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Goals for this week

Learning outcomes
1 Probability

Distributions and thinking probabilistically
Simulating the distribution of the mean
Random variables, expectation, and variance
Introducing 2 awesome theorems:

Law of Large Numbers Central Limit Theorem

2 Introducing bivariate regression (OLS)

Your to-do list for Week 2

f Read Real Stats Appendix A-G (for the Monday-Tuesday lectures)

f Read Real Stats Chapter 3 (for the Wednesday-Thursday lectures)

f Read a cautionary tale in Real Stats Chapter 2 (i.e. why we train you
to have good data science practices!)

f Hand in Problem Set 2 (due Friday before midnight)
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How to approach this week

! There is math!

The math is here to help. It allows us to write down our ideas about
probability in a simpler and more precise way.

Do not be put off by the symbols! The trick is to read slow, and come
back to the material often. Do not skip the math - work through it.
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Maybe you feel like this now
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But hopefully you will feel like this soon
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Thinking probabilistically

Today we’ll start building a more theoretical foundation that we need in
order to go farther.

One of the hardest things about statistics is understanding distributions of
outcomes: the idea that you could observe different outcomes with
different probabilities, even when you only observe one outcome.

Statistics has to do with understanding properties of that distribution of
potential outcomes, not just the data you have.

Today we’ll work on some probability theory and repeatedly think about
distributions of potential outcomes.

Key idea

Thinking probabilistically means thinking not just about the 1 outcome
that you observed, but about what different outcomes you might have
observed and how likely those would have been.

Lépissier (UCSB) Political Science 15 6 / 52



Thinking probabilistically

One way to think about it is to think of the multiverse.

Say you observe one outcome (e.g. a candidate won with 60% of the
vote). This is the realized outcome. But other outcomes could have been
possible in a parallel universe. Probability theory allows us to think how
likely those outcomes would have been to occur instead.
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Modelling COVID-19 deaths with uncertainty

Source: https://projects.fivethirtyeight.com/covid-forecasts/
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Who are we measuring?

Population

Sample

Individual Individual Individual

Sample Sample

Population: the collection of individuals, beyond just the sample, for
which we would like to understand patterns/trends.

Sample: the collection of individuals on which statistical analyses are
performed in order to infer general trends for the population.

Individual: also called “observation” or “unit”, a single data point
contributing to the sample (i.e. the subscripted i in the regression
equation).
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The Statistical Inference Process

This is the key workflow when doing statistical analysis.
(Should make sense at the end of the lecture).
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Building Blocks: Random Variables

Random variables are a fundamental building block of probability theory.

Informal definition

A random variable is a variable whose values depend on outcomes of a
random process.

Examples: flip of a coin, neck length of a random giraffe in Santa Barbara
zoo, height of random UCSB student, etc.

Two types of random variables:

1 Discrete: can take on distinct or separate values, e.g. {heads, tail},
{1,2,3,4,5,6}

2 Continuous: can take on any value in an interval
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Building Blocks: Random Variables

For any random experiment, the thing we are measuring is the random
variable.

Properties of random variables

They can take on different possible values as the result of a random
experiment, e.g. discrete RV denoting whether race was won: {0, 1};
continuous RV denoting giraffe neck lengths: [1, 8].

Those outcomes have different probabilities of occurring. These are
characterized by a distribution.

You won’t know which of those values the random variable will take
until you do the random experiment (also called random draw).
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Reading a Probability Density Function
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Reading a Probability Density Function
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Reading a Probability Density Function
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Measures of centrality

Measures of central tendency such as the mean, median, and mode tell us
what the “typical” outcome is.
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Measures of dispersion

Measures of dispersion such as the variance and the standard deviation tell
us how “scattered” our data is, and how far away from the “typical”
outcome some outcomes will lie.
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Good data practices
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Goal: Understanding the ‘distribution of the mean’

Two related goals:

Goal 1: Understand what is meant by the “distribution of the mean”.

