to the big picture

Remember, we never prove or disprove the null hypothesis.

When reject H0, we are saying that, given the effect we observe, it is
unlikely that β1 = 0, but not impossible.

Thinking probabilistically means recognizing that we might make a
mistake.

Let’s now talk about what types of mistakes we can make and how costly
they can be.
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Two types of mistakes

False positive (Type I error)

When we reject a null hypothesis that is actually true: we say there
is a relationship when there isn’t one.

Recall that the definition of α is how unlikely our result β̂1 has to be
under the null, for us to be able to reject the null.

So if we set α = 0.05, we still have a 5% chance that the β̂1 we
observed is high enough that we reject H0 even when it is true.

In which case we would be making a type I error (false positive)!

Our amazing significance level α

The significance level α is the probability of committing a type I
error!

Much of statistics is concerned with limiting this type of error.

This is why we choose conservative levels of α: to minimize the
probability of False Positives.
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Two types of mistakes

False negative (Type II error)

When we fail to reject the null, but the null is actually false: we say
there is no relationship, when there is one.

This could happen if we have a small sample size (the study has low
power).

A low sample size tends to increase the standard errors, so our null
distribution is quite wide → harder to reject the null.

The hypothesis testing framework is concerned with limiting the rate
of False Positives.

But there is a trade-off between the rate of False Positives and the
rate of False Negatives.

You can reduce your risk of False Positives by using a lower value for α,
e.g., setting α = 0.01 means there is a 1% chance of committing a
type I error.
But, using a lower value for α means that you will be less likely to
detect a true difference if one really exists (thus risking a type II error).
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Reality
Null is False Null is True

Decision
Reject H0 Correct Type I Error (FP)
Don’t reject H0 Type II Error (FN) Correct
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Statistical hypothesis testing: the trial analogy

The decision theory that underlies statistical hypothesis testing is similar
to a judicial trial.

Suppose we must decide whether to convict or acquit a defendant based
on evidence presented at a trial. There are four possible outcomes.

State of the World
Guilty Innocent

Decision
Convict Correct Type I Error
Acquit Type II Error Correct

Our goal is to limit the probability of error.

Our null hypothesis is H0: the defendant is innocent.
H0 is presumed to be true unless the data/evidence strongly suggest
otherwise and we may be willing to reject the null hypothesis in favor of an
alternative hypothesis.
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Statistical hypothesis testing: the trial analogy

Suppose we can somehow model the probabilities for the various outcomes
conditional on the true state of the world.

Probabilities given the true state of the world

State of the World
Guilty Innocent

Decision
Convict 1− β α
Acquit β 1− α

We would like α and β to be small, but it is difficult to achieve both goals
at the same time. Open question: which type of mistake is worst?

Type I error example. A defendant is accused of a heinous crime.
They are sentenced to life in prison, when in fact they are innocent.

Type II error example. The result of a patient’s biopsy is negative,
when in fact their tumor is malign. They do not seek treatment for
cancer, and their life is shortened as a result.
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Bottom line

The consequences of making a Type I error (False Positive) or a Type II
error (False Negative) depends on the underlying question we are trying to
answer.

Balancing the trade-off between the rate of False Positives and the rate of
False Negatives is salient in many different fields, e.g. judicial trial,
machine learning, disease testing.

The statistical hypothesis testing framework (AKA Lecture 5) tends to be
concerned with limiting the rate of False Positives (by controlling the
significance level α).

You can limit the rate of False Negatives through research design: by
increasing your sample size, you increase your study’s statistical power.
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