Goal 2: Understand how to figure out the distribution of a mean in
theory, given you only have a sample of individuals and can’t actually
see the distribution of the mean.

The first part we can see conceptually from simulations and graphs.

The second part will require some statistical theory.
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Goal 1: Distribution of the mean, using simulation

Here we explore the concept of a distribution of the mean using
simulation.

Suppose you can draw (sample) some quantity as many times as you want:

Example: You gather data on the height of people in this class, pretending
you never run out of people. All the people are from the general UCSB
population.

Take the mean (average) of, say, 20 peoples’ height in inches.

Do that over and over again.

Sample code:

getmean = function( N, mean, sd ){

height = rnorm( n = N, mean = mean, sd = sd )

meanheight = mean( height )

return( meanheight )

}

manymeans = replicate( n = 10^4, getmean(N = 20, mean = 65, sd = 6) )

hist(manymeans)
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Goal 1: Distribution of the mean, using simulation

Histogram of manymeans
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How do you think this picture changes if we change the number of people
we are averaging together (N = 5, 20 or 100)?

How do you think this changes if the natural variation of height (sd) in
the population was much larger or much smaller (sd = 2, 6, or 12)?
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Goal 1: Distribution of the mean, using simulation

N=5, SD=6
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What to note about distribution of the mean

Remember, the mean you get from a given sample is one number, but we’re
talking about the distribution governing what it could have looked like.

When working with actual data, you only see the mean once, and you can’t do
this simulation exercise directly. (You can’t collect the data over and over again –
you only have one sample in the data you have).

But, it turns out that the only thing the distribution of the mean depends on is
the sample size N, the mean (X̄ ), and the variance (SD2) of the individuals.

This will allow us to construct null distributions involving the mean very
easily without simulation (more on that later in the course).

It will also give us confidence intervals telling us how different the mean
could have been if we had a slightly different sample (because of noise).

Come back to this slide at the end and see if it makes sense to you!
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Goal 2: Distribution of the mean, using theory

We just simulated empirically what the distribution of the mean would
look like. It looks pretty normal. Now, can we prove this will always be the
case using statistical theory?

Recall the concept of random variable.

For any random experiment/process, the random variable will take on the
values depending on the outcome of the random process. It quantifies the
outcome for a random process.

Random variables are usually denoted by capital letters. Examples:

X = height of a random UCSB student

Y = outcome of a coin flip

Z = sum of the roll of 15 dices

Random variables have probability distributions which give the
probabilities for the different possible outcomes of the RV.
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Examples of Probability Distributions

Distributions are just ways of describing how often you get each possible value.
Some examples of how variables look when drawn from 4 different distributions:

Uniform, min=0, max=1
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Normal, mean=0, sd=1
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Expectation and Variance

Remember that random variables are measurements drawn from a
distribution, whether we know that distribution or not.

Two important features of any distributions are expectation and variance.

Expectation: the best guess about what number will be drawn from
the distribution.

Variance: how far the numbers you draw tend to be from that best
guess.

Turns out, you can characterize a normal distribution entirely from its
expectation and its variance. This means that if you know the expectation
and the variance, then you can draw that normal distribution!
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A Normally Distributed Variable

Say we are interested in the height of the next person to watch this video
module after you.

We will assume this random variable is distributed normally with
expectation 65 inches and variance of 10 inches:
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A bit more on Expectation and Variance

The expectation, or E[X ] for a random variable, X :

is a different concept from the average or mean, because it is
something that exists for any random variable, not something you get
from the data

but, you can think of it loosely as the “average” of what you could
get from the distribution

if you could draw repeatedly from a distribution and take an average,
it would get closer and closer to the expectation
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A bit more on Expectation and Variance

Variance is a measure of spread, or how far you expect a random draw to
be from the expectation:

Technically: E[(X − E[X ])2]

Informally: if you drew a bunch of numbers from same distribution,
squared the difference from each to the mean, and averaged those.

We will talk about how to estimate E[X ] and Var(X ) using a sample of
values drawn repeatedly from the same distribution, but we delay this here
to emphasize that the E[X ] and Var(X ) are properties of the
distribution of X , not of your data.
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Final words on normal distributions

We’ll soon see why the normal distribution appears so often.

Remember that a normal distribution is completely described by only its
expectation and variance.

For some random variable X from a normal distribution, we write:

X ∼ N(E[X ],Var(X ))

Actually, we usually write

X ∼ N(µ, σ2)

where µ is the expectation and σ2 is the variance. Get used to this!
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The Statistical Inference Process

Recall what we are trying to accomplish here.
(Should make sense at the end of the lecture).
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Samples as Collections of Random Variables

Typically we have a sample: multiple RVs all with the same distribution.
E.g.

person 1 has height1, a RV drawn from N(µ, σ2)

person 2 has height2, a separate RV drawn from N(µ, σ2)

...

person N has heightN , yet another RV drawn from N(µ, σ2)

Even though each observation is a different RV, since they all come from
the same distribution, we leverage the sample to learn something about
that distribution.
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The Sample Mean

The sample mean of X1, X2, ..., XN is:

X̄ =
1

N

N∑
i=1

Xi =
1

N
[X1 + X2 + ...+ XN ]

Important notes:

This is an example of an estimator: a function you can compute with
data. You can use these estimators in R, for example
mean(data$variable).

The mean is itself a random variable! It takes on some particular
value in your study, but it could have taken different values.

We are trying to understand what the distribution of the mean must
look like, despite seeing the mean only once.
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Goal 2: Distribution of the mean, using theory

Recall that the mean has a distribution

you saw this notionally using simulations...

but in the real world, you can’t draw a bunch more data to get new
means as we did in the simulation

turns out that mathematically we can say a lot about the distribution
of the mean despite only seeing it once!
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The Law of Large Numbers

How can we use a sample of random variables drawn from the same
distribution to learn about that distribution?
We leverage this theorem.

The Law of Large Numbers (LLN)

For RVs X1, X2, . . . , XN , the mean X̄ gets closer and closer to E[X ] as N
grows.

That is,

As N becomes larger and larger (formally N →∞),

then X̄ =
1

N

N∑
i=1

Xi → E[X ]

works even if distribution of X is not normal!

Bottom line: while we make a distinction between E[X ] and the mean from some
sample, because of the law of large numbers, the latter is a good estimate of the
former, and gets better as N grows. This is why we call the mean an estimator.
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The Law of Large Numbers - Graphically
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Properties of the Distribution of the Mean

Property 1: The sample mean’s distribution is centered around E[X ].

You only get a mean once, but you know it takes a value from a
distribution centered on E[X ].

We don’t know E[X ] (though we know X̄ gets closer and closer as N
grows).

A taste of the math (don’t worry about this)

E[X̄ ] = E
[

1

N
(X1 + X2 + ...+ XN)

]
=

1

N

[
E[X1] + E[X2] + ...+ E[XN ]

]
=

1

N
N ∗ E[X ]

= E[X ]
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Properties of the Distribution of the Mean

Property 2: The variance of the mean is Var(X̄ ) =
Var(X )

N
.

Moreover, we estimate Var(X ) from the sample as follows:

V̂ar(X ) =
1

N − 1

N∑
i=1

(Xi − X̄ )2

So then we can estimate Var(X̄ ) =
V̂ar(X )

N

Square root of this is standard deviation of the mean, often called the
“standard error”.
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Properties of the Distribution of the Mean (math aside)

A taste of the math (again, don’t worry)

Var(X̄ ) = Var
( 1

N
(X1 + X2 + ... + XN)

)
=

1

N2

[
Var(X1) + Var(X2) + ... + Var(XN)

]
=

1

N2
N ∗ Var(X )

=
Var(X )

N
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Review so far...

The sample mean is something you get from a sample...

But it is a random variable, drawn from some distribution...

And we can say something about the (unseen) distribution from which our
particular mean was drawn. So far, we’ve said:

1 Our mean, X̄ is a random variable with expectation E[X̄ ] = E[X ]

2 The variance of X̄ is the variance of X divided by N.

We estimate the variance of X by

V̂ar(X ) =
1

N − 1

N∑
i=1

(X − X̄ )2

Thus, we estimate the variance of X̄ by:

V̂ar(X̄ ) =
1

(N − 1)N

N∑
i=1

(X − X̄ )2

We call
√
Var the standard deviation, and for the mean, we often call

the standard deviation the “standard error of the mean”.
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Recap: Properties of the Distribution of the Mean

So far, we have shown that:

1 The distribution of the sample mean X̄ is centered around E[X ].

2 The variance of the sample mean is Var(X̄ ) =
Var(X )

N
.
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How is the Mean Distributed?

There is one more piece to understanding the distribution of the mean: we
know its expectation and variance, but what about the shape?

The shape must depend on the distribution of the underlying X , you
would think.

Fortunately, it does not...

Central Limit Theorem (CLT)

The distribution of the mean tends toward a normal distribution.

This is magical: regardless of how the original X is distributed, when you
take the mean of multiple RVs drawn from the same distribution, it starts to
look normal.

You do need N to be big enough for this to work, but that’s often not a
problem.

We will discuss some rules for deciding if N is big enough, and adjustments
to use when it is not.
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Example of the CLT in action

Suppose X is distributed uniformly between 0 and 1.

Let’s see what happens to the mean of samples drawn from this distribution, as N
increases. This is the distribution of the uniform random variable (so X ).

Example of 10^4 draws from Unif(0,1)
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Example of the CLT in action

Suppose X is distributed uniformly between 0 and 1.

This is the distribution of the mean of samples of size N = 2 (so of X̄ ).

Simulated distribution of means with N=2
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Example of the CLT in action

Suppose X is distributed uniformly between 0 and 1.

This is the distribution of the mean of samples of size N = 50. The distribution is
starting to look more normal!

Simulated distribution of means with N=50

manymeans50

F
re

qu
en

cy

0.35 0.40 0.45 0.50 0.55 0.60 0.65

0
50

0
10

00
15

00

Lépissier (UCSB) Political Science 15 48 / 52



Example of the CLT in action

So that’s a simulated example, but let’s see how well it matches our
theoretical understanding of the distribution:

Take the N = 50 case

We can estimate the center using X̄ , which is 0.5 (because we are drawing
uniform RVs between 0 and 1)

We can estimate the variance of X̄ using
1

N
V̂ar(X )

>varmean=var(X)/N

>SE=sqrt(varmean)

We know the shape of the distribution of the mean is normal (from the
CLT).
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Example of the CLT in action

Using all this, we estimate that the mean should be distributed

X̄ ∼ N(µ = 0.5, σ2 = Var(X )/N)

Let’s superimpose our theoretical estimate of the distribution of the mean
over the simulated one:

Simulated distribution of means with N=50
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Why have we done all this?!

Remember, the big idea was that even when we only observe a mean once we can
say a lot about how the mean would be distributed (as if we could observe it over
and over again).

In particular, our key-aways are:

Properties of the distribution of the mean

The distribution of the sample mean is:

1 normal

2 centered around E[X ]

3 with variance Var(X )/N
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Why have we done all this?!

A huge part of the statistical machinery depends on this finding. Next
time we’ll see how this allows us to:

Construct confidence intervals around your estimated mean to
characterize our uncertainty.

Do hypothesis tests, get p-values, etc. for one-sample and
two-samples tests involving means.

Other hypothesis tests for categorical outcomes, binary outcomes,
counts, etc. will follow similar patterns.

On a final note, this is tough stuff but paves the way for much of what we
will do, so go over these slides.
